5.5. Virtual Private NetworksA virtual private network (VPN) is a way of employing encryption and integrity protection so that you can use a public network (for instance, the Internet) as if it were a private network (a piece of cabling that you control). Making a private, high-speed, long-distance connection between two sites is much more expensive than connecting the same two sites to a public high-speed network, but it's also much more secure. A virtual private network is an attempt to combine the advantages of a public network (it's cheap and widely available) with some of the advantages of a private network (it's secure).Fundamentally, all virtual private networks that run over the Internet employ the same principle: traffic is encrypted, integrity protected, and encapsulated into new packets, which are sent across the Internet to something that undoes the encapsulation, checks the integrity, and decrypts the traffic. Virtual private networks are not exactly a firewall technology, but we discuss them here for several reasons:
5.5.1. Where Do You Encrypt?Virtual private networks depend on encryption. That encryption can be done as a transport method, where a host decides to encrypt traffic when it is generated, or as a tunnel, where traffic is encrypted and decrypted somewhere in between the source and the destination. The question of where you do the encryption and decryption relative to your packet filtering is an important one. If you do the encryption and decryption inside the packet filtering perimeter (i.e., on your internal net), then the filters just have to allow the encrypted packets in and out. This is especially easy if you're doing tunneling, because all the tunneled packets will be addressed to the same remote address and port number at the other end of the tunnel (the decryption unit). On the other hand, doing the encryption and decryption inside your filtering perimeter means that packets arriving encrypted are not subject to the scrutiny of the packet filters. This leaves you vulnerable to attack from the other site if that site has been compromised.If you do the encryption and decryption outside the packet filtering perimeter (i.e., on your perimeter net or in your exterior router), then the packets coming in from the other site can be subjected to the full scrutiny of your packet filtering system. On the other hand, they can also be subjected to the full scrutiny of anyone who can read traffic on your perimeter net, including intruders.
5.5.2. Key Distribution and CertificatesAs with any encryption and integrity protection system, key distribution can be a very sticky problem. A number of choices are available, including sharing keys or using a public key system; see Appendix C, "Cryptography", for descriptions of these systems and the advantages and disadvantages of each.
5.5.3. Advantages of Virtual Private NetworksMost of the advantages of virtual private networks are economic; it's cheaper to use shared public networks than it is to set up dedicated connections, whether those are leased lines between sites or modem pools that allow individual machines to connect to a central site. On the other hand, virtual private networks also provide some security advantages.5.5.3.1. Virtual private networks provide overall encryptionA virtual private network conceals all the traffic that goes over it. Not only does it guarantee that all the information is encrypted, but it also keeps people from knowing which internal machines are being used and with what protocols. You can protect information from snooping by using individual encrypted protocols, but attackers will still have some idea what machines are talking and what kind of information they're exchanging (for instance, if you use an encrypted mail protocol, they will know that things are being mailed). A virtual private network conceals more information.
5.5.3.2. Virtual private networks allow you to remotely use protocols that are difficult to secure any other waySome protocols are extremely difficult to provide securely through a firewall. For instance, a number of protocols used on Microsoft systems are based on SMB, which provides a wide variety of services with different security implications over the same ports and connections. Packet filtering and proxying both have trouble adding security to SMB. Virtual private networking provides a way to give remote access for these protocols without letting people attack them from the Internet at large.
5.5.4. Disadvantages of Virtual Private NetworksAlthough virtual private networks are an important security tool, they also present problems in a firewall environment.5.5.4.1. Virtual private networks involve dangerous network connectionsA virtual private network runs over an actual network, which is presumably not a private network. The hosts on the virtual private network must be connected to that actual network, and if you're not careful, they will be vulnerable to attack from that network. For instance, if you use a virtual private network to provide connectivity to your internal network for mobile users who connect to the Internet, their machines may be attacked from the Internet.Ideally, a virtual private network system will disable all other uses of the network interface. It's important to choose a system that will allow you to force this on the remote system. It's not good enough to have a system where the remote system is able to turn off other uses because the user on the remote system may turn networking back on. It's very tempting as a way to get rapid access to Internet resources.
5.5.4.2. Virtual private networks extend the network you must protectWhen you attach something via a virtual private network, you are making it part of your internal network. If a machine on the virtual private network is broken into, the attacker will then be able to use the virtual private network to attack the rest of your site, from something that's treated as if it were inside of your local network. Virtual private networking is commonly used to give access to machines that are much more vulnerable than those that are physically on the network -- for instance, laptops that are carried around in public, home machines that curious children have physical access to, and machines owned by other sites with interests and policies that are not identical to yours.Even if the virtual private network disables other uses of the network interface it is running over, the machine may have other network interfaces. This can make it into a gateway between your network and others, inside your network's security perimeter. Because of this, you want to be careful how you attach the virtual private network to your real private network, and how you secure the remote end. It may not be appropriate to make the virtual private network a seamless part of your internal network. Consider putting in a subsidiary firewall or at least special intrusion detection to watch for problems.
|
|