8.3. Object/Relational ModelingThe most basic question facing the object-oriented developer using a relational database is how to map relational data into objects. Your immediate thought might be to simply map object attributes to fields in a table. Unfortunately, this approach does not create the perfect mapping for several reasons.
Think about that address book we talked about earlier. We probably have something like the address and person tables shown in Figure 8-1.
Figure 8-1. The data model for a simple address book applicationFigure 8-2 shows the object model that maps to the data model from Figure 8-1. each row from the database turns into a program object. Your application therefore takes a result set and, for each row returned, instantiates a new Address or Person instance. The hardest thing to deal with here is the issue mentioned earlier: how do you capture the relationship between a person and her address in the database application? The Person object, of course, carries a reference to that person's Address object. But you cannot save the Address object within the person table of a relational database. As the data model suggests, you store object relationships through foreign keys. In this case, we carry the address_id in the person table. Figure 8-2. The object model supporting a simple address book applicationWith just a tiny amount of extra complexity to the object model, we can add a world of complexity to the challenge of mapping our objects to a data model. The extra bit of complexity could be to have Person inherit from Entity with a Company class also inheriting from Entity. How do we capture an Entity separate from a Person or a Company? The rule we outlined above is actually more of a guideline. In some instances, the base class may be purely abstract and subsequently have no data associated with it in the database. In that instance, you would not have an entity in the database for that class. Copyright © 2001 O'Reilly & Associates. All rights reserved. |
|