cc/td/doc/product/cable/svc_ctrl/scappsbb
hometocprevnextglossaryfeedbacksearchhelp
PDF

Table Of Contents

Using the Service Configuration Editor: Additional Options

The Service Security Dashboard

How to View the Service Security Dashboard

Worm Detection

Related Info

Managing Anomaly Detection

How to Configure Spam Detection Settings

Information About Viewing Malicious Traffic Reports

Filtering the Traffic Flows

How to View Filter Rules for a Package

How to Add Filter Rules

How to Edit Filter Rules

How to Delete Filter Rules

How to Activate and Deactivate Filter Rules

Managing Subscriber Notifications

Subscriber Notification Parameters

Information About Network Attack Notification

How to View Subscriber Notifications

How to Add Subscriber Notifications

How to Edit Subscriber Notifications

How to Delete Subscriber Notifications

Managing the System Settings

Information About Setting the System Modes

How to Set the Operational and Topological Modes of the System

Setting Redirection Parameters

Managing Advanced Service Configuration Options


Using the Service Configuration Editor: Additional Options


This chapter explains how to use additional, advanced functionality available in the Service Configuration Editor.

The Service Security Dashboard 

Filtering the Traffic Flows 

Managing Subscriber Notifications 

Managing the System Settings 

The Service Security Dashboard

The Service Security Dashboard allows you to view and control all SCA BB security functionality.

The Dashboard is a gateway to a set of features that help you protect your network from security threats such as worms, DDoS attacks, and spam zombies. It allows configuration of the detection mechanisms (for example, attack thresholds) and of the actions to be taken when an attack is detected.

The Dashboard also allows you to access malicious traffic reports in the Reporter tool.

How to View the Service Security Dashboard


Step 1 In the Network Traffic tab, select Service Security.

Step 2 The Service Security Dashboard is displayed in the right pane.

Figure 10-1

Viewing and configuring the various detection mechanisms and viewing malicious traffic reports are described in the following sections.


Worm Detection

SCA BB uses three mechanisms for detecting worms:

Signature based detection—The Service Control Engine (SCE) platform's stateful Layer 7 capabilities can detect malicious activity that is not easily detectable by other mechanisms. You can add signatures for new worms.

Anomaly based detection—Overall traffic analysis can detect anomalies that might indicate worm activity. See Managing Anomaly Detection.

Mass-mailing based detection—E-mail traffic analysis can detect anomalies that might indicate e-mail-based worms. See How to Configure Spam Detection Settings.

How to View Supported Worm Signatures


Step 1 In the Service Security Dashboard, click View Signatures.

The Signatures Settings dialog box appears, with Worm Signatures selected in the Signature Type drop-down list.

All supported worm signatures are listed.

Step 2 Click Close.

The Signatures Settings dialog box closes.


How to Add New Worm Signatures to a Service Configuration

Do one of the following:


Step 1 Import the latest DSS or SPQI file provided by Cisco.

Step 2 Create a DSS file containing any worm signatures that you wish to add to the service configuration.


Related Info

For more information, see Managing Protocol Signature.

Managing Anomaly Detection

The most comprehensive threat detection method is anomaly detection.

The basic principle of anomaly detection is monitoring successful (correctly established for TCP, bi-directional for other protocols) and unsuccessful (not properly established for TCP, unidirectional for other protocols) connection rates both to and from any IP address viewed by the system, and triggering an anomaly detection condition based of one of the following criteria:

The total connection rate exceeds a predefined threshold.

The suspicious connection rate exceeds a predefined threshold and the ratio of suspicious to unsuspicious connections exceeds a predefined threshold.

The ratio metric is a particularly robust indicator of malicious activity, and together with a rate qualifier serves as a reliable identifier for malicious activity.

Anomaly detection is divided into three categories based on the directional nature of the detected anomaly condition. The concepts used for the three categories are identical, but the nature of the detected malicious activity is different for each category.

Scan/Sweep detector—Detects malicious activity based on an anomaly in connection rates from an IP address.

DoS detector—Detects an anomaly in the connection rate between a pair of IP addresses: one of them is attacking the other. This can be either an isolated attack or part of a larger scale DDoS attack.

DDoS detector—Detects an anomaly in the connection rate coming to an IP address, which means that it is being attacked. The attack can be by either a single IP address (DoS) or multiple IP addresses.

For all kinds of anomaly detection conditions, maximum flexibility is provided by the ability to define detection thresholds and the trigger actions to be taken for each:

Flow direction

Flow protocol

(Optional) Port uniqueness for TCP and UDP


Note Note The GUI configuration described here replaces the CLI command set for configuring the Attack Filtering Module of the SCE platform, which was available in previous releases.


Anomaly Detection Parameters

For each anomaly detector category (Scan/Sweep, DoS, DDoS) there is one default detector. You can add additional detectors of each category. Detectors in each category are checked in order; the first match (according to the detector's threshold settings) triggers detection. You set the order in which detectors are checked; the default detector is checked last.

Anomaly detectors can contain up to 12 anomaly types associated with malicious traffic:

Network initiated—Malicious traffic initiated from the network side:

TCP—Aggregate TCP traffic on all ports

TCP Specific Ports—TCP traffic on any single port

UDP—Aggregate UDP traffic on all ports

UDP Specific Ports—UDP traffic on any single port

ICMP—Aggregate ICMP traffic on all ports

Other—Aggregate traffic using other protocol types on all ports

Subscriber initiated—Malicious traffic initiated from the subscriber side:

TCP

TCP Specific Ports

UDP

UDP Specific Ports

ICMP

Other


Note ICMP and Other anomaly types are not available for DoS attack detectors.


Each anomaly type on a detector has the following attributes associated with it:

Detection thresholds—There are two thresholds, crossing either of them means that an attack is defined to be in progress:

Session Rate threshold—The number of sessions (per second) over specified ports for a single IP address that trigger the anomaly detection condition.

Suspected sessions threshold— Suspected sessions are sessions that are not properly established (for TCP), or that are unidirectional sessions (for other protocols). Exceeding both the Suspected Session Rate and the Suspected Session Ratio will trigger the anomaly detection condition. (A relatively high session rate with a low response rate typically indicates malicious activity.)

Suspected Session Rate—The number of suspected sessions (per second) over specified ports for a single IP address.

Suspected Session Ratio—The ratio (as a percentage) between the suspected session rate and the total session rate. A high ratio indicates that many sessions received no response, an indication of malicious activity.

Actions—Zero or more of the following actions may be taken when an anomaly detection condition is triggered (by default, no action is enabled):


Note Logging of the anomaly to an on-device log file and generation of RDRs is not configurable per anomaly type.


Alert User—Generate an SNMP trap (see the "SCA BB Proprietary MIB Reference" chapter of the Cisco Service Control Application for Broadband Reference Guide for information about the Cisco proprietary MIB) indicating the beginning and end of an anomaly.

Notify Subscriber—Notify the relevant subscriber of the malicious activity, by redirecting his browsing sessions to a captive portal. To configure network attack subscriber notification, see Managing Subscriber Notifications.

Block Attack—Block the relevant sessions. Blocking is performed based on the specification of the malicious traffic that triggered the anomaly detection condition. If subscriber notification is enabled for the anomaly type, blocking is not applied to the port relevant for browsing (by default, this is TCP port 80; see Managing Advanced Service Configuration Options ).

User defined detectors can also have one or more of the following attributes:

IP address list—Limit detection to the listed IP address ranges. This applies to the source IP when detecting IP sweeps and port scans. It applies to the destination IP when detecting DoS and DDoS attacks.

TCP port list—Limit detection to the listed destination TCP ports. This list is applied to TCP Specific Ports anomaly types only.

UDP port list—Limit detection to the listed destination UDP ports. This list is applied to UDP Specific Ports anomaly types only.

How to View Anomaly Detection Settings

You can view a list of all anomaly detectors. The anomaly detectors are displayed in a tree, grouped according to detector category (Scan/Sweep, DoS, or DDoS).

For each anomaly detector you can view its associated parameters and see a list of all anomaly types included in the detector, together with their parameters.


Step 1 In the Service Security Dashboard, in the Anomaly Based Detection of Malicious Traffic pane, click Configure.

The Anomaly Detection Settings dialog box appears.

The detector tree is displayed in the left area of the dialog box; the right area is empty.

Figure 10-2

Step 2 In the detector tree, select a detector.

The detector parameters are displayed in the upper right area of the dialog box.

Figure 10-3

The detector's defined anomaly types are listed in the lower right area of the dialog box, together with the value of each parameter. The following screen capture shows the default parameter values for the Scan/Sweep default detector.

Figure 10-4

If asymmetric routing classification mode is enabled, the Suspected Session Rate is set equal to the Session Rate, which practically disables anomaly detection by the suspected session trigger.

Step 3 Click OK.

The Anomaly Detection Settings dialog box closes.


How to Add Anomaly Detectors

You can add new anomaly detectors. A service configuration can contain up to 100 anomaly detectors.

You define IP address ranges and TCP and UDP ports for the new detector, and one anomaly type.

After you have defined the detector, you can add other anomaly types (see Editing Anomaly Detectors ).


Step 1 In the Service Security Dashboard, in the Anomaly Based Detection of Malicious Traffic pane, click Configure.

The Anomaly Detection Settings dialog box appears.

Step 2 In the detector tree, select a detector category.

Step 3 Click

The Anomaly Detector Creation Wizard appears, open to the Malicious Traffic Detector screen.

Figure 10-5

Step 4 In the Name field, enter a meaningful name for the detector.

Step 5 Check one or more of the check boxes to limit the scope of the detector.

The relevant fields are enabled.

Step 6 Enter lists of IP addresses or ports in the relevant fields.

Step 7 Click Next.

The Malicious Traffic Characteristics for a WORM attack screen of the Anomaly Detector Creation Wizard opens.

Figure 10-6

Step 8 If you are defining a Scan/Sweep detector or a DoS detector, select the originating side for the anomaly type you are defining.

If you are defining a DDoS detector, select the target side for the anomaly type you are defining.

Step 9 Select a transport type for the anomaly type you are defining.

Step 10 Click Next.

The Anomaly Detection Thresholds screen of the Anomaly Detector Creation Wizard opens.

Figure 10-7

Step 11 Do one of the following:

To use the default detector's settings for this anomaly type, check the Use the Default Detector's settings check box.

Enter values in the Flow Open Rate, Suspected Flows Rate, and Ratio of Suspected Flow Rate fields.

Step 12 Click Next.

The Anomaly Detection Action Settings screen of the Anomaly Detector Creation Wizard opens.

Figure 10-8

Step 13 Select Block, Alert, and Notify Subscriber actions.

Step 14 Click Finish.

The Anomaly Detector Creation Wizard closes.

The new detector is added to the detector tree.

Step 15 You can now add additional anomaly types to the detector. (See Editing Anomaly Detectors.)


Editing Anomaly Detectors

You can perform the following on a user-defined anomaly detector:

Edit detector parameters.

Edit anomaly types.

Add anomaly types.

Delete anomaly types.

Change the order of the detectors in the detector tree.

For each detector category, detectors are checked, bottom-up, in the order that they are listed in the detector tree; the default detector is checked last.

You can edit the anomaly types of the three default detectors.

 How to Edit Detector Parameters


Step 1 In the Service Security Dashboard, in the Anomaly Based Detection of Malicious Traffic pane, click Configure.

The Anomaly Detection Settings dialog box appears.

Step 2 In the detector tree, select a detector.

The detector parameters are displayed in the upper right area of the dialog box.

Step 3 In the Name field, enter a new name for the detector.

Step 4 Check or uncheck the IP address range and ports check boxes.

Step 5 Enter or modify lists of IP addresses or ports in the relevant fields.

Step 6 Click OK.

The Anomaly Detection Settings dialog box closes.

Your changes are saved.


How to Edit an Anomoly Type


Step 1 In the Service Security Dashboard, in the Anomaly Based Detection of Malicious Traffic pane, click Configure.

The Anomaly Detection Settings dialog box appears.

Step 2 In the detector tree, select a detector.

Information about the anomaly types is displayed in the lower right area of the dialog box.

Step 3 Double-click an anomaly type.

The Anomaly Detector Creation Wizard appears, open to the Anomaly Detection Thresholds screen (see How to Add an Anomoly Type ).

Step 4 Do one of the following:

To use the default detector's settings for this anomaly type, check the Use the Default Detector's settings check box.

Change the values in the Flow Open Rate, Suspected Flows Rate, and Ratio of Suspected Flow Rate fields.

Step 5 Click Next.

The Anomaly Detection Action Settings screen of the Anomaly Detector Creation Wizard opens.

Step 6 Change Block, Alert, and Notify Subscriber actions.

Step 7 Click Finish.

The Anomaly Detector Creation Wizard closes.

The anomaly type is updated with your changes.

Step 8 Repeat steps 3 to 7 (or steps 2 to 7) for other anomaly types.

Step 9 Click OK.

The Anomaly Detection Settings dialog box closes.


How to Add an Anomoly Type


Step 1 In the Service Security Dashboard, in the Anomaly Based Detection of Malicious Traffic pane, click Configure.

The Anomaly Detection Settings dialog box appears.

Step 2 In the detector tree, select a detector.

The anomaly types are listed in the lower right area of the dialog box.

Step 3 Click ( Create New Detector Item Under Detector Items Feature).

The Anomaly Detector Creation Wizard appears, open to the Malicious Traffic Characteristics for a WORM attack screen (see How to Add Anomaly Detectors ).

Step 4 Select an origin for the anomaly type you are defining.

Step 5 Select a transport type for the anomaly type you are defining.

Step 6 Click Next.

The Anomaly Detection Thresholds screen of the Anomaly Detector Creation Wizard opens.

Step 7 Do one of the following:

To use the default detector's settings for this anomaly type, check the Use the Default Detector's settings check box.

Enter values in the Flow Open Rate, Suspected Flows Rate, and Ratio of Suspected Flow Rate fields.

Step 8 Click Next.

The Anomaly Detection Action Settings screen of the Anomaly Detector Creation Wizard opens.

Step 9 Select Block, Alert, and Notify Subscriber actions.

Step 10 Click Finish.

The Anomaly Detector Creation Wizard closes.

The new anomaly type is added to the anomaly type list.

Step 11 Repeat steps 3 to 10 (or steps 2 to 10) for other anomaly types.

Step 12 Click OK.

The Anomaly Detection Settings dialog box closes.


How to Delete an Anomoly Type


Step 1 In the Service Security Dashboard, in the Anomaly Based Detection of Malicious Traffic pane, click Configure.

The Anomaly Detection Settings dialog box appears.

Step 2 In the detector tree, select a detector.

The anomaly types are listed in the lower right area of the dialog box.

Step 3 In the anomaly type list, select an anomaly type.

Step 4 Click .

The selected anomaly type is deleted from the anomaly type list.

Step 5 Repeat steps 3 and 4 (or steps 2 to 4) for other anomaly types.

Step 6 Click OK.

The Anomaly Detection Settings dialog box closes.


How to Change the Order in which Detectors are Checked


Step 1 In the Service Security Dashboard, in the Anomaly Based Detection of Malicious Traffic pane, click Configure.

The Anomaly Detection Settings dialog box appears.

Step 2 In the detector tree, select a detector.

The move up arrow, the move down arrow, or both are enabled, depending on the detectors location in the tree.

Figure 10-9

Step 3 Using these navigation arrows, move the detector to its desired location.

Step 4 Repeat steps 2 and 3 for other detectors.

Step 5 Click OK.

The Anomaly Detection Settings dialog box closes.

Your changes are saved.


How to Delete Anomaly Detectors

You can delete any or all user-defined detectors.

You cannot delete the three default detectors.


Step 1 In the Service Security Dashboard, in the Anomaly Based Detection of Malicious Traffic pane, click Configure.

The Anomaly Detection Settings dialog box appears.

Step 2 In the detector tree, select one or more user-defined detectors.

Step 3 Click .

A Confirm Delete message appears.

Figure 10-10

Step 4 Click OK.

The selected detectors are deleted and are no longer displayed in the detector tree.

Step 5 Click OK.

The Anomaly Detection Settings dialog box closes.


How to Configure Spam Detection Settings


Step 1 In the Service Security Dashboard, in the Spam Zombies and Email Viruses Detection pane, click Configure.

The Spam Setting dialog box appears.

Figure 10-11

Step 2 Uncheck the Enable Spam detection check box to disable spam detection.

All other fields are disabled.

Continue at step 7.

Step 3 From the Service to monitor for Spam drop-down list, select a service.


Note Leave the default value for the monitored service (SMTP), unless you have defined a more specific service, such as "Outbound SMTP" or "OffNet SMTP".


Step 4 Define the threshold e-mail session rate for anomalous behavior.

Step 5 From the Action upon detection drop-down list, select the action to be taken when malicious activity is detected.

Ignore

Block

Notify

Block and notify

Step 6 If you selected Notify or Block and notify, the Subscriber Notification drop-down list is enabled. Select a subscriber notification.


Note To define an appropriate subscriber notification, see Managing Subscriber Notifications.


Step 7 Click Finish.

The Spam Setting dialog box closes.


Information About Viewing Malicious Traffic Reports

Viewing Malicious Traffic Reports 

How to View a Service Security Report 

Viewing Malicious Traffic Reports

Information about detected traffic anomalies is stored in the Collection Manager database. You can use this information for network trending, detection of new threats, and tracking of malicious hosts or subscribers.

A number of reports dealing with malicious traffic can be displayed in the Reporter tool:

Global reports:

Global Scan or Attack Rate

Global DoS Rate

Infected Subscribers

DoS Attacked Subscribers

Top Scanned or Attacked ports

Individual subscriber or hosts reports:

Top Scanning or Attacking hosts

Top DoS Attacked hosts

Top DoS Attacked Subscribers

Top Scanning or Attacking Subscribers

How to View a Service Security Report


Step 1 In the Service Security Dashboard, in the relevant pane, click View Report.

A Choose a report dialog box appears, displaying a tree of relevant reports.

Step 2 Select a report from the report tree.

Step 3 Click OK.

The Choose a report dialog box closes.

The Reporter tool opens in the Console, and displays the requested report.

Step 4 For information about manipulating and saving the report, see the "Working with Reports" chapter of the Cisco Service Control Application Reporter User Guide .


Filtering the Traffic Flows

Filter rules are part of service configurations. They allow you to instruct the Service Control Engine (SCE) platform to ignore some types of flow based on the flow's Layer 3 and Layer 4 properties and to transmit the flows unchanged.

When a traffic flow enters the SCE platform, the platform checks whether a filter rule applies to this flow.

If a filter rule applies to this traffic flow, the SCE platform passes the traffic flow to its transmit queues. No RDR generation or service configuration enforcement is performed; these flows will not appear in any records generated for analysis purposes and will not be controlled by any rule belonging to the active service configuration.

It is recommended that you add filter rules for OSS protocols (such as DHCP) and routing protocols (such as BGP) that might traverse the SCE platform. These protocols usually should not be affected by policy enforcement, and their low volume makes them insignificant for reporting.

A number of filter rules are included in every new service configuration.


Note By default, some, but not all, of the predefined filter rules are active.


Flows of certain protocols can also be filtered according to the flow's Layer 7 characteristics. (See Managing Advanced Service Configuration Options.) Like all other filtered flows, Layer 7 filtered flows are neither classified, controlled, nor reported. The flows of the protocols that can be filtered are typically short and their overall volume is negligible, so filtering these protocols has little effect on network bandwidth and on the accuracy of the SCA BB reports.

How to View Filter Rules for a Package

You can view a list of the filter rules included in a service configuration.

The listing for each filter rule includes the name, the status, and a brief description (generated by the system) of the rule.

To see more information about a filter rule, open the Edit Filter Rule dialog box (see How to Edit Filter Rules ).


Step 1 In the Network Traffic tab, select the Filtered Traffic node.

A list of all filter rules is displayed in the right (Rule) pane.

Figure 10-12


How to Add Filter Rules

The Add Filter Rule wizard guides you through the process of adding a filter rule.


Step 1 In the Network Traffic tab, select the Filtered Traffic node.

Step 2 Click ( Add Rule) in the right (Rule) pane.

The Add Filter Rule wizard appears.

Figure 10-13

Step 3 Click Next.

The Transport Type and Direction screen of the Add Filter Rule wizard opens.

Figure 10-14

Step 4 Select the transport type and initiating side and click Next.

The Subscriber-Side IP Address screen of the Add Filter Rule wizard opens.

Figure 10-15

Step 5 Define the subscriber-side IP address and click Next.

The Network-Side IP Address screen of the Add Filter Rule wizard opens.

Figure 10-16

Step 6 Define the network-side IP address and click Next.

If the transport type selected in step 4 was not TCP or UDP, the ToS screen of the Add Filter Rule wizard opens. Go to step 9.

If the transport type selected in step 4 was TCP or UDP, the Subscriber-Side Port screen of the Add Filter Rule wizard opens.

Figure 10-17

Step 7 Define the subscriber-side port and click Next.

The Network-Side Port screen of the Add Filter Rule wizard opens.

Figure 10-18

Step 8 Define the network-side port and click Next.

The ToS screen of the Add Filter Rule wizard opens.

Figure 10-19

Step 9 Define the ToS and click Next.


Note Acceptable values for ToS are 0 to 63.


The Action and Class-of-Service screen of the Add Filter Rule wizard opens.

Figure 10-20

Bypass—Packets that match this filter rule are not passed to SCA BB.

Quick Forward—The SCE platform ensures low latency for packets that match this filter rule (use for delay sensitive flows). Packets are duplicated and passed to SCA BB for processing.

Bypass and Quick Forward—The SCE platform ensures low latency for packets that match this filter rule (use for delay sensitive flows). Packets are not passed to SCA BB.

Step 10 Check or uncheck required actions and select a Class-of-Service value and click Next.

The Finish screen of the Add Filter Rule wizard opens.

Figure 10-21

Step 11 In the Rule Name field, enter a unique name for the new filter rule.


Note You can use the default name for the filter rule. It is recommended that you enter a meaningful name.


Step 12 To activate the filter rule, check the Activate this rule check box. Traffic is filtered according to the rule only when it is activated.

Step 13 Click Finish.

The Add Filter Rule wizard closes.

The filter rule is added and is displayed in the Filter Rule table.


How to Edit Filter Rules

You can view and edit the parameters of a filter rule.


Step 1 In the Network Traffic tab, select the Filtered Traffic node.

A list of all filter rules is displayed in the right (Rule) pane.

Step 2 Select a rule in the Filter Rule table.

Step 3 Click ( Edit Rule).

The Introduction screen of the Edit Filter Rule wizard appears.

The Edit Filter Rule Wizard is the same as the Add Filter Rule wizard.

Step 4 Follow the instructions in the section How to Add Filter Rules, steps 4 to 11.

Step 5 Click Finish.

The filter rule is changed and relevant changes appear in the Filter Rule table.


How to Delete Filter Rules

You can delete filter rules. This is useful, for example, when you want the system to resume handling the IP addresses and their attributes according to the individual rules that were previously defined for each subscriber IP address.


Step 1 In the Network Traffic tab, select the Filtered Trafficnode.

A list of all filter rules is displayed in the right (Rule) pane.

Step 2 Select a rule in the Filter Rule table.

Step 3 Click ( Delete Rule).

A Filter Rule Warning message appears.

Figure 10-22

Step 4 Click Yes.

The filter rule is deleted and is no longer displayed in the Filter Rule table.


How to Activate and Deactivate Filter Rules

You can activate or deactivate filter rules at any time. Deactivating a filter rule has the same effect as deleting it, but the parameters are retained in the service configuration, and you can reactivate the filter rule at a later date.


Step 1 In the Network Traffic tab, select the Filtered Trafficnode.

A list of all filter rules is displayed in the right (Rule) pane.

Step 2 Select a rule in the Filter Rule table.

Step 3 To activate the rule, check the Active check box.

Step 4 To deactivate the rule, uncheck the Active check box.

Step 5 Repeat steps 3 to 4 for other rules.


Managing Subscriber Notifications

The subscriber notification feature pushes web-based messages to a subscriber by redirecting the subscriber HTTP traffic to relevant web pages. These web pages contain information relevant to the subscriber, such as notifications of quota depletion. HTTP redirection starts when the subscriber notification is activated and ceases when the notification is dismissed.


Note Subscriber notification is not supported in asymmetric routing classification mode.


The Cisco Service Control Application for Broadband (SCA BB) supports a maximum of 31 subscriber notifications, including the default notification and the Network Attack Notification.

Subscriber Notification Parameters 

Information About Network Attack Notification 

How to View Subscriber Notifications 

How to Add Subscriber Notifications 

How to Edit Subscriber Notifications 

How to Delete Subscriber Notifications 

Subscriber Notification Parameters

A subscriber notification is defined by the following parameters:

Name—Each subscriber notification must have a unique name.


Note You cannot change the name of the Default Notification or the Network Attack Notification.


Destination URL—A configurable destination URL to which the subscriber's HTTP flows are redirected after redirection is activated. This web page usually contains the message that needs to be conveyed to the subscriber.

Notification Parameters—The query part of the destination URL, which can be optionally added upon redirection.

The format of the notification parameters to be added to the destination URL is:

?n=<notification-ID>&s=<subscriber-ID>

where <notification-ID>is the ID of the notification that redirected the subscriber and <subscriber-ID>is the subscriber name.


Note There is a different format for the Network Attack Notification Parameters.


The destination web server can use these parameters to carry a more purposeful message to the subscriber.

Dismissal method—Indicates when to dismiss or deactivate the notification state. The dismissal method is one of the following:

Subscriber browses to destination URL (default)—As soon as the subscriber browses to the destination URL, they are considered as notified and the notification state is dismissed.

For example, if a quota was exceeded, the notification state is dismissed as soon as the subscriber browses to the destination URL that informs them of this fact (even though the subscriber still remains in a breach state).

The condition that activated the notification no longer holds—The dismissal of the notification state is dependent on the resolution of the condition, rather than on the subscriber.

For example, if a quota was exceeded, the notification state is dismissed only when the subscriber completes the procedure to refresh their quota.


Note This option is not available for the Network Attack Notification. A subscriber must respond to the notification before the notification is dismissed.


Subscriber browses to dismissal URL—The notification state is not dismissed until the subscriber proceeds from the destination URL to a different, final URL.

All HTTP flows are redirected until the notification is dismissed, which takes place when the subscriber accesses the dismissal URL. By default, the destination URL is also the dismissal URL and a notification is dismissed as soon as the first redirection takes place. However, you can define a different dismissal URL, so that the subscriber must acknowledge the notification.

For example, if a quota was exceeded, the web page at the destination URL may ask the subscriber to press an Acknowledgebutton after reading the message. The acknowledge URL would be defined as the dismissal URL and would deactivate further notifications.

The dismissal URL is composed of the URL hostname and the URL path, separated by a colon, in the following format:

[*]<hostname>:<path>[*]

<hostname>may optionally be preceded by a wildcard (*), to match all hostnames with the same suffix.

The path element must always start with "/".

<path>may be followed by a wildcard, to match all paths with common prefix.

For example, the entry:

*.some-isp.net:/redirect/*

matches all the following URLs:

www.some-isp.net/redirect/index.html

support.some-isp.net/redirect/info/warning.asp

noquota.some-isp.net/redirect/acknowledge.aspx?ie=UTF-8

List of Allowed URLs—A list of URLs that will not be blocked and redirected even though redirection is activated.

After redirection is activated, all HTTP flows, except flows to the destination URL and to the dismissal URL, are blocked and redirected to the destination URL. However, subscribers can be permitted to access an additional set of URLs. This is useful, for example, to give subscribers access to additional support information.

Allowed URLs have the same format as the dismissal URL.

These parameters are defined when you add a new subscriber notification (see How to Add Subscriber Notifications ). You can modify them at any time (see How to Edit Subscriber Notifications ).

Information About Network Attack Notification

Network Attack Notification 

Network Attack Notification Parameters 

EXAMPLE OF URL WITH DESCRIPTION TAIL: 

Network Attack Notification

Subscriber notification informs a subscriber in real-time about current attacks involving IP addresses mapped to that subscriber. (Enabling these notifications is described in The Service Security Dashboard.) SCA BB notifies the subscriber about the attack by redirecting HTTP flows originating from the subscriber to a server that supplies information about the attack.

One subscriber notification, Network Attack Notification, is dedicated to providing these notifications; it cannot be deleted. A Network Attack Notification is not dismissed at the end of an attack; subscribers must respond to it.

To allow redirection when blocking traffic, the system is configured to leave open one specified TCP port (by default, port 80). See Managing Advanced Service Configuration Options.


Note In earlier versions of SCA BB, configuring network attack notifications was performed using CLI commands. CLI commands should no longer be used for this purpose.


Network Attack Notification Parameters

When a network attack is detected, HTTP flows of the subscriber are redirected to a configurable destination URL. This web page should display the warning that needs to be conveyed to the subscriber.

Optionally, the destination URL can include a query part containing notification parameters. The destination web server can use these parameters to create a more specific warning to the subscriber.

The query part of the URL has the following format:

?ip=<ip>&side=<side>&dir=<dir>&prot=<protocol>&no=<open- flows>&nd=<suspected-flows>&to=<open-flows- threshold>&td=<suspected-flows- threshold>&ac=<action>&nh=>handled-flows>

The meaning of each field in the tail is described in the following table:

Table 10-1

Field
Description
Possible Values

ip

Detected IP address

 

side

 

s-Subscriber

n-Network

dir

 

s-Source

d-Destination

protocol

 

TCP

UDP

ICMP

OTHER

open-flows

Number of open flows

 

suspected flows

Number of attack-suspected flows

 

open-flows-threshold

Threshold for open flows

 

suspected-flows-threshold

Threshold for attack-suspected flows

 

action

 

R-Report

B-Block and report

handled-flows

Number of flows handled since the attack began

(Non-zero only during and at the end of an attack)

 

EXAMPLE OF URL WITH DESCRIPTION TAIL:

http://www.some-isp.net/warning?ip=80.178.113.222&side=s&proto=TCP&no=3 4&nd=4&to=34&td=10&ac=B&nh=100

How to View Subscriber Notifications


Step 1 From the Console main menu, choose Configuration >Subscriber Notifications.

The Subscriber Notifications Settings dialog box appears.

Figure 10-23

The Notifications tab displays a list of all subscriber notifications.

Step 2 Click a subscriber notification in the list to display its parameters.

The parameters of the subscriber notification are displayed in the Notification Parameters tab.

Step 3 Click Close.

The Subscriber Notifications Settings dialog box closes.


How to Add Subscriber Notifications

You can add up to 29 subscriber notifications to a service configuration.


Note Creating a subscriber notification does not activate the subscriber notification feature. After the subscriber notification is defined, it must be activated for a particular package. (See How to Edit Breach-Handling Parameters for a Rule.)



Step 1 From the Console main menu, choose Configuration >Subscriber Notifications.

The Subscriber Notifications Settings dialog box appears.

Step 2 Click ( Add).

Step 3 In the Name field, enter a unique name for the new subscriber notification.


Note You can use the default name for the subscriber notification. It is recommended that you enter a meaningful name


Step 4 In the Destination URL field, enter the destination URL.

Step 5 If notification parameters will be appended to the destination URL, check the Append notification parameters to URL check box.

Step 6 Select one of the Dismissal Method radio buttons:

Subscriber browses to the destination URL

The condition that activated the notification no longer holds

Subscriber browses to the dismissal URL

Step 7 If you selected Subscriber browses to the dismissal URL in step 6, enter the dismissal URL host-suffix and path-prefix in the fields provided.

Step 8 Enter any allowed URLs, one per line, in the Allowed URLs text box.

Step 9 Click Close.

The Subscriber Notifications Settings dialog box closes.


How to Edit Subscriber Notifications


Step 1 From the Console main menu, choose Configuration >Subscriber Notifications.

The Subscriber Notifications Settings dialog box appears.

Step 2 Click a subscriber notification in the Notifications tab to display its parameters.

Step 3 Edit the parameters of the subscriber notification in the Notification Parameters tab.

Step 4 Click Close.

The Subscriber Notifications Settings dialog box closes.


How to Delete Subscriber Notifications

You can delete subscriber notifications at any time.

You cannot delete the default notification or the Network Attack Notification.


Step 1 From the Console main menu, choose Configuration >Subscriber Notifications.

The Subscriber Notifications Settings dialog box appears.

Step 2 Click a subscriber notification in the Notifications tab.

Step 3 Click ( Delete).

Step 4 Click Yes.

Step 5 Click Close.

The Subscriber Notifications Settings dialog box closes.


Managing the System Settings

The Console allows you to determine various system parameters that control:

The operational state of the system

Enabling and disabling asymmetric routing classification mode

The redirection URLs for protocols that support redirection

BW prioritization mode (see How to Set BW Management Prioritization Mode )

Advanced service configuration options

Information About Setting the System Modes

System Operational Mode 

Asymmetric Routing Classification Mode 

System Operational Mode

The Console allows you to select the operational mode of the system. This feature defines how the system handles network traffic.


Note Note Each rule has its own operational mode (state). If this differs from the system mode, the "lower" of the two modes is used. For example, if a rule is enabled, but the system mode is report-only, the rule will only generate RDRs.


The three operational modes are:

Full Functionality—The system enforces active rules on the network traffic and performs reporting functions (that is, generates RDRs).

Report Only—The system generates RDRs only. No active rule enforcement is performed on the network traffic.

Transparent—The system does not generate RDRs and does not enforce active rules on the network traffic.

Asymmetric Routing Classification Mode

You can enable or disable asymmetric routing classification mode from the Console. Enabling this mode significantly improves classification accuracy when the SCE platform is deployed in an environment with a high rate of unidirectional flows. However, the following SCA BB features are not supported when this mode is enabled:

Flavors

External quota provisioning

Subscriber notification

Redirection

Flow Signaling RDRs

Content filtering

VAS traffic forwarding

Anomaly detection (When you create a service configuration in asymmetric routing classification mode, the Suspected Session Rate is set equal to the Session Rate for all anomaly detectors (see How to View Anomaly Detection Settings ). This effectively disables anomaly detection.)

When asymmetric routing classification mode is enabled, the service configuration editor indicates (in the Problems View) if the service configuration is consistent with the features that are supported in this mode.

The following features, which are not part of the service configuration, are also affected when asymmetric routing classification mode is enabled:

Subscriber-Aware Mode is not supported

Enhanced flow open mode must be enabled

The system gives no indication if the state of the above features is consistent with the state of the routing classification mode.

Protocol Classification

When asymmetric routing classification mode is enabled, protocol classification is performed in the normal way with the exception of unidirectional UDP flows. Because it is impossible to know the server side of a unidirectional UDP flow, SCA BB tries to classify the protocol using the destination port of the first packet; if no exact match is found, SCA BB tries to classify the protocol using the source port.

Switching to Asymmetric Routing Classification Mode

If you create a service configuration in symmetric mode and switch to asymmetric routing classification mode:

Flavors are not used for classification.

Periodic quota management mode is used.

Data is not lost when you switch to asymmetric routing classification mode, but you cannot apply the service configuration to an SCE platform until all unsupported features are removed from the service configuration.

Switching from Asymmetric Routing Classification Mode

If you create a service configuration in asymmetric routing classification mode:

The Suspected Session Rate is set equal to the Session Rate for all anomaly detectors.

No flavors are created in the default service configuration, and no service elements have specified flavors.

The quota management mode is periodic, with a daily aggregation period.

Asymmetric routing classification mode limitations remain if you switch to symmetric mode. To change them, you must edit the service configuration.

How to Set the Operational and Topological Modes of the System


Step 1 From the Console main menu, choose Configuration >System Settings.

The System Settings dialog box appears.

Figure 10-24

Step 2 Select one of the System Operational Mode radio buttons:

Transparent

Report only

Full functionality

Step 3 To change the routing classification mode, check or uncheck the Enable the Asymmetric Routing Classification Mode check box.

Step 4 Click OK.

The System Settings dialog box closes.

The new System Mode setting is saved.


Setting Redirection Parameters

The rules for a package may deny access to selected protocols. When a subscriber to the package tries to access a blocked protocol, the traffic flow can be redirected to a server where a posted web page explains the reason for the redirection (for example, a "Silver" subscriber trying to access a service available only to "Gold" subscribers). This web page can offer subscribers the opportunity to upgrade their packages. You configure which redirection set to use when defining rules (see How to Define Per-Flow Actions for a Rule ).


Note Redirection is not supported when asymmetric routing classification mode is enabled.


The Console Redirection feature supports only three protocols:

HTTP Browsing

HTTP Streaming

RTSP Streaming

Each redirection set contains one redirection option for each of these three protocols. The system provides a default redirection set, which cannot be deleted. You can add up to 49 additional sets.

Each redirection URL includes the URL specified name, the Subscriber ID, and the Service ID in the following format:

<URL>?n=<subscriber-ID>&s=<service-ID>

How to Add a Set of Redirection URLs

You can add up to 49 redirection sets.


Step 1 From the Console main menu, choose Configuration >System Settings.

The System Settings dialog box appears.

Step 2 Step 5 Click the Redirection URLs tab.

The Redirection URLs tab opens.

Figure 10-25

Step 3 Click ( Add).

A new redirection set containing the default redirection URLs is added to the redirection set list.

Figure 10-26

Step 4 In the Name field, enter a unique name for the new redirection set.


Note You can use the default name for the redirection set, but it is recommended that you enter a meaningful name.


Step 5 Enter new values in the Redirection URL cells of the new redirection set.

Step 6 Click OK.

The System Settings dialog box closes.

The Redirection group is added to the redirection set list.


How to Edit the Redirection Parameters


Step 1 From the Console main menu, choose Configuration >System Settings.

The System Settings dialog box appears.

Step 2 Click the Redirection URLs tab.

The Redirection URLs tab opens.

Step 3 Click a URL in the Redirection URL column.

Step 4 Enter a new URL.

Step 5 Click OK.

The System Settings dialog box closes.

The Redirection settings are saved.


How to Delete a Set of Redirection URLs


Step 1 From the Console main menu, choose Configuration >System Settings.

The System Settings dialog box appears.

Step 2 Click the Redirection URLstab.

The Redirection URLs tab opens.

Step 3 Click the name of a redirection set.

Step 4 Click ( Delete).

A Redirection Warning message appears.

Figure 10-27

Step 5 Click Yes.

The redirection set is deleted.

Step 6 Click OK.

The System Settings dialog box closes.

The Redirection settings are saved.


Managing Advanced Service Configuration Options

Advanced service configuration options control the more sophisticated and less frequently changed attributes of the system. It is recommended that you do not change these options.

The following table lists these options:

Table 10-2 Advanced Service Configuration Properties  

Property
Default Value
Description

Classification

   

Classification based on recent classification history enabled

TRUE

Recent classification history is a heuristic mechanism used to classify flows according to previous traffic classification decisions.

This mechanism improves the classification of Warez, Skype, and Winny2 flows.

Guruguru detailed inspection mode enabled

FALSE

The Guruguru protocol is used by the Guruguru file-sharing application popular in Japan. SCA BB provides two inspection modes for classification of this protocol:

Default—Suitable for networks where little Guruguru traffic is expected. This is usual in all countries except Japan.

Detailed—Suitable for networks where Guruguru traffic is expected to be common. This should occur in Japanese networks only.

Kuro detailed inspection mode enabled

FALSE

The Kuro protocol is used by the Kuro file-sharing application popular in Japan. SCA BB provides two inspection modes for classification of this protocol:

Default—Suitable for networks where little Kuro traffic is expected. This is usual in all countries except Japan.

Detailed—Suitable for networks where Kuro traffic is expected to be common. This should occur in Japanese networks only.

Soribada detailed inspection mode enabled

FALSE

The Soribada protocol is used by the Soribada file-sharing application popular in Japan. SCA BB provides two inspection modes for classification of this protocol:

Default—Suitable for networks where little Soribada traffic is expected. This is usual in all countries except Japan.

Detailed—Suitable for networks where Soribada traffic is expected to be common. This should occur in Japanese networks only.

TCP destination port signatures

1720:H323

TCP destination port numbers for signatures that require a port hint for correct classification.

Valid values are comma-separated items, each item in the form <port-number>:<signature-name>.

Applicable signature names are: H323, Radius Access, Radius Accounting, and DHCP.

UDP destination port signatures

67:DHCP, 1812:Radius Access, 1645:Radius Access, 1813:Radius Accounting, 1646:Radius Accounting

UDP destination port numbers for signatures that require a port hint for correct classification.

Valid values are comma-separated items, each item in the form <port-number>:<signature-name>.

Applicable signature names are: H323, Radius Access, Radius Accounting, and DHCP.

UDP ports for which flow should be opened on first packet

5060, 5061, 67, 69, 1812, 1813, 1645, 1646, 2427, 2727, 9201, 9200, 123, 1900, 5190, 10000

Enhanced flow-open mode is disabled on the specified UDP ports, to allow classification according to the flow's first packet.

UDP source port signatures

1812:Radius Access, 1645:Radius Access, 1813:Radius Accounting, 1646:Radius Accounting

UDP source port numbers for signatures that require a port hint for correct classification.

Valid values are comma-separated items, each item in the form <port-number>:<signature-name>.

Applicable signature names are: H323, Radius Access, Radius Accounting, and DHCP.

V-Share detailed inspection mode enabled

FALSE

The V-Share protocol is used by the V-Share file-sharing application popular in Japan. SCA BB provides two inspection modes for classification of this protocol:

Default—Suitable for networks where little V-Share traffic is expected. This is usual in all countries except Japan.

Detailed—Suitable for networks where V-Share traffic is expected to be common. This should occur in Japanese networks only.

Winny detailed inspection mode enabled

FALSE

The Winny P2P protocol is used by the Winny file-sharing application popular in Japan. SCA BB provides two inspection modes for classification of this protocol:

Default—Suitable for networks where little Winny traffic is expected. This is usual in all countries except Japan.

Detailed—Suitable for networks where Winny traffic is expected to be common. This should occur in Japanese networks only.

L7 Filtered Traffic

   

DHT filter enabled

TRUE

Specifies whether to detect and filter DHT flows, based on the flow's Layer 7 characteristics.

Gnutella 2 Networking filter enabled

TRUE

Specifies whether to detect and filter Gnutella 2 Networking flows, based on the flow's Layer 7 characteristics.

Gnutella filter enabled

TRUE

Specifies whether to detect and filter Gnutella flows, based on the flow's Layer 7 characteristics.

L7 filtering enabled

TRUE

Specifies whether the L7 Filtered Traffic feature is enabled.

Layer 7 filtered flows bypass the SCA platform and are neither classified, controlled, nor reported.

Warez filter enabled

TRUE

Specifies whether to detect and filter Warez flows, based on the flow's Layer 7 characteristics.

Malicious Traffic

   

Malicious Traffic RDRs enabled

TRUE

Specifies whether to generate Malicious Traffic RDRs.

Number of seconds between Malicious Traffic RDRs on the same attack

60

A Malicious Traffic RDR is generated when an attack is detected. Malicious Traffic RDRs are then generated periodically, at user-configured intervals, for the duration of the attack.

TCP port that should remain open for Subscriber Notification

80

You can choose to block flows that are part of any detected network attack, but this may hinder subscriber notification of the attack.

The specified TCP port will not be blocked to allow notification of the attack to be sent to the subscriber.

Policy Check

   

Ongoing policy check mode enabled

TRUE

Specifies whether policy changes affect flows that are already open.

Time to bypass between policy checks

30

Maximum time (in seconds) that may pass before policy changes affect flows that are already open.

Quota Management

   

Grace period before first breach

2

The time (in seconds) to wait after a quota limit is breached before the breach action is performed.

Policy servers should use this period to provision quota to a subscriber that just logged in.

Length of the time frame for quota replenish scatter (minutes)

0

The size of the window across which to randomly scatter the periodic quota replenishment.

Time to bypass between policy checks for quota limited flows

30

Maximum time (in seconds) that may pass before a quota breach affects flows that are already open.

Volume to bypass between policy checks for quota limited flows

0

Maximum flow volume (in bytes) that may pass before a quota breach affects flows that are already open.

A value of zero means that unlimited volume may pass.

Reporting

   

Media Flow RDRs enabled

TRUE

Specifies whether to generate Media Flow RDRs.

Subscriber Accounting RDR enabled

FALSE

Specifies whether to generate Subscriber Accounting RDRs.

The Subscriber Accounting RDR is used for SM-ISG integration. For more information, see the ISG documentation in the "Managing the SCMP" chapter of the Cisco Service Control Engine (SCE) Software Configuration Guide .


How to edit Advanced Service Configuration Options 

Managing VAS Traffic-Forwarding Settings 

How to Rename VAS Server Groups 

How to View VAS Traffic Forwarding Tables 

How to Delete VAS Traffic-Forwarding Tables 

How to Add VAS Traffic-Forwarding Tables 

Managing VAS Table Parameters 

How to edit Advanced Service Configuration Options

DETAILED STEPS


Step 1 From the Console main menu, choose Configuration >System Settings.

The System Settings dialog box appears.

Step 2 Click the Advanced Options tab.

The Advanced Options tab opens.

Figure 10-28

Step 3 Click Advanced Service Configuration Options.

The Advanced Service Configuration Options dialog box opens.

Figure 10-29

Step 4 Make your changes to the configuration options.

Step 5 Click OK.

The Advanced Service Configuration Options dialog box closes.

The changes to the advanced options are saved.


Managing VAS Traffic-Forwarding Settings

Traffic forwarding to Value Added Services (VAS) servers allows you to use an external expert system (VAS server) for additional traffic processing, such as intrusion detection and content filtering to subscribers. After processing, flows are sent back to the SCE platform, which then sends them to their original destinations.

The flows to be forwarded are selected based on the subscriber package and the flow type (IP protocol type and destination port number).

VAS traffic forwarding has the following limitations:

Only the SCE 2000 4xGBE platform supports VAS traffic forwarding.

A single SCE platform can support up to eight VAS servers.

A service configuration can contain up to 64 traffic-forwarding tables.

A traffic-forwarding table can contain up to 64 table parameters.

VAS traffic forwarding is not supported in asymmetric routing classification mode.


Note Note Because of the complexity of the VAS traffic-forwarding feature, VAS flows are not subject to global bandwidth control.


To use VAS traffic forwarding, you must also configure VAS services on the SCE platform. Additional information is available in the "Value Added Services (VAS) Traffic Forwarding" chapter of the Cisco Service Control Engine (SCE) Software Configuration Guide .

Enabling VAS Traffic Forwarding

By default, VAS traffic forwarding is disabled. You can enable it at any time.


Note VAS traffic forwarding is not supported in asymmetric routing classification mode.


 How to Enable VAS Traffic Forwarding


Step 1 From the Console main menu, choose Configuration >VAS Settings.

The VAS Settings dialog box appears.

Step 2 Check the Enable Traffic Forwarding to VAS Servers check box.


Note VAS traffic forwarding is not supported in asymmetric routing classification mode. If you try to check the Enable Traffic Forwarding to VAS Servers check box when asymmetric routing classification mode is enabled, a VAS Error message appears.

Click OK, and continue at step 3.


The VAS Traffic Forwarding Table drop-down list in the Advanced tab of the Package Settings dialog box is enabled (see How to Set Advanced Package Options ).

Step 3 Click Close.

The VAS Settings dialog box closes.


How to Disable VAS Traffic Forwarding


Step 1 From the Console main menu, choose Configuration >VAS Settings.

The VAS Settings dialog box appears.

Figure 10-30

Step 2 Uncheck the Enable Traffic Forwarding to VAS Servers check box.

VAS traffic forwarding is disabled.

Step 3 Click Close.

The VAS Settings dialog box closes.


How to Rename VAS Server Groups

An SCE platform can forward flows to up to eight different VAS server groups. By default, the eight server groups are named "Server Group n", where n takes a value from 0 to 7. Give the server groups meaningful names; the names you give will appear in the drop-down list in the Advanced tab of the Package Settings dialog box (see How to Set Advanced Package Options ) and in the Server Group field of the table parameters added to each traffic-forwarding table (see Managing VAS Table Parameters ).


Step 1 From the Console main menu, choose Configuration >VAS Settings.

The VAS Settings dialog box appears.

Step 2 In the table in the Server Groups Table area, double-click in a cell containing a server group name.

Step 3 Enter a meaningful name in the cell.

Step 4 Repeat steps 2 and 3 for other server groups you wish to rename.

Figure 10-31

Step 5 Click Close.

The VAS Settings dialog box closes.


How to View VAS Traffic Forwarding Tables

SCA BB decides whether a flow passing through an SCE platform should be forwarded to a VAS server group based on a traffic-forwarding table . Each entry ( table parameter ) in a traffic-forwarding table defines to which VAS server group the specified flows should be forwarded.


Step 1 From the Console main menu, choose Configuration >VAS Settings.

The VAS Settings dialog box appears.

Step 2 Click the Traffic Forwarding Tables tab.

The Traffic Forwarding Tables tab opens.

A list of all traffic-forwarding tables is displayed in the Traffic Forwarding Tables area.

Step 3 Click a table in the list of traffic-forwarding tables to display its table parameters.

A list of all table parameters defined for this traffic-forwarding table opens in the Table Parameters tab.

Figure 10-32

Step 4 Click Close.

The VAS Settings dialog box closes.


How to Delete VAS Traffic-Forwarding Tables

You can delete all user-created traffic-forwarding tables. The default traffic-forwarding table cannot be deleted.


Note A traffic-forwarding table cannot be deleted while it is associated with a package.



Step 1 From the Console main menu, choose Configuration >VAS Settings.

The VAS Settings dialog box appears.

Step 2 Click the Traffic Forwarding Tablestab.

The Traffic Forwarding Tables tab opens.

Step 3 From the list of traffic-forwarding tables in the Traffic Forwarding Tables area, select a table.

Step 4 Click ( Delete).

A VAS Warning message appears.

Figure 10-33

Step 5 Click Yes.

The selected table is deleted and is no longer displayed in the list of traffic-forwarding tables.

Step 6 Click Close.

The VAS Settings dialog box closes.


How to Add VAS Traffic-Forwarding Tables

A default traffic-forwarding table is included in the service configuration. You can add up to 63 more traffic-forwarding tables, and then assign different traffic-forwarding tables to different packages.


Step 1 From the Console main menu, choose Configuration >VAS Settings.

The VAS Settings dialog box appears.

Step 2 Click the Traffic Forwarding Tablestab.

The Traffic Forwarding Tables tab opens.

Step 3 In the Traffic Forwarding Tables area, click ( Add).

A new table named Table (n), where n is a value between 1 and 63, is added to the list of traffic-forwarding tables in the Traffic Forwarding Tables area.

The table name is also displayed in the Item Name box in the Table Parameters tab.

Step 4 In the Item Name field, enter a unique and relevant name for the traffic-forwarding table.

You can now add table parameters to the new traffic-forwarding table, see How to Add VAS Table Parameters.


Managing VAS Table Parameters

A table parameter is an IP protocol type, an associated TCP/UDP port (where applicable), and a VAS server group or a range of IP addresses.

A traffic-forwarding table is a collection of related table parameters.

A traffic-forwarding table can contain up to 64 table parameters.

How to Add VAS Table Parameters

You can add up to 64 table parameters to a traffic-forwarding table.


Step 1 From the Console main menu, choose Configuration >VAS Settings.

The VAS Settings dialog box appears.

Step 2 Click the Traffic Forwarding Tablestab.

The Traffic Forwarding Tables tab opens.

Step 3 From the list of traffic-forwarding tables in the Traffic Forwarding Tables area, select a table.

Step 4 In the Traffic Parameters tab, click ( Add).

A new table parameter is added to the list of table parameters in the Table Parameters tab.


Note Each new table parameter has the following default values:

IP Protocol = TCP Port

TCP/UDP Port = 80

Server Group = Server Group 0



You can now edit the new table parameter, as described in the following section.

Step 5 Click Close.

The VAS Settings dialog box closes.


How to Edit VAS Table Parameters


Step 1 From the Console main menu, choose Configuration >VAS Settings.

The VAS Settings dialog box appears.

Step 2 Click the Traffic Forwarding Tablestab.

The Traffic Forwarding Tables tab opens.

Step 3 From the list of traffic-forwarding tables in the Traffic Forwarding Tables area, select a table.

Step 4 In the table in the Table Parameters tab:

1. Click in a cell in the IP Protocol column, and, from the drop-down list that opens, select an IP protocol type.

Figure 10-34

2. If you select All, All TCP, All UDP, or All Non TCP/UDP, "N/A" will appear in the TCP/UDP Port cell when you move to another cell in the table.

3. If you selected TCP Port or UDP Port, double-click in the cell in the TCP/UDP Port column, and enter the port number.


Note You cannot enter a range of ports in the TCP/UDP Port cell; you must add a separate table parameter for each port.


4. Click in the cell in the Server Group column, and, from the drop-down list that opens, select a server group.

Figure 10-35

Step 5 Click Close.

The VAS Settings dialog box closes.


How to Delete VAS Table Parameters


Step 1 From the Console main menu, choose Configuration >VAS Settings.

The VAS Settings dialog box appears.

Step 2 Click the Traffic Forwarding Tablestab.

The Traffic Forwarding Tables tab opens.

Step 3 From the list of traffic-forwarding tables in the Traffic Forwarding Tables area, select a table.

Step 4 From the list of table parameters in the Table Parameters tab, select a table parameter.

Step 5 Click ( Delete).

The selected table parameter is deleted and is no longer displayed in the list of table parameters.

Step 6 Click Close.

The VAS Settings dialog box closes.



hometocprevnextglossaryfeedbacksearchhelp

Posted: Wed May 30 14:02:41 PDT 2007
All contents are Copyright © 1992--2007 Cisco Systems, Inc. All rights reserved.
Important Notices and Privacy Statement.