2.2 Server-to-Client CommunicationThe Internet (or an intranet) is a network that links different computers together. Before we can start writing web applications, we must understand how the output from these systems actually gets from the server to the browser, which means that we have to learn a little about how the Internet and the Web work. OAS and WebDB use standard Internet conventions and protocols to send resources to a client. The most important parts of this interchange are:
The following sections briefly describe each of these parts. 2.2.1 The TCP/IP NetworkBrowsers connect to an OAS or WebDB server using the TCP/IP networking protocol. Although there are a number of different types of networking protocols, such as DECNet or IPX, web systems only work with TCP/IP. Fortunately, more and more operating systems have this functionality built in, including Unix, Windows 95, Windows 98, Windows NT, OS/2, and Linux. Every machine on a TCP/IP network is identified by a four-part IP address. Each number in the address can range from 0 to 255, and the four numbers are separated by periods. For example, 253.4.99.17 might be the address for the machine running the human resources department's web server. Every machine on a TCP/IP network has a unique IP address. Most TCP/IP networks have a special class of servers called Domain Name Servers (DNSs). Their job is to translate IP addresses into meaningful hostnames that are easy to remember. For example, assigning the address 253.4.99.17 to the name "HR" in the DNS allows users to refer to the human resources server as "HR," rather than its actual IP address. 2.2.2 The Communication PortA software p ort (as opposed to a physical hardware port) is a common reference point on the server that is used to exchange messages. Each TCP/IP-based networking application, like OAS or WebDB, is assigned a specific port that it monitors for incoming requests. Client programs that need to communicate with the server connect to the server's assigned port. Once connected, the two systems exchange information according to a standard protocol (HTTP, FTP, etc.). Each port is identified by a port number, its ordinal position in the range of all ports. On Unix systems, for example, there are 64,536 different ports.
2.2.3 The HyperText Transfer Protocol (HTTP)A transfer protocol is a convention that governs how systems exchange information. Take, for example, a phone conversation. When you call someone, you (hopefully!) don't start blurting out whatever comes to mind as soon as they pick up the receiver. Instead, your conversation follows a set pattern that civilized society has agreed upon to make communication more efficient:
This sort of formalized exchange is the idea behind a protocol: it lets the sender and receiver know the order in which communications will occur. While computers use much more formalized systems than humans, the idea is basically the same.[ 1 ] OAS and WebDB follow a standard Internet protocol called HyperText Transfer Protocol (HTTP) to communicate with client web browsers. OAS supports HTTP 1.0 and HTTP 1.1, while WebDB supports only HTTP 1.0.
By convention, several special TCP ports are associated with specific protocols. For example, port 21 is usually used for FTP, port 25 is used for SMTP (a common email protocol), and port 80 is used for HTTP. Protocols vary in complexity. Unlike client/server protocols, such as SQL*Net or Net8, HTTP is relatively simple because it is stateless , meaning that the client and server terminate their connection once their conversation is complete. Unlike client/server systems, which maintain state by keeping open a continuous connection to the database, HTTP systems are connected only in bursts and not for the duration of the session. Because the client and server forget everything that happened during previous connections, developers must take explicit steps to maintain information, or state , from page to page. In other words, there are no global variables in a web application; they are all local. Anything you want to retain from screen to screen has to be stored and retrieved in every page. For example, if you're building a web-based threaded discussion list that begins with a login screen, you must manually program it to remember the login information. We'll discuss strategies for doing this in Chapter 7, The PL/SQL Toolkit , and Chapter 8, Developing Applications . 2.2.4 The Web BrowserUsers request information from a WebDB or OAS server using a web browser such as Microsoft Internet Explorer or Netscape Communicator. The browser is responsible for presenting web content on these servers to the user. In the early days of the Web, a browser could handle only basic HTML and text documents, but the explosion of web content has turned the browser into an information kiosk, multimedia center, and minicomputer all rolled into one. For example, most modern browsers can display an HTML document filled with pictures, sounds, and even movies. With the advent of Java, the browser has become a virtual machine , a computer within a computer capable of running Java programs. There are a number of browsers on the market, and each one behaves slightly differently. For example, the appearance of any given HTML document often varies from browser to browser. To differentiate their product from the competition, browser vendors add features that work only with their browser. You should test your content on a number of different browsers, even if your company has adopted a standard, since many users refuse to give up browsers to which they are fanatically attached. Additionally, more and more people are dialing in from home, and they will often have older (or, depending on your company, newer) software than your company standard. 2.2.5 The Uniform Resource LocatorUniform Resource Locators (URLs) are used to request a resource from an OAS or WebDB server independently of the operating system used on the machine. A URL abstracts the machine name, resource path, and resource name into a string with the following syntax: protocol: // server:port / path / resource?query_string
You can omit the server, port, and path sections from hyperlinks (links the user clicks to go to other locations) inside other documents, which allows you to create relative, rather than absolute, URLs. Relative URLs are like relative directories in a filesystem: they let you describe the location of one resource in relation to the current resource. Most resources don't stand on their own; they are part of a larger hierarchical site that usually begins with a "home" and branches out from there. There are practical as well as aesthetic reasons to define a site's structure using relative rather than absolute URLs. For example, if a site is moved to a new host, the server section on all the links in the site must be changed to the new hostname. This is very tedious work. If the site is defined using relative URLs, however, the relative structure of its pages is unaffected by the move.
You create a relative URL by omitting the server, port, and path section from the URLs for hyperlinks and for For example, if a page's URL is http://betty/somepage.html, links on that page to other resources on the site do not have to explicitly include "betty" in the URL. Instead, they can simply begin with the path and name of other resources. The server part, "betty," is implied by the base URL. You can even include new subdirectories off the base URL. 2.2.6 The Resource MIME TypeEvery resource is associated with a MIME type that tells the browser what to do with the resource once the transfer is complete (e.g., display it in the main window, launch a file viewer, and so on). MIME, which stands for Multipurpose Internet Mail Extensions, is a standard for exchanging various types of files (such as images, text, and video) over the Internet so that each computer platform, whether NT, Unix, or VMS, will interpret and correctly handle the resource's contents.
MIME types describe the data format using two parts. The first part, the
type
, identifies the resource's general format, such as
Browsers must be configured to handle each MIME type. Almost all browsers can display 2.2.7 A Helpful AnalogyI've covered a lot of important material in this section. It might be useful to summarize it by making an analogy to the telephone system network, as shown in Table 2.1 .
Copyright (c) 2000 O'Reilly & Associates. All rights reserved. | ||||||||||||||||
|