cc/td/doc/product/ong/15400/r33docs
hometocprevnextglossaryfeedbacksearchhelp
PDF

Table Of Contents

Common Control Cards

2.1 Card Overview

2.1.1 Common Control Cards

2.1.2 Card and Power Requirements

2.1.3 Card Temperature Ranges

2.1.4 Card Compatibility

2.2 TCC+ Card

2.2.1 TCC+ Card-Level Indicators

2.2.2 Network-Level Indicators

2.2.3 TCC+ Specifications

2.3 XC Cross-Connect Card

2.3.1 XC Card-Level Indicators

2.3.2 XC Specifications

2.4 XCVT Cross-Connect Card

2.4.1 VT Mapping

2.4.2 XCVT Hosting DS3XM-6

2.4.3 XCVT Card-Level Indicators

2.4.4 XC/XCVT Compatibility

2.4.5 XCVT Card Specifications

2.5 XC10G Cross-Connect Card

2.5.1 VT Mapping

2.5.2 XC10G Hosting DS3XM-6

2.5.3 XC10G Card-Level Indicators

2.5.4 XC/XCVT/XC10G Compatibility

2.5.5 XC10G Card Specifications

2.6 Alarm Interface Controller Card

2.6.1 User-Defined Alarms

2.6.2 Orderwire

2.6.3 AIC Specifications


Common Control Cards


This chapter describes Cisco ONS 15454 common control card functions. For installation and card turn-up procedures, refer to the Cisco ONS 15454 Procedure Guide.

Chapter topics include:

Card Overview

TCC+ Card

XC Cross-Connect Card

XCVT Cross-Connect Card

XC10G Cross-Connect Card

Alarm Interface Controller Card

2.1 Card Overview

The card overview section summarizes card functions, power consumption, temperature ranges, and compatibility.


Note Each card is marked with a symbol that corresponds to a slot (or slots) on the ONS 15454 shelf assembly. The cards are then installed into slots displaying the same symbols. See the "Card Slot Requirements" section on page 1-20 for a list of slots and symbols.


2.1.1 Common Control Cards

Table 2-1 lists five common control cards for the Cisco ONS 15454 and summarizes card functions.

Table 2-1 Common Control Card Functions 

Card
Description
For Additional Information...
TCC+

The TCC+ is the main processing center for the ONS 15454 and provides system initialization, provisioning, alarm reporting, maintenance, and diagnostics.

See the "TCC+ Card" section

XC

The XC card is the central element for switching; it establishes connections and performs time division switching (TDS).

See the "XC Cross-Connect Card" section

XCVT

The XCVT card is the central element for switching; it establishes connections and performs time division switching (TDS). The XCVT can manage STS and VT circuits up to 48c.

See the "XCVT Cross-Connect Card" section

XC10G

The XC10G card is the central element for switching; it establishes connections and performs time division switching (TDS). The XC10G can manage STS and VT circuits up to 192c. The XC10G allows up to four times the bandwidth of current XC and XCVT cards.

See the "XC10G Cross-Connect Card" section

AIC

The AIC card provides customer-defined (environmental) alarms with its additional input/output alarm contact closures.

See the "Alarm Interface Controller Card" section


2.1.2 Card and Power Requirements

Table 2-2 lists power requirements for individual cards.


Note Asterisks (*) next to card or fan tray names mean the power specification shown below is based on a calculation because an actual measurement was not available at the time of publication.


Table 2-2 Individual Card Power Requirements 

Card Type
Card Name
Watts
Amps
BTU/Hr.
Control Cards

TCC+

9.82

0.20

33.53

XC

13

0.28

46

XCVT

34.40

0.72

117.46

XC10G

54

1.12

184.38

AIC

6.01

0.12

20.52

Electrical Cards

EC1-12

36.60

0.76

124.97

DS1-14

12.60

0.26

43.02

DS1N-14

12.60

0.26

43.02

DS3-12

38.20

0.79

130.43

DS3N-12

38.20

0.79

130.43

DS3-12E

26.80

0.56

91.51

DS3N-12E

26.80

0.56

91.51

DS3XM-6 Transmux

20

0.42

68

Optical Cards
       
       
       
       

OC3 IR 4/ STM1 SH 1310

19.20

0.40

65.56

OC12 IR/ STM4 SH 1310

10.90

0.23

37.22

OC12 LR/ STM4 LH 1310

12

0.25

41

OC12 LR/ STM4 LH 1550

9.28

0.19

31.68

OC12 IR/STM4 SH 1310-4

28

0.58

100

OC48 IR 1310

32.20

0.67

109.94

OC48 LR 1550

26.80

0.56

91.50

OC48 IR/ STM16 SH AS 1310

37.20

0.77

127.01

OC48 LR/ STM16 LH AS 1550

37.20

0.77

127.01

OC48 ELR/ STM16 EH 100 GHz

31.20

0.65

106.53

OC48 ELR 200 GHz

31.20

0.65

106.53

OC192 LR/ STM64 LH 1550

72.20

1.50

246.52

Ethernet Cards

E100T-12

65

1.35

221.93

E1000-2

53.50

1.11

182.67

E100T-G

65

1.35

221.93

E1000-2-G

53.50

1.11

182.67

G1000-4

63.00

1.31

215.11


2.1.3 Card Temperature Ranges

Table 2-3 shows C-Temp and I-Temp compliant cards and their product names.


Note The I-Temp symbol is displayed on the faceplate of an I-Temp compliant card. A card without this symbol is C-Temp compliant.


Table 2-3 Card Temperature Ranges and Product Names for the ONS 15454 

Card
C-Temp Product Name
(0 to +55 degrees Celsius)
I-Temp Product Name
(-40 to +65 degrees Celsius)
TCC+

15454-TCC+

15454-TCC+T

XC

15454-XC

15454-XC-T

XCVT

15454-XC-VT

15454-XC-VT-T

XC10G

15454-XC-10G

AIC

15454-AIC

15454-AIC-T

EC1-12

15454-EC1-12

15454-EC1-12-T

DS1-14

15454-DS1-14

15454-DS1-14-T

DS1N-14

15454-DS1N-14

15454-DS1N-14-T

DS3-12

15454-DS3-12

15454-DS3-12-T

DS3N-12

15454-DS3N-12

15454-DS3N-12-T

DS3-12E

15454-DS3-12E-T

DS3N-12E

15454-DS3N-12E-T

DS3XM-6 (Transmux)

15454-DS3XM-6

15454-DS3XM-6-T

OC3 IR 4/STM1 SH 1310

15454-OC34IR1310

15454-OC34I13-T

OC12 IR/STM4 SH 1310

15454-OC121IR1310

15454-OC121I13-T

OC12 LR/STM4 LH 1310

15454-OC121LR1310

15454-OC121L13-T

OC12 LR/STM4 LH 1550

15454-OC121LR1550

15454-OC121L15-T

OC12 IR/STM4 SH 1310-4

15454-OC12IR-4

OC48 IR 1310

15454-OC481IR1310

OC48 LR 1550

15454-OC481LR1550

OC48 IR/STM16 SH AS 1310

15454-OC481IR1310A

OC48 LR/STM16 LH AS 1550

15454-OC481LR1550A

OC192 LR/STM64 LH 1550

15454-OC192LR1550

E100T-12

15454-E100T

E1000-2

15454-E1000-2

E100T-G

15454-E100T-G

E1000-2-G

15454-E1000-2-G

G1000-4

15454-G1000-4

OC48 ELR/STM16 EH 100 GHz

15454-OC48E-1-28.7

15454-OC48E-1-30.3

15454-OC48E-1-31.1

15454-OC48E-1-31.9

15454-OC48E-1-32.6

15454-OC48E-1-33.4

15454-OC48E-1-34.2

15454-OC48E-1-35.0

15454-OC48E-1-35.8

15454-OC48E-1-36.6

15454-OC48E-1-38.1

15454-OC48E-1-38.9

15454-OC48E-1-39.7

15454-OC48E-1-40.5

15454-OC48E-1-41.3

15454-OC48E-1-42.1

15454-OC48E-1-42.9

15454-OC48E-1-43.7

15454-OC48E-1-44.5

15454-OC48E-1-46.1

15454-OC48E-1-46.9

15454-OC48E-1-47.7

15454-OC48E-1-48.5

15454-OC48E-1-49.3

15454-OC48E-1-50.1

OC48 ELR/STM16 EH 100 GHz (continued)

15454-OC48E-1-50.9

15454-OC48E-1-51.7

15454-OC48E-1-52.5

15454-OC48E-1-54.1

15454-OC48E-1-54.9

15454-OC48E-1-55.7

15454-OC48E-1-56.5

15454-OC48E-1-57.3

15454-OC48E-1-58.1

15454-OC48E-1-58.9

15454-OC48E-1-59.7

15454-OC48E-1-60.6

OC48 ELR/STM16 EH 200 GHz

15454-OC48E-30.33

15454-OC48E-31.90

15454-OC48E-33.47

15454-OC48E-35.04

15454-OC48E-36.61

15454-OC48E-38.19

15454-OC48E-39.77

15454-OC48E-31.35

15454-OC48E-42.94

15454-OC48E-47.72

15454-OC48E-49.32

15454-OC48E-50.92

15454-OC48E-52.52

15454-OC48E-54.13

15454-OC48E-55.75

15454-OC48E-57.36

15454-OC48E-58.98

15454-OC48E-60.61


2.1.4 Card Compatibility

The tables below list ONS 15454 cards, compatible software versions, and compatible cross-connect cards. Read each card description for detailed information about the card. In the tables below, Yes means cards are compatible with the listed software versions and cross-connect cards. Table cells with dashes mean cards are not compatible with the listed software versions or cross-connect cards.

Table 2-4 Common-Control Card Software and Hardware Compatibility for the ONS 15454 

Cards
Software R2.2.1
Software R2.2.2
Software R3.0.1
Software R3.1
Software R3.2
Software R3.3
XC
Card
XCVT Card
XC10G Card
TCC+

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

XC

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

XCVT

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

XC10G

Yes

Yes

Yes

Yes1

AIC

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

1 To enable OC-192 and OC-48 any slot card operation, use the XC10G card, the TCC+ card, Software R3.1 or higher, and the new 15454-SA-ANSI shelf assembly. Do not pair an XC or XCVT with an XC10G.


Table 2-5 Electrical Card Software and Cross-Connect Card Compatibility for the ONS 15454 

Electrical Cards
Software R2.2.1
Software R2.2.2
Software R3.0.1
Software R3.1
Software R3.2
Software R3.3
XC
Card
XCVT Card
XC10G Card
EC1-12

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

DS1-14

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

DS1N-14

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

DS3-12

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

DS3N-12

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

DS3-12E

Yes1

Yes

Yes

Yes

Yes

Yes

Yes

Yes

DS3N-12E

Yes 1

Yes

Yes

Yes

Yes

Yes

Yes

Yes

DS3XM-6 (Transmux)

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

1 Use Software R3.0 or higher to enable all enhanced performance monitoring functions on the DS-3E cards. With Software R2.2.2, the DS-3E cards operate as the older DS-3 cards without enhanced performance monitoring.


Table 2-6 Optical Card Software and Cross-Connect Card Compatibility for the ONS 15454 

Optical Cards
Software R2.2.1
Software R2.2.2
Software R3.0.1
Software R3.1
Software R3.2
Software R3.3
XC
Card
XCVT Card
XC10G Card
OC3 IR 4 1310

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

OC12 IR 1310

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

OC12 LR 1310

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

OC12 LR 1550

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

OC3 IR 4/STM1 SH 1310

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

OC12 IR/STM4 SH 1310

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

OC12 LR/STM4 LH 1310

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

OC12 LR/STM4 LH 1550

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

OC12 IR/STM4 SH 1310-4

No

No

No

No

No

Yes

No

No

Yes

OC48 IR 1310

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

OC48 LR 1550

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

OC48 IR/STM16 SH AS 1310

Yes1

Yes

Yes

Yes 1

OC48 LR/STM16 LH AS 1550

Yes 1

Yes

Yes

Yes 1

OC48 ELR/STM16 EH 100 GHz

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

OC48 ELR 200 GHz

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

OC192 LR/STM64 LH 1550

Yes 1

Yes

Yes

Yes 1

1 Use the XC10G card, the TCC+ card, Software R3.1 or higher and the new 15454-SA-ANSI shelf assembly to enable the OC48 IR/STM16 SH AS 1310, OC48 LR/STM16 LH AS 1550, and the OC192 LR/STM64 LH 1550 cards.


Table 2-7 Ethernet Card Software and Cross-Connect Card Compatibility for the ONS 15454 

Ethernet Cards
Software R2.2.1
Software R2.2.2
Software R3.0.1
Software R3.1
Software R3.2
Software R3.3
XC
Card
XCVT Card
XC10G Card
E100T-12

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

E1000-2

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

E100T-G

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes1

E1000-2-G

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes 1

G1000-4

No

No

No

No

Yes

Yes

Yes

Yes

Yes 1

1 To use Ethernet cards with the XC10G, select either the E100T-G card, the E1000-2-G card, or the G1000-4 card. Do not use the E100T-12 card or E1000-2 card with the XC10G.


2.2 TCC+ Card

The TCC+ performs system initialization, provisioning, alarm reporting, maintenance, diagnostics, IP address detection/resolution, SONET Data Communications Channel (DCC) termination, and system fault detection for the ONS 15454. The TCC+ also ensures that the system maintains Telcordia timing requirements. Figure 2-1 shows the TCC+ faceplate and a block diagram of the card.

Figure 2-1 TCC+ faceplate and block diagram

The node database, IP address, and system software are stored in TCC+ non-volatile memory, which allows quick recovery in the event of a power or card failure.

The TCC+ supports multichannel, high-level data link control (HDLC) processing for the DCC. Up to 48 DCCs can be routed over the Serial Communication Interface (SCI) and terminated at the TCC+. The TCC+ selects and processes ten DCCs to facilitate remote system management interfaces.

The TCC+ performs all system-timing functions for each ONS 15454. The TCC+ monitors the recovered clocks from each traffic card and two DS-1 (BITS) interfaces for frequency accuracy. The TCC+ selects a recovered clock, a BITS, or an internal Stratum 3 reference as the system-timing reference. You can provision any of the clock inputs as primary or secondary timing sources. A slow-reference tracking loop allows the TCC+ to synchronize with the recovered clock, which provides holdover if the reference is lost.

Install TCC+ cards in Slots 7 and 11 for redundancy. If the active TCC+ fails, traffic switches to the protect TCC+. All TCC+ protection switches conform to protection switching standards of less than 50 ms.

The TCC+ features an RJ-45 10Base-T LAN port and an RS-232 DB9 type craft interface for user interfaces. The TL1 craft port runs at 9600 bps.


Caution Do not operate the ONS 15454 with only one TCC+ card. Two TCC+ cards must always be installed.

2.2.1 TCC+ Card-Level Indicators

The TCC+ faceplate has eight LEDs. The first two LEDs are card-level indicators.

Table 2-8 TCC+ Card-Level Indicators  

Card-Level LEDs
Definition
Red FAIL LED

Indicates a TCC+ hardware problem. Replace the unit if the FAIL LED persists.

ACT/STBY LED
Green (Active)
Amber (Standby)

The ACT/STBY (Active/Standby) LED indicates that the TCC+ is active (green) or in standby (amber). The ACT/STBY LED also provides the timing reference and shelf control. When the TCC+ is writing to the Active or Standby TCC+, its Active or Standby LED will blink.

To avoid memory corruption, only remove the TCC+ when it is in standby and when the LED is not blinking.


2.2.2 Network-Level Indicators

The TCC+ faceplate has eight LEDs. Six LEDs are network-level indicators.

Table 2-9 TCC+ System-Level Indicators  

System-Level LEDs
Definition
Red CRIT LED

Indicates a critical alarm in the network at the local node

Red MAJ LED

Indicates a major alarm in the network at the local node

Amber MIN LED

Indicates a minor alarm in the network at the local node

Red REM LED

Provides first-level alarm isolation. The REM LED turns red when an alarm is present in one or several of the remote nodes.

Green SYNC LED

Indicates that node timing is synchronized to an external reference

Green ACO LED

After pressing the alarm cutoff (ACO) button, the green ACO LED illuminates. The ACO button opens the audible closure on the backplane. The ACO state is stopped if a new alarm occurs. After the originating alarm is cleared, the ACO LED and audible alarm control are reset.


2.2.3 TCC+ Specifications

CTC Software

Interface: 10 Base-T LAN

Backplane access: wire wrap

TL1 Craft Interface

Speed: 9600 baud

Front panel access: RS-232 DB9 type connector

Synchronization

Stratum 3, per Telcordia GR-253-CORE

Free running access: accuracy 4.6 ppm

Holdover Stability: 3.7 x10-7 ppm/day including temperature (<255 slips in first 24 hours)

Reference: External BITS, line, internal

Environmental

Operating Temperature:

C-Temp (15454-TCC+): 0 to +55 degrees Celsius

I-Temp (15454-TCC+T): -40 to +65 degrees Celsius

Operating Humidity: 5 - 95%, non-condensing

Power Consumption: 9.82 W, 0.20 amps, 33.53 BTU/Hr.

Dimensions

Height: 12.650 in., Width: 0.716 in., Depth: 9.000 in.

Card Weight: 1.5 lbs, 0.7 kg

Compliance

ONS 15454 cards, when installed in a system, comply with these standards: Safety: UL 1950, CSA C22.2 No. 950, EN 60950, IEC 60950

2.3 XC Cross-Connect Card

The cross-connect card is the central element for ONS 15454 switching. Available cross-connects are the XC, XCVT, and XC10G. The XC establishes connections and performs time division switching (TDS) at the STS-1 level between ONS 15454 traffic cards. The XC card faceplate and block diagram are shown in Figure 2-2. The cross-connect matrix is shown in Figure 2-3.

Figure 2-2 XC card faceplate and block diagram

The switch matrix on the XC card consists of 288 bidirectional ports. When creating bidirectional STS-1 cross-connects, each cross-connect uses two STS-1 ports. This results in 144 bidirectional STS-1 cross-connects. The switch matrix is fully crosspoint, non-blocking, and broadcast supporting. (Any STS-1 on any port can be connected to any other port, meaning that the STS cross-connections are non blocking.) This allows network operators to concentrate or groom low-speed traffic from line cards onto high-speed transport spans and to drop low-speed traffic from transport spans onto line cards.

Figure 2-3 XC cross-connect matrix

The XC card has 12 input ports and 12 output ports. Four input and output ports operate at either STS-12 or STS-48 rates. The remaining eight input and output ports operate at the STS-12 rate. An STS-1 on any of the input ports can be mapped to an STS-1 output port, thus providing full STS-1 time slot assignments (TSA).

The XC card works with the TCC+ card to maintain connections and set up cross-connects within the ONS 15454. Either the XC, XCVT, or XC10G is required to operate the ONS 15454. You establish cross-connect and provisioning information through CTC. The TCC+ establishes the proper internal cross-connect information and relays the setup information to the cross-connect card.


Caution Do not operate the ONS 15454 with only one XC, XCVT, or XC10G card. Two cross connect cards of the same type (either two XC, two XCVT, or two XC10G cards) must always be installed.

For simplex operation, you can install a single XC card in Slots 8 or 10. A second XC should be added for redundancy. The card has no external interfaces. All cross-connect card interfaces are provided through the ONS 15454 backplane.

2.3.1 XC Card-Level Indicators

The XC card faceplate has two card-level LEDs.

Table 2-10 XC Card-Level Indicators  

Card-Level Indicators
Definition
Red FAIL LED

The red FAIL LED indicates that the card's processor is not ready. If the FAIL LED persists, replace the card.

ACT/STBY LED
Green (Active)
Amber (Standby)

The ACT/STBY LED indicates whether the XC card is active and carrying traffic (green) or in standby mode as a protect card (amber).


2.3.2 XC Specifications

Cross-Connect

Connection Setup Time: 5 ms

Latency: 270 ns

Environmental

Operating Temperature:

C-Temp (15454-XC): 0 to +55 degrees Celsius

I-Temp (15454-XC-T): -40 to +65 degrees Celsius

Operating Humidity: 5 - 95%, non-condensing

Power Consumption: 13 W, 0.28 amps, 46 BTU/Hr.

Dimensions

Height: 12.650 in.

Width: 0.716 in.

Depth: 9.000 in.

Card Weight: 1.5 lbs, 0.7 kg

Compliance

ONS 15454 cards, when installed in a system, comply with these standards: Safety: UL 1950, CSA C22.2 No. 950, EN 60950, IEC 60950

2.4 XCVT Cross-Connect Card

The XCVT card provides the same STS capability as a standard XC card and also provides VT cross-connection. The XCVT provides non-blocking STS-48 capacity to all of the high-speed slots and non-bidirectional blocking STS-12 capacity to all multispeed slots. Any STS-1 on any port can be connected to any other port, meaning that the STS cross-connections are non blocking.

Figure 2-4 shows the XCVT faceplate and block diagram. Figure 2-5 shows the cross-connect matrix.

Figure 2-4 XCVT faceplate and block diagram

The STS-1 switch matrix on the XCVT card consists of 288 bidirectional ports and adds a VT matrix that can manage up to 336 bidirectional VT1.5 ports or the equivalent of a bidirectional STS-12. The VT1.5-level signals can be cross connected, dropped, or rearranged. The TCC+ assigns bandwidth to each slot on a per STS-1 or per VT1.5 basis. The switch matrices are fully crosspoint and broadcast supporting.

The XCVT card works with the TCC+ card to maintain connections and set up cross-connects within the node. Either the XCVT, XC10G, or XC is required to operate the ONS 15454. You can establish cross-connect (circuit) information through CTC. The TCC+ establishes the proper internal cross-connect information and relays the setup information to the XCVT card.


Caution Do not operate the ONS 15454 with only one XC, XCVT, or XC10G card. Two cross connect cards of the same type (either two XC, two XCVT, or two XC10G cards) must always be installed.

Figure 2-5 XCVT cross-connect matrix

2.4.1 VT Mapping

The VT structure is designed to transport and switch payloads below the DS-3 rate. The ONS 15454 performs Virtual Tributary (VT) mapping according to Telcordia GR-253 standards. Table 2-11 shows the VT numbering scheme for the ONS 15454 as it relates to the Telcordia standard.

Table 2-11 ONS 15454 VT Mapping 

ONS 15454 VT Number
Telcordia Group/VT Number

VT1

Group1/VT1

VT2

Group2/VT1

VT3

Group3/VT1

VT4

Group4/VT1

VT5

Group5/VT1

VT6

Group6/VT1

VT7

Group7/VT1

VT8

Group1/VT2

VT9

Group2/VT2

VT10

Group3/VT2

VT11

Group4/VT2

VT12

Group5/VT2

VT13

Group6/VT2

VT14

Group7/VT2

VT15

Group1/VT3

VT16

Group2/VT3

VT17

Group3/VT3

VT18

Group4/VT3

VT19

Group5/VT3

VT20

Group6/VT3

VT21

Group7/VT3

VT22

Group1/VT4

VT23

Group2/VT4

VT24

Group3/VT4

VT25

Group4/VT4

VT26

Group5/VT4

VT27

Group6/VT4

VT28

Group7/VT4


2.4.2 XCVT Hosting DS3XM-6

The XCVT card works with DS3XM-6 (transmux) cards. A single DS3XM-6 can demultiplex (map down to a lower rate) six DS-3 signals into 168 VT1.5s that the XCVT card manages and cross connects. XCVT cards host a maximum of 336 bidirectional VT1.5s. In most network configurations, two DS3XM-6 cards are paired as working and protect cards.

2.4.3 XCVT Card-Level Indicators

The XCVT faceplate has two card-level LEDs.

Table 2-12 XCVT Card-Level Indicators  

Card-Level Indicators
Definition
Red FAIL LED

The red FAIL LED indicates that the card's processor is not ready. Replace the card if the red FAIL LED persists.

ACT/STBY LED
Green (Active)
Amber (Standby)

The ACT/STBY (Active/Standby) LED indicates whether the XCVT is active and carrying traffic (green) or in standby mode to the active XCVT card (amber).


2.4.4 XC/XCVT Compatibility

The XCVT card is compatible with the XC cards. The XCVT supports run-time compatibility with the XC cross-connect both within a single node and within a ring of mixed XCVT and XC nodes. However, working and protect cards within a single ONS 15454 must be either two XC cards or two XCVT cards. If an XC card or an XCVT card are used together as a working and protect pair, the XCVT acts as an XC card.

The XC and XCVT are supported in unidirectional path switched ring (UPSR) and bidirectional line switched ring (BLSR) configurations. VT and STS-level cross-connect and protection management are also supported in either type of ring. Nodes that rearrange or drop VTs must use an XCVT. Nodes that only rearrange or drop STSs can use an XC. You do not need to upgrade STS-only nodes to XCVT in a ring that can handle both VT and STS drop/rearrangement. In this scenario, however, the XC must run Software R2.0 or higher.

When upgrading from XC to XCVT cards, the first XCVT card installed acts as an XC card until the second XCVT card is installed.

To create an STS-capable ring that allows VT drops at some nodes, all of the nodes in the ring must first run Software R2.0 or higher. The nodes that allow VT drops must use XCVT, but the nodes that do not allow VT drops can use the XC or XCVT card.

2.4.5 XCVT Card Specifications

Environmental

Operating Temperature:

C-Temp (15454-XC-VT): 0 to +55 degrees Celsius

I-Temp (15454-XC-VT-T): -40 to +65 degrees Celsius

Operating Humidity: 5 - 95%, non-condensing

Power Consumption: 34.40 W, 0.72 amps, 117.46 BTU/Hr.

Dimensions

Height: 12.650 in.

Width: 0.716 in.

Depth: 9.000 in.

Card Weight: 1.9 lbs, 0.8 kg

Compliance

ONS 15454 cards, when installed in a system, comply with these standards: Safety: UL 1950, CSA C22.2 No. 950, EN 60950, IEC 60950

2.5 XC10G Cross-Connect Card

The XC10G card cross-connects STS-12, STS-48, and STS-192 signal rates. The XC10G allows up to four times the bandwidth of the XC and XCVT cards. The XC10G provides a maximum of 1152 STS-1 cross-connections. Any STS-1 on any port can be connected to any other port, meaning that the STS cross-connections are non blocking.

Figure 2-6 shows the XC10G faceplate and block diagram. Figure 2-7 shows the cross-connect matrix.

Figure 2-6 XC10G faceplate and block diagram

The XC10G card manages up to 336 bidirectional VT1.5 ports and 576 bidirectional STS-1 ports. The TCC+ assigns bandwidth to each slot on a per STS-1 or per VT1.5 basis.

Either the XC10G, XCVT, or XC is required to operate the ONS 15454. You can establish cross-connect (circuit) information through the Cisco Transport Controller (CTC). The TCC+ establishes the proper internal cross-connect information and sends the setup information to the cross-connect card.


Caution Do not operate the ONS 15454 with only one XC, XCVT, or XC10G card. Two cross connect cards of the same type (either two XC, two XCVT, or two XC10G cards) must always be installed.

Figure 2-7 XC10G cross-connect matrix

2.5.1 VT Mapping

The VT structure is designed to transport and switch payloads below the DS-3 rate. The Cisco ONS 15454 performs Virtual Tributary (VT) mapping according to Telcordia GR-253 standards. Table 2-13 shows the VT numbering scheme for the ONS 15454 as it relates to the Telcordia standard.

Table 2-13 ONS 15454 VT Mapping 

ONS 15454 VT Number
Telcordia Group/VT Number

VT1

Group1/VT1

VT2

Group2/VT1

VT3

Group3/VT1

VT4

Group4/VT1

VT5

Group5/VT1

VT6

Group6/VT1

VT7

Group7/VT1

VT8

Group1/VT2

VT9

Group2/VT2

VT10

Group3/VT2

VT11

Group4/VT2

VT12

Group5/VT2

VT13

Group6/VT2

VT14

Group7/VT2

VT15

Group1/VT3

VT16

Group2/VT3

VT17

Group3/VT3

VT18

Group4/VT3

VT19

Group5/VT3

VT20

Group6/VT3

VT21

Group7/VT3

VT22

Group1/VT4

VT23

Group2/VT4

VT24

Group3/VT4

VT25

Group4/VT4

VT26

Group5/VT4

VT27

Group6/VT4

VT28

Group7/VT4


2.5.2 XC10G Hosting DS3XM-6

The XC10G card works with the DS3XM-6 (transmux) card. A single DS3XM-6 can demultiplex (map down to a lower rate) six DS-3 signals into 168 VT1.5s that the XC10G card manages and cross connects. XC10G cards host a maximum of 336 bidirectional VT1.5 ports. In most network configurations, two DS3XM-6 cards are paired as working and protect cards.

2.5.3 XC10G Card-Level Indicators

The XC10G faceplate has two card-level LEDs.

Table 2-14 XC10G Card-Level Indicators  

Card-Level Indicators
Definition
Red FAIL LED

The red FAIL LED indicates that the card's processor is not ready. This LED illuminates during reset. The FAIL LED flashes during the boot process. Replace the card if the red FAIL LED persists.

ACT/STBY LED
Green (Active)
Amber (Standby)

The ACT/STBY (Active/Standby) LED indicates whether the XC10G is active and carrying traffic (green) or in standby mode to the active XC10G card (amber).


2.5.4 XC/XCVT/XC10G Compatibility

The XC10G supports the same features as the XC and XCVT cross-connects. The XC10G card is required for OC-192 and OC-48 any-slot operation. Do not use the XCVT or XC cards if you are using the OC-192 card, or if you placed one of the OC-48 any slot cards in a multispeed slot.


Note A configuration mismatch alarm occurs when a XC or XCVT cross-connect card coexists with an OC-192 card placed in the high-speed slot, or with an OC-48 card placed in the multispeed slot.


The TCC+ card, Software R3.1 or higher and the new 15454-SA-ANSI shelf assembly are required for the operation of the XC10G. If you are using Ethernet cards, the E1000-2-G or the E100T-G must be used when the XC10G cross-connect card is in use. Do not pair an XC or XCVT with an XC10G. When upgrading from XC or XCVT to the XC10G card, refer to the Cisco ONS 15454 Procedure Guide for more information.

The upgrade procedure from the XC/XCVT cards to the XC10G card only applies to XC/XCVT cards that are installed in the 15454-SA-ANSI (Software R3.1 and later). You cannot perform this upgrade from shelves released prior to software R3.1. The XC10G requires the 15454-SA-ANSI.

2.5.5 XC10G Card Specifications

Environmental

Operating Temperature:

C-Temp (15454-XC-10G): 0 to +55 degrees Celsius

Operating Humidity: 5 - 85%, non-condensing

Power Consumption: 78.6 W, 1.64 amps, 268.4 BTU/Hr.

Dimensions

Height: 12.650 in.

Width: 0.716 in.

Depth: 9.000 in.

Card Weight: 1.5 lbs, 0.6 kg

Compliance

ONS 15454 cards, when installed in a system, comply with these standards: Safety: UL 1950, CSA C22.2 No. 950, EN 60950, IEC 60950

2.6 Alarm Interface Controller Card

The optional Alarm Interface Controller (AIC) card provides customer-defined alarm input/output (I/O) and supports local and express orderwire. Figure 2-8 shows the AIC faceplate and a block diagram of the card. Figure 2-9 shows the RJ-11 cable.

Figure 2-8 AIC faceplate and block diagram

2.6.1 User-Defined Alarms

The AIC card provides input/output alarm contact closures. You can define up to four external alarms and four external controls. The physical connections are made using the backplane wire-wrap pins. The alarms are defined using CTC and TL1. For instructions, refer to the Cisco ONS 15454 Procedure Guide.

Each alarm contact has a corresponding LED on the front panel of the AIC that indicates the status of the alarm. External alarms (input contacts) are typically used for external sensors such as open doors, temperature sensors, flood sensors, and other environmental conditions. External controls (output contacts) are typically used to drive visual or audible devices such as bells and lights, but they can control other devices such as generators, heaters, and fans.

You can program each of the four input alarm contacts separately. Choices include Alarm on Closure or Alarm on Open, an alarm severity of any level (Critical, Major, Minor, Not Alarmed, Not Reported), a Service Affecting or Non-Service Affecting alarm-service level, and a 63-character alarm description for CTC display in the alarm log. You cannot assign the fan-tray abbreviation for the alarm; the abbreviation reflects the generic name of the input contacts. The alarm condition remains raised until the external input stops driving the contact or you provision the alarm input.

The output contacts can be provisioned to close on a trigger or to close manually. The trigger can be a local alarm severity threshold, a remote alarm severity, or a virtual wire:

Local NE alarm severity: A hierarchy of non-reported, non-alarmed, minor, major or critical alarm severities that you set to cause output closure. For example, if the trigger is set to minor, a minor alarm or above is the trigger.

Remote NE alarm severity: Same as the Local NE alarm severity but applies to remote alarms only.

Virtual wire entities: You can provision any environmental alarm input to raise a signal on any virtual wire on external outputs 1 through 4 when the alarm input is an event. You can provision a signal on any virtual wire as a trigger for an external control output.

You can also program the output alarm contacts (external controls) separately. In addition to provisionable triggers, you can manually force each external output contact to open or close. Manual operation takes precedence over any provisioned triggers that might be present.

2.6.2 Orderwire

Orderwire allows a craftsperson to plug a phoneset into an ONS 15454 and communicate with craftspeople working at other ONS 15454s or other facility equipment. The orderwire is a pulse code modulation (PCM) encoded voice channel that uses E1 or E2 bytes in section/line overhead.

The AIC allows simultaneous use of both local (section overhead signal) and express (line overhead channel) orderwire channels on a SONET ring or particular optics facility. Local orderwire also allows communication at regeneration sites when the regenerator is not a Cisco device.

You can provision orderwire functions with CTC similar to the current provisioning model for DCC channels. In CTC you provision the orderwire communications network during ring turn-up so that all NEs on the ring can reach one another. Orderwire terminations (i.e. the optics facilities that receive and process the orderwire channels) are provisionable. Both express and local orderwire can be configured as on or off on a particular SONET facility. The ONS 15454 supports up to four orderwire channel terminations per shelf. This allows linear, single ring, dual ring, and small hub-and-spoke configurations. Keep in mind that orderwire is not protected in ring topologies such as BLSR and UPSR.


Caution Do not configure orderwire loops. Orderwire loops cause feedback that disables the orderwire channel.

The ONS 15454 implementation of both local and express orderwire is broadcast in nature. The line acts as a party line. There is no signalling for private point-to-point connections. Anyone who picks up the orderwire channel can communicate with all other participants on the connected orderwire subnetwork. The local orderwire party line is separate from the express orderwire party line. Up to four OC-N facilities for each local and express orderwire are provisionable as orderwire paths.

The AIC supports a "call" button on the module front panel which, when pressed, causes all ONS 15454 AICs on the orderwire subnetwork to "ring." The ringer/buzzer resides on the AIC. There is also a "ring" LED that mimics the AIC ringer. It flashes when any "call" button is pressed on the orderwire subnetwork. The "call" button and ringer/LED allow a remote craftsperson to get the attention of craftspeople across the network.

The orderwire ports are standard RJ-11 receptacles. The pins on the orderwire ports correspond to the tip and ring orderwire assignments.

Table 2-15 Orderwire Pin Assignments

RJ-11 Pin Number
Description

1

Four-wire receive ring

2

Four-wire transmit tip

3

Two-wire ring

4

Two-wire tip

5

Four-wire transmit ring

6

Four-wire receive tip


When provisioning the orderwire subnetwork, make sure that an orderwire loop does not exist. Loops cause oscillation and an unusable orderwire channel.

Figure 2-9 RJ-11 cable

2.6.3 AIC Specifications

Environmental

Operating Temperature:

C-Temp (15454-AIC): 0 to +55 degrees Celsius

I-Temp (15454-AIC-T): -40 to +65 degrees Celsius

Operating Humidity: 5 - 95%, non-condensing

Power Consumption: 6.01 W, 0.12 amps, 20.52 BTU/Hr.

Dimensions

Height: 12.650 in., Width: 0.716 in., Depth: 9.000 in.

Card Weight: 1.6 lbs, 0.7 kg

Compliance

ONS 15454 cards, when installed in a system, comply with these standards: Safety: UL 1950, CSA C22.2 No. 950, EN 60950, IEC 60950


hometocprevnextglossaryfeedbacksearchhelp

Posted: Mon Feb 25 15:34:49 PST 2008
All contents are Copyright © 1992--2008 Cisco Systems, Inc. All rights reserved.
Important Notices and Privacy Statement.