![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Table Of Contents
Configuring ATM Router Module Interfaces
Overview of the ATM Router Module
Hardware and Software Restrictions
Configuring ATM Router Module Interfaces
Default ATM Router Module Interface Configuration Without Autoconfiguration
Manual ATM Router Module Interface Configuration
Configuring LECs on ATM Router Module Interfaces (Catalyst 8540 MSR)
Confirming the LEC Configuration
RFC 1483 Configuration Example
Configuring Classical IP over ATM in a PVC Environment
Configuring Packet Flooding on a PVC
Displaying the Bridging Configuration
Configuring ATM Router Module Interfaces
This chapter describes steps required to configure the ATM router module on the Catalyst 8540 MSR, Catalyst 8510 MSR, and LightStream 1010 ATM switch routers. The ATM router module allows you to integrate Layer 3 switching with ATM switching on the same ATM switch router.
Note
This chapter provides advanced configuration instructions for the Catalyst 8540 MSR, Catalyst 8510 MSR, and LightStream 1010 ATM switch routers. For complete descriptions of the commands mentioned in this chapter, refer to the ATM Switch Router Command Reference publication. For hardware installation and cabling instructions, refer to the ATM Port Adapter and Interface Module Installation Guide.
Note
ATM router module and Layer 3 feature support is only available with the Catalyst 8510 MSR system software image. You can download this image to a LightStream 1010 ATM switch router with ASP-C and FC-PFQ installed. The LightStream 1010 image does not include support for the ATM router module or Layer 3 features.
This chapter includes the following sections:
•
Overview of the ATM Router Module
•
Hardware and Software Restrictions
•
Configuring ATM Router Module Interfaces
•
Configuring LECs on ATM Router Module Interfaces (Catalyst 8540 MSR)
•
Configuring Classical IP over ATM in a PVC Environment
Overview of the ATM Router Module
The ATM router module interface module allows you to integrate Layer 3 routing and ATM switching within a single chassis. When you install the ATM router module, you no longer need to choose either Layer 3 or ATM technology, as is frequently the case with enterprise campus and MAN applications.
The Catalyst 8540 MSR ATM router module offers the following benefits:
•
Interoperates with all of the Layer 3 switching interface modules available in the Catalyst 8540 CSR chassis. For more information on the Catalyst 8540 CSR Layer 3 interface modules, refer to the Catalyst 8540 CSR Route Processor and Interface Module Installation Guide.
•
Provides an integrated high performance link between ATM and Layer 3 cards. The ATM router module provides an aggregate switching capacity of 2 Gbps between ATM and Layer 3 ports (2 x 1 Gbps interfaces per module). Data transfers to the switch core at the rate of 1 Gbps.
•
Simplifies management.
•
Hot-swappable.
•
Occupies only one slot in the chassis.
•
Supports LANE clients (LECs).
•
Supports multiprotocol encapsulation over ATM (RFC 1483) and classical ATM over IP permanent virtual channels (PVCs) (RFC 1577).
•
Supports Bridge Group Virtual Interface (BVI).
•
Supports PVC management using OAM.
The Catalyst 8510 MSR and LightStream 1010 ATM router module offers the following benefits:
•
Interoperates with all of the Layer 3 switching interface modules available in the Catalyst 8510 CSR chassis. For more information on the Catalyst 8510 CSR Layer 3 interface modules, refer to the Catalyst 8510 CSR Route Processor and Interface Module Installation Guide.
•
Provides an integrated high performance link between ATM and Layer 3 cards. The ATM router module provides a switching capacity of 1 Gbps between ATM and Layer 3 ports. Data transfers to the switch core at the rate of 1 Gbps.
•
Simplifies management.
•
Hot-swappable.
•
Occupies only one slot in the chassis.
•
Supports multiprotocol encapsulation over ATM (RFC 1483) and classical ATM over IP permanent virtual channels (PVCs) (RFC 1577).
•
Supports BVI.
•
Supports PVC management using OAM.
The ATM router module has no external interfaces. All traffic is sent and received through internal interfaces to the switching fabric. The Catalyst 8540 MSR ATM router module has two internal ports and for the Catalyst 8510 MSR and LightStream 1010 ATM router module has one internal port.
The ATM router module can perform one or more of the functions described in Figure 21-1.
Figure 21-1 ATM Router Module Routing and Bridging Functions
The ATM router module receives Address Resolution Protocol (ARP) messages and route broadcasts from connected ATM peers and sends the appropriate control information to the route processor. On the ATM side, the ATM router module connects to the switching fabric as would any other interface module.
On the Catalyst 8540 MSR, the ATM router module supports LANE clients (LECs), but not the LANE servers (LES, LECS, and BUS). It separates the control and data path so that all LANE control messages are handled by the route processor, and data messages are switched on the ATM router module port, as shown in Figure 21-2. The LEC is configured on the ATM router module interface, but control message traffic is sent to the route processor by the ATM router module. The ATM router module sends all ATM data traffic to the appropriate VCs.
Figure 21-2 ATM Router Module Traffic Flow (Catalyst 8540 MSR)
Hardware and Software Restrictions
The following hardware restrictions apply to the Catalyst 8540 MSR, Catalyst 8510 MSR, and LightStream 1010 ATM router modules:
•
You can install the ATM router module in any slot except a route processor slot, and, in the case of the Catalyst 8540 MSR, a switch processor slot.
•
The ATM router module is only supported on LightStream 1010 ATM switches with ASP-C and feature card per-flow queuing (FC-PFQ) installed.
•
You can install up to two ATM router modules per chassis.
•
When you hot swap an ATM router module, wait one minute after removing the module before inserting a new module.
Note
The ATM router module is only supported on ATM switches which have ASP-C with FC-PFQ installed.
The following software restrictions apply to the Catalyst 8540 MSR, Catalyst 8510 MSR, and LightStream 1010 ATM router modules:
•
Use tag switching functionality with caution. Do not distribute routes learned through tag switching to Fast Ethernet (FE) or Gigabit Ethernet (GE), or vice versa. Otherwise, you might have unreachable route destinations.
•
The ATM router module does not initialize if it replaces an ATM port adapter or interface module when hierarchical VP tunnels are globally enabled. Reboot the switch to initialize the ATM router module.
•
ATM Director does not support any PVC commands.
•
Only LANE clients or RFC 1483, not both, can be configured on an ATM router module interface.
•
RFC 1483 on the ATM router module supports only ATM adaption layer 5 (AAL5) Subnetwork Access Protocol (SNAP) encapsulation.
The Catalyst 8540 MSR, Catalyst 8510 MSR, and LightStream 1010 ATM router modules do not support the following features:
•
Point-to-point subinterfaces. Only point-to-multipoint subinterfaces are supported.
•
Tag-edged router functionality
•
Fast Simple Server Redundancy Protocol (FSSRP)
•
Bridging for multiplexing device encapsulation
•
Protocol Independent Multicast (PIM) IP multipoint signalling
•
PIM nonbroadcast multiaccess (NBMA)
•
PIM over ATM multipoint signalling
•
Translation from IP quality of service (QoS) to ATM QoS
•
Resource Reservation Protocol (RSVP) to ATM SVC
•
PVC management using ILMI
•
Access lists for ATM to ATM routing
•
Half-bridge devices
•
RFC 1577 SVCs
•
RFC 1483 MUX encapsulation
The following software restrictions apply to the Catalyst 8540 MSR ATM router modules:
•
You can have a maximum of 64 LECs per chassis.
•
Do not install an ATM router module in a slot pair where hierarchical VP tunnels are configured. Slot pairs 0 and 1, 2 and 3, 9 and 10, and 11 and 12 use the same switching modules for scheduling. For example, do not install an ATM router module in slot 10 when hierarchical VP tunnels are configured on slot 9. For more information on hierarchical VP tunneling restrictions, refer to the "Configuring a Hierarchical VP Tunnel for Multiple Service Categories" section.
•
Token Ring LANE is not supported.
The following software restrictions apply to Catalyst 8510 MSR and LightStream 1010 ATM router modules:
•
Do not install an ATM router module in a slot pair where hierarchical VP tunnels are configured. Slot pair 0 and 1 and slot pair 3 and 4 use the same switching modules for scheduling. For example, do not install an ATM router module in slot 1 when hierarchical VP tunnels are configured on slot 0. For more information on hierarchical VP tunneling restrictions, refer to the "Configuring a Hierarchical VP Tunnel for Multiple Service Categories" section.
•
LANE clients are not supported.
•
Only UBR PVCs are supported.
Note
The ATM router module is only supported on ATM switches which have ASP-C with FC-PFQ installed.
Note
ATM router module and Layer 3 feature support is only available with the Catalyst 8510 MSR system software image. You can download this image to a LightStream 1010 ATM switch router with ASP-C and FC-PFQ installed. The LightStream 1010 image does not include support for the ATM router module or Layer 3 features.
Configuring ATM Router Module Interfaces
The you can configure the following features directly on the ATM router module interfaces:
•
Maximum virtual channel identifier (VCI) bits
•
LANE component LEC (Catalyst 8540 MSR)
•
RFC 1483
•
Classical IP over ATM (RFC 1577)
•
Bridging
•
IP multicast
Note
This document describes how to configure ATM software features only. For information on how to configure the Layer 3 modules that interoperate with the ATM router module in the Catalyst 8540 MSR chassis, refer to the Layer 3 Switching Software Feature and Configuration Guide, which is available on the Documentation CD-ROM that came with your ATM switch router, online at Cisco.com, or you can order a hard copy separately.
Note
ATM router modules have internal interfaces, but no external ports. Use the interface atm card/subcard/port command to specify these interfaces.
Note
Virtual path identifier (VPI) 2 is reserved for ATM router module interfaces, which allows you to configure up to 2048 external VCs on each ATM router module interface. Using VPI 0 would have allowed less than 1024 external VCs on an ATM router module interface because the ATM router module external VCs would have been forced to share the VC space within VPI 0 with the internal PVCs.
Default ATM Router Module Interface Configuration Without Autoconfiguration
If ILMI is disabled or if the connecting end node does not support ILMI, the following defaults are assigned to all ATM router module interfaces:
•
ATM interface type = UNI
•
UNI version = 3.0
•
Maximum VCI bits = 11
•
ATM interface side = network
•
ATM UNI type = private
Manual ATM Router Module Interface Configuration
To manually change the default configuration values, perform the following steps, beginning in global configuration mode:
Example
The following example shows how to change the default number of active VCI bits:
Switch(config)# interface atm 0/0/0
Switch(config-if)# atm maxvci-bits 10
Configuring LECs on ATM Router Module Interfaces (Catalyst 8540 MSR)
The procedures for configuring LANE clients (LECs) on the ATM router module are the same as the configuration for LECs on the route processor, with one exception. To specify an ATM router module interface, rather than the route processor interface, use the interface atm card/subcard/port command. On the route processor, you would use the interface atm 0 command.
Note
To route traffic between an emulated LAN and a Fast Ethernet (FE) or Gigabit Ethernet (GE) interface, you must configure the LEC on an ATM router module interface rather than a route processor interface.
Note
An ATM router module interface can be configured for either LECs or RFC 1483 PVCs, not both. For both features to operate on the same ATM router module, configure LECs on one interface and RFC 1483 PVCs on the other.
To configure a LEC on an ATM router module interface, use the following commands, beginning in global configuration mode:
Example
The following example shows how to configure two LECs on an ATM router module interface:
Switch# configure terminal
Switch(config)# interface atm 1/0/0.4 multipoint
Switch(config-subif)# ip address 40.0.0.1 255.0.0.0
Switch(config-subif)# lane client ethernet VLAN4
Switch(config-subif)# exit
Switch(config)# interface atm 1/0/0.5 multipoint
Switch(config-subif)# ip address 50.0.0.1 255.0.0.0
Switch(config-subif)# lane client ethernet VLAN5
Switch(config-subif)# exit
Switch(config)# router ospf 1
Switch(config-router)# network 40.0.0.0 0.255.255.255 area 0
Switch(config-router)# network 50.0.0.0 0.255.255.255 area 0
For more information on configuring LECs on ATM router module interfaces, see the "Configuring a LAN Emulation Client on the ATM Switch Router" section . For a detailed description of LANE and its components, refer to Cisco IOS Switching Services Configuration Guide: Virtual LANs.
LEC Configuration Examples
The examples in this section show how to configure LANE clients (LECs) on networks with two routers and one Catalyst 8540 MSR. For detailed information on configuring the LANE server (LES), LANE configuration server (LECS), and broadcast-and-unknown server (BUS), refer to "Configuring LAN Emulation"
CautionFor performance reasons, avoid configuring the LANE server components on ATM switch routers. Instead, configure the LANE server components on a router such as a Cisco 7500 series router or a Catalyst 5500 router with a LANE module installed.
LANE Routing Over ATM
The following example shows how to configure LANE routing over ATM with the ATM router module. Figure 21-3 shows an example of a network for LANE routing over ATM.
Figure 21-3 Example Network for LANE Routing Over ATM
Router 1 ATM Interface
Router1# configure terminal
Router1(config)# interface atm 2/0
Router1(config-if)# ip address 1.0.0.1 255.0.0.0
Router1(config-if)# atm pvc 1 0 5 qsaal
Router1(config-if)# atm pvc 2 0 16 ilmi
Router1(config-if)# lane client ethernet happy
Router1(config-if)# end
Router1#
ATM Switch Router ATM Router Module Interface
Switch# configure terminal
Switch(config)# interface atm 2/0/0
Switch(config-if)# ip address 1.0.0.2 255.0.0.0
Switch(config-if)# lane client ethernet BACKBONE
Switch(config-if)# end
Switch#
Router 2 ATM Interface
Router2# configure terminal
Router2(config)# interface atm 3/0
Router2(config-if)# ip address 1.0.0.3 255.0.0.0
Router2(config-if)# no ip mroute-cache
Router2(config-if)# atm pvc 1 0 5 qsaal
Router2(config-if)# atm pvc 2 0 16 ilmi
Router2(config-if)# no atm ilmi-keepalive
Router2(config-if)# lane client ethernet BACKBONE
Router2(config-if)# end
Router2#
For detailed information on configuring LANE clients (LECs), refer to "Configuring LAN Emulation"
LANE Routing from ATM to Ethernet
The following example shows how to configure LANE routing from ATM to Ethernet with the ATM router module. Figure 21-4 shows an example of a LANE network for LANE routing from ATM to Ethernet.
Figure 21-4 Example Network for LANE Routing from ATM to Ethernet
Router 1 ATM Interface
Router1# configure terminal
Router1(config)# interface atm 2/0
Router1(config-if)# ip address 1.0.0.1 255.0.0.0
Router1(config-if)# atm pvc 1 0 5 qsaal
Router1(config-if)# atm pvc 2 0 16 ilmi
Router1(config-if)# lane client ethernet happy
Router1(config-if)# end
Router1#
ATM Switch Router ATM Router Module Interface
Switch# configure terminal
Switch(config)# interface atm 2/0/0
Switch(config-if)# ip address 1.0.0.2 255.0.0.0
Switch(config-if)# lane client ethernet BACKBONE
Switch(config-if)# end
Switch#
ATM Switch Router Ethernet Interface
Switch# configure terminal
Switch(config)# interface gigabitethernet 9/0/0
Switch(config-if)# ip address 129.1.0.1 255.255.255.0
Switch(config-if)# no ip directed-broadcast
Switch(config-if)# end
Switch#
Router 2 Ethernet Interface
Router2# configure terminal
Router2(config)# interface gigabitethernet 9/0/0
Router2(config-if)# ip address 129.1.0.2 255.255.255.0
Router2(config-if)# no ip directed-broadcast
Router2(config-if)# end
Router2#
Configure the desired network routing protocol, such as RIP, OSPF, or EIGRP, on Ethernet interfaces. For more information on configuring networking protocols and routing, refer to the Layer 3 Switching Software Feature and Configuration Guide.
LANE Bridging Between ATM and Ethernet
The following example show how to configure LANE bridging between ATM and Ethernet with the ATM router module. Figure 21-5 shows an example of a network for LANE bridging between ATM and Ethernet.
Figure 21-5 Example Network for LANE Bridging Between ATM and Ethernet
Router 1 ATM Interface
Router1# configure terminal
Router1(config)# interface atm 2/0
Router1(config-if)# atm pvc 1 0 5 qsaal
Router1(config-if)# atm pvc 2 0 16 ilmi
Router1(config-if)# lane client ethernet happy
Router1(config-if)# bridge-group 1
Router1(config-if)# end
Router1#
Router 1 Bridge Interface
Router1# configure terminal
Router1(config)# interface BVI1
Router1(config-if)# ip address 130.2.3.1 255.255.255.0
Router1(config-if)# exit
Router1(config)# bridge 1 protocol ieee
Router1(config)# bridge 1 route ip
Router1(config)# bridge irb
Router1(config)# end
Router1#
ATM Switch Router ATM Router Module Interface
Switch# configure terminal
Switch(config)# interface atm 2/0/0
Switch(config-if)# lane client ethernet BACKBONE
Switch(config-if)# bridge-group 1
Switch(config-if)# exit
Switch(config)# bridge 1 protocol ieee
Switch(config)# end
Switch#
ATM Switch Router Ethernet Interface
Switch# configure terminal
Switch(config)# interface gigabitethernet9/0/0
Switch(config-if)# bridge-group 1
Switch(config-if)# end
Switch#
Router 2 Ethernet Interface
Router2# configure terminal
Router2(config)# interface ethernet 9/0/0
Router2(config-if)# bridge-group 1
Router2(config-if)# end
Router2#
Router 2 Bridge Interface
Router2# configure terminal
Router2(config)# interface BVI1
Router2(config-if)# ip address 130.2.3.4 255.255.255.0
Router2(config-if)# exit
Router2(config)# bridge 1 protocol ieee
Router2(config)# bridge 1 route ip
Router2(config)# bridge irb
Router2(config)# end
Router2#
For more information on configuring bridging, refer to the Layer 3 Switching Software Feature and Configuration Guide.
Confirming the LEC Configuration
To confirm the LEC configuration on the ATM switch router, use the following EXEC commands:
Configuring RFC 1483
This section describes how to configure multiprotocol encapsulation over ATM, as defined in RFC 1483, on the ATM router module.
The primary use of RFC 1483 is to carry multiple Layer 3 and bridged frames over ATM. RFC 1483 traffic is routed through an ATM router module interface using static map lists. Static map lists provide an alternative to using the ATM Address Resolution Protocol (ARP) and ATM Inverse ARP (InARP) mechanisms. For more information on static map lists, refer to the "Mapping a Protocol Address to a PVC Using Static Map Lists" section.
For a detailed description of RFC 1483, refer to the Guide to ATM Technology.
Note
Traffic shaping and policing are not supported on the ATM router module interfaces. Use VP tunnels as an alternative for traffic shaping on ATM connections. For more information on VP tunnels, refer to the "Configuring VP Tunnels" section.
To configure multiprotocol encapsulation over ATM on the ATM router module interface, use the following commands, beginning in global configuration mode:
Example
The following example shows how to configure RFC 1483 on an ATM router module interface, beginning in global configuration mode:
Switch(config)# interface atm 1/0/0.1011 multipoint
Switch(config-subif)# ip address 10.1.1.1 255.255.255.0
Switch(config-subif)# map-group net1011
Switch(config-subif)# atm pvc 2 1011 interface atm 3/0/0 0 1011 encap aal5snap
Switch(config-subif)# exit
Switch(config)# map-list net1011
Switch(config-map-list)# ip 10.1.1.2 atm-vc 1011
Switch(config-map-list)# end
Switch#
RFC 1483 Configuration Example
The following example shows how to configure for RFC 1483 with two routers and one ATM switch router.
The ATM switch router has an ATM router module in slot 0, a Fast Ethernet interface module in slot 1, and an ATM interface module in slot 3. One router has an ATM interface processor in slot 3. The other router has a Fast Ethernet interface module in slot 2.
Figure 21-6 shows an example of an RFC 1483 network.
Figure 21-6 Example Network for RFC 1483
Router with ATM Interface
RouterA# configure terminal
RouterA(config)# interface atm 3/0.1011 multipoint
RouterA(config-subif)# ip address 10.1.1.2 255.255.255.0
RouterA(config-subif)# atm pvc 1011 0 1011 aal5snap
RouterA(config-subif)# map group net1011
RouterA(config-subif)# ipx network 1011
RouterA(config-subif)# exit
RouterA(config)# map-list net1011
RouterA(config-map-list)# ip 10.1.1.1 atm-vc 1011
RouterA(config-map-list)# ipx 1011.1111.1111.1111 atm-vc 1011
RouterA(config-map-list)# exit
RouterA(config)#
ATM Switch Router
Switch# configure terminal
Switch(config)# interface atm 0/0/0.1011 multipoint
Switch(config-subif)# ip address 10.1.1.1 255.255.255.0
Switch(config-subif)# ipx network 1011
Switch(config-subif)# map-group net1011
Switch(config-subif)# atm pvc 2 1011 interface atm 3/0/0 0 1011
Switch(config-subif)# map-list net1011
Switch(config-map-list)# ip 10.1.1.2 atm-vc 1011
Switch(config-map-list)# ipx 1011.2222.2222.2222 atm-vc 1011
Switch(config-map-list)# exit
Switch(config)# interface fastethernet 1/0/0
Switch(config-if)# ip address 20.1.1.2 255.255.255.0
Switch(config-if)# ipx network 2011
Switch(config-if)# end
Switch#
Note
The VCI in the atm pvc command must match the atm-vc VCI in the map list.
Ethernet Router
RouterB# configure terminal
RouterB(config)# ipx routing
RouterB(config)# interface fastethernet 2/0
RouterB(config-if)# ip address 20.1.1.1 255.255.255.0
RouterB(config-if)# ipx network 2011
RouterB(config-if)# end
RouterB#
Configuring Classical IP over ATM in a PVC Environment
This section describes how you configure classical IP over ATM, as described by RFC 1577, in a PVC environment on the ATM router module. The ATM Inverse ARP (InARP) mechanism is applicable to networks that use permanent virtual channels (PVCs), where connections are established but the network addresses of the remote ends are not known. For more information on configuring ATM ARP and ATM InARP, refer to the "Configuring Classical IP over ATM" section .
For a description of classical IP over ATM and RFC 1577, refer to the Guide to ATM Technology.
In a PVC environment, configure the ATM InARP mechanism on the ATM router module by performing the following steps, beginning in global configuration mode:
Repeat these tasks for each PVC you want to create.
The inarp minutes interval specifies how often inverse ARP datagrams are sent on this virtual circuit. The default value is 15 minutes.
Example
The following example shows how to configure an IP-over-ATM interface on interface ATM 3/0/0, using a PVC with AAL5SNAP encapsulation, InARP set to ten minutes, VPI = 2, and VCI = 100:
Switch(config)# interface atm 3/0/0
Switch(config-if)# ip address 11.11.11.11 255.255.255.0
Switch(config-if)# atm pvc 2 100 interface atm 0/0/0 50 100 encap aal5snap inarp 10
Configuring Bridging
All PVCs configured on ATM router module interfaces are used for bridging.
To configure bridging on an ATM router module interface, use the following commands, beginning in global configuration mode:
Example
The following example shows how to configure bridging on a Catalyst 8540 MSR with a Fast Ethernet interface module in slot 0, an ATM interface module in slot 1, and an ATM router module in slot 3.
Figure 21-7 shows an example bridging network.
Figure 21-7 Example Network for Bridging
Switch(config)# interface atm 3/0/0
Switch(config-if)# atm pvc 2 200 interface atm 1/0/0 0 200
Switch(config-if)# bridge-group 5
Switch(config-if)# end
Switch(config)# interface fastethernet 0/0/0
Switch(config-if)# no cdp enable
Switch(config-if)# bridge-group 5
Switch(config-if)# end
Switch(config)# bridge 5 protocol ieee
Configuring Packet Flooding on a PVC
Typically, a specific static map list configuration is not required for bridging to occur. In case of packet flooding, the bridging mechanism individually sends the packet to be flooded on all PVCs configured on the interface. To restrict the broadcast of the packets to only a subset of the configured PVCs you must define a separate static map list. Use the broadcast keyword in the static-map command to restrict packet broadcasting.
Example
In the following example only PVC 2, 200 is used for packet flooding:
Switch(config)# interface atm 3/0/0
Switch(config-if)# no ip address
Switch(config-if)# no ip directed-broadcast
Switch(config-if)# map-group bg_1
Switch(config-if)# atm pvc 2 200 interface atm 1/0/1 0 200
Switch(config-if)# atm pvc 2 201 interface atm 1/0/1 0 300
Switch(config-if)# bridge-group 5
Switch(config-if)# end
Switch(config)# map-list bg_1
Switch(config-map-list)# bridge atm-vc 200 broadcast
Note
For more information about bridging, refer to the Layer 3 Switching Software Feature and Configuration Guide.
Displaying the Bridging Configuration
To display the bridging configuration on the ATM router module interface, use the following privileged EXEC command:
Example
Switch# show bridge verbose
Total of 300 station blocks, 297 free
Codes: P - permanent, S - self
BG Hash Address Action Interface VC Age RX count TX count
5 28/0 0000.0ce4.341c forward Fa0/0/0 -
5 2A/0 0000.0cac.be94 forward ATM3/0/0 200
5 FA/0 0060.3e59.c63c forward Fa0/0/0 -
Configuring IP Multicast
To configure IP multicast over an RFC 1483 permanent virtual channel (PVC) on an ATM router module, use the following commands, beginning in global configuration mode:
Example
Switch(config)# ip multicast-routing
Switch(config)# interface atm 1/0/0.1011 multipoint
Switch(config-subif)# ip address 10.1.1.1 255.255.255.0
Switch(config-subif)# map-group net1011
Switch(config-subif)# atm pvc 2 1011 interface atm 3/0/0 0 1011 encap aal5snap
Switch(config-subif)# ip pim dense-mode
Switch(config-subif)# exit
Switch(config)# map-list net1011
Switch(config-map-list)# ip 10.1.1.2 atm-vc 1011 broadcast
Note
For more information about IP multicast, refer to the Layer 3 Switching Software Feature and Configuration Guide.
Posted: Mon Oct 11 09:13:43 PDT 2004
All contents are Copyright © 1992--2004 Cisco Systems, Inc. All rights reserved.
Important Notices and Privacy Statement.