Задача поиска. Пусть заданы линейные списки: список элементов
В=<К1,К2,К3,...,Кn> и список ключей V=
Эффективность некоторого алгоритма поиска А оценивается максимальным Max{А}
и средним Avg{А} количествами сравнений, необходимых для нахождения элемента V
в В. Если Pi - относительная частота использования элемента Кi в В, а Si -
количество сравнений, необходимое для его поиска, то
n
Max{А} = max{ Si, i=1,n } ; Avg{А} = Pi Si .
i=1
Последовательный поиск предусматривает последовательный просмотр всех элементов списка В в порядке их расположения, пока не найдется элемент равный V. Если достоверно неизвестно, что такой элемент имеется в списке, то необходимо следить за тем, чтобы поиск не вышел за пределы списка, что достигается использованием стоппера.
Очевидно, что Max последовательного поиска равен N. Если частота использования каждого элемента списка одинакова, т.е. P=1/N, то Avg последовательного поиска равно N/2. При различной частоте использования элементов Avg можно улучшить, если поместить часто встречаемые элементы в начало списка.
Пусть во входном потоке задано 100 целых чисел К1,К2,... К100 и ключ V.
Составим программу для последовательного хранения элементов Кi и поиска среди
них элемента, равного V, причем такого элемента может и не быть в списке. Без
использования стоппера программа может быть реализована следующим образом:
/* последовательный поиск без стоппера */
#include
С использованием стоппера программу можно записать в виде:
/* последовательный поиск со стоппером */
#include
Для упорядоченных линейных списков существуют более эффективные алгоритмы поиска, хотя и для таких списков применим последовательный поиск. Бинарный поиск состоит в том, что ключ V сравнивается со средним элементом списка. Если эти значения окажутся равными, то искомый элемент найден, в противном случае поиск продолжается в одной из половин списка.
Нахождение элемента бинарным поиском осуществляется очень быстро. Max бинарного поиска равен log2(N), и при одинаковой частоте использования каждого элемента Avg бинарного поиска равен log2(N). Недостаток бинарного поиска заключается в необходимости последовательного хранения списка, что усложняет операции добавления и исключения элементов .
Пусть, например, во входном потоке задано 101 число, К1,К2,...,К100, V -
элементы списка и ключ. Известно, что список упорядочен по возрастанию, и
элемент V в списке имеется. Составим программу для ввода данных и осуществления
бинарного поиска ключа V в списке К1,К2,...,К100.
/* Бинарный поиск */
#include
Этот способ удобен при индексном хранении списка. Предполагается, что исходный упорядоченный список B длины N разбит на M подсписков B1,B2,...,Bm длины N1,N2,...,Nm, таким образом, что B=B1,B2,..,Bm.
Для нахождения ключа V, нужно сначала определить первый из списков Bi, i=1,M, последний элемент которого больше V, а потом применить последовательный поиск к списку Bi.
Хранение списков Bi может быть связным или последовательным. Если длины всех подсписков приблизительно равны и M= N, то Max М-блочного поиска равен 2 N. При одинаковой частоте использования элементов Avg М-блочного поиска равен N.
Описанный алгоритм усложняется, если не известно, действительно ли в списке имеется элемент, совпадающий с ключом V. При этом возможны случаи: либо такого элемента в списке нет, либо их несколько.
Если вместо ключа V имеется упорядоченный список ключей, то последовательный или М-блочный поиск может оказаться более удобным, чем бинарный, поскольку не требуется повторной инициализации для каждого нового ключа из списка V.
Методы вычисления адреса. Пусть в каждом из М элементов массива Т содержится элемент списка (например целое положительное число). Если имеется некоторая функция H(V), вычисляющая однозначно по элементу V его адрес - целое положительное число из интервала [0,M-1],то V можно хранить в массиве T с номером H(V) т.е. V=T(H(V)). При таком хранении поиск любого элемента происходит за постоянное время не зависящее от M.
Массив T называется массивом хеширования, а функция H - функцией хеширования.
При конкретном применении хеширования обычно имеется определенная область возможных значений элементов списка V и некоторая информация о них. На основе этого выбирается размер массива хеширования M и строится функция хеширования. Критерием для выбора M и H является возможность их эффективного использования.
Пусть нужно хранить линейный список из элементов K1,K2,..,Kn, таких, что при Ki=Kj, mod(Ki,26)= mod(Kj,26). Для хранения списка выберем массив хеширования T(26) с пространством адресов 0-25 и функцию хеширования H(V)= mod(V,26). Массив T заполняется элементами T(H(Ki))=Ki и T(j)=0 если j (H(K1), H(K2),..,H(Kn)).
Поиск элемента V в массиве T с присваиванием Z его индекса если V содержится
в T, или -1, если V не содержится в T, осуществляется следующим образом
int t[26],v,z,i;
i=(int)fmod((double)v,26.0);
if(t[i]==v) z=i;
else z=-1;
Добавление нового элемента V в список с возвращением в Z индекса элемента,
где он будет храниться, реализуется фрагментом
z=(int)fmod((doule)v,26.0);
t[z]=v;
а исключение элемента V из списка присваиванием
t[(int)fmod((double)v,26)]=0;
Теперь рассмотрим более сложный случай, когда условие Ki=Kj H(Ki)=H(Kj) не выполняется. Пусть V - множество возможных элементов списка (целые положительные числа), в котором максимальное число элементов равно 6. Возьмем M=8 и в качестве функции хеширования выберем функцию H(V)=Mod(V,8).
Предположим, что B=
T=<0,K5,0,K2,K4,K1,K3,0> .
При наличии коллизий усложняются все алгоритмы работы с массивом
хеширования. Рассмотрим работу с массивом T[100], т.е. с пространством адресов
от 0 до 99. Пусть количество элементов N не более 99, тогда в T всегда будет
хотя бы один свободный элемент равный нулю. Для объявления массива используем
оператор
int static t[100];
Добавление в массив T нового элемента Z с занесением его адреса в I и числа
элементов в N выполняется так:
i=h(z);
while (t[i]!=0 && t[i]!=z)
if (i==99) i=0;
else i++;
if (t[i]!=z) t[i]=z, n++;
Поиск в массиве T элемента Z с присвоением I индекса Z, если Z имеется в T,
или I=-1, если такого элемента нет, реализуется следующим образом:
i=h(z);
while (t[i]!=0 && t[i]!=z)
if (i==99) i=0;
else i++;
if (t[i]==0) i=-1;
При наличии коллизий исключение элемента из списка путем пометки его как пустого, т.е. t[i]=0, может привести к ошибке. Например, если из списка B исключить элемент K2, то получим массив хеширования в виде T=<0,K5,0,0,K4,K1,K3,0>, в котором невозможно найти элемент K4, поскольку H(K4)=3, а T(3)=0. В таких случаях при исключении элемента из списка можно записывать в массив хеширования некоторое значение непринадлежащее области значений элементов списка и не равное нулю. При работе с таким массивом это значение будет указывать на то, что нужно просматривать со средние ячейки.
Достоинство методов вычисления адреса состоит в том, что они самые быстрые, а недостаток в том, что порядок элементов в массиве T не совпадает с их порядком в списке, кроме того довольно сложно осуществить динамическое расширение массива T.
Задача выбора. Задан линейный список целых, различных по значению чисел
B=
Поставленная задача может быть получена из задачи поиска j-того минимального значения заменой i=n-j+1 и поиском i-того максимального значения. Особый интерес представляет задача выбора при i=a/n, 0<a<1, в частности, задача выбора медианы при a=1/2.
Все варианты задачи выбора легко решаются, если список B полностью отсортирован, тогда просто нужно выбрать i-тый элемент. Однако в результате полной сортировки списка B получается больше информации, чем требуется для решения поставленной задачи.
Количество действий можно уменьшить применяя сортировку выбором только
частично до i-того элемента. Это можно сделать, напри мер при помощи функции
findi
/* выбор путем частичной сортировки */
int findi(int *s, int n, int i)
{
int c,j,k;
for (k=0; k<=i; k++)
for (j=k+1; j<=n; j++)
if (s[k] < s[j])
{ c=s[k];
s[k]=s[j];
s[j]=c;
}
return s[i];
}
Эта функция ищет элемент с индексом i, частично сортируя массив s, и выполняет при этом (n*i) сравнений. Отсюда следует, что функция findi приемлима для решения задачи при малом значении i, и малоэффективна при нахождении медианы.
Для решения задачи выбора i-того наибольшего значения в списке B модифицируем алгоритм быстрой сортировки. Список B разбиваем элементом K1 на подсписки B' и B", такие, что если Ki -B', то Ki>K1, и если Ki - B", то Ki<K1, и список B реорганизуется в список B',K1,B". Если K1 элемент располагается в списке на j-том месте и j=i, то искомый элемент найден. При j>i наибольшее значение ищется в списке B'; при j<i будем искать (i-j) значение в подсписке B".
Алгоритм выбора на базе быстрой сортировки в общем эффективен, но для улучшения алгоритма необходимо, чтобы разбиение списка на подсписки осуществлялось почти пополам. Следующий алгоритм эффективно решает задачу выбора i-того наибольшего элемента в списке B, деля его на подсписки примерно равной величины.
1. Если N<21, то выбрать i-тый наибольший элемент списка B обычной сортировкой.
2. Если N>21 разделим список на P=N/7 подсписков по 7 элементов в каждом, кроме последнего в котором mod(N,7) элементов.
3. Определим список W из медиан полученных подсписков (четвертых наибольших значений) и найдем в W его медиану M (рекурсивно при помощи данного алгоритма) т.е. (P/2+1)-й наибольший элемент.
4. С помощью элемента M разобьем список B на два подсписка B' с j элементами
большими или равными M, и B" c N-j элементами меньшими M. При j>i повторим
процедуру поиска сначала, но только в подсписке B'. При j=i искомый элемент
найден, равен M и поиск прекращается. При j < i будем искать (i-j)-тый
наибольший элемент в списке B".
/* алгоритм выбора делением списка почти пополам */
int search (int *b, int n, int i)
{
int findi(int *, int, int);
int t, m, j, p, s, *w;
if (n<21) return findi(b, n, i); /* шаг 1 */
p=(int)(n/7);
w=calloc(p+1,sizeof(int)); /* шаги 2 и 3 */
for (t=0; t < p; t++)
w[t]=findi(b+7*t, 7, 3);
if (n%7!=0)
{ w[p]=findi(b+7*p,n%7,(n%7)/2);
p++;
}
m=search(w, p, p/2);
free (w);
for (j=0, t=0; t < n; t++) /* шаг 4 */
if (b[t]>=m) j++;
if (j>i)
{
for (p=0, t=0; p < n; t++)
if (b[t]>=m)
{ b[p]=b[t]; p++; }
m=search(b, j, i); /* поиск в B" */
}
if (j < i)
{
for (p=0, t=0; t < n; t++)
if (b[t] < m) b[p++]=b[t];
m=search(b, n-j, i-j); /* поиск в B" */
}
return m;
}
Рекурсивная функция search реализует алгоритм выбора i-того наибольшего
значения. Для ее вызова можно использовать следующую программу
#include
Используя метод математической индукции, можно доказать, что для функции search требуется выполнить в самом неблагоприятном случае 28*N сравнений.
Действительно, если N<21, то выполнение функции findi потребует сравнений порядка N*(N-1)/2, т.е. меньше чем 28*N. Предположим, что для любого T<N количество сравнений при выполнении функции search не более 28*T и подсчитаем, сколько сравнений потребуется функции search при произвольном значении N. Для поиска медианы в каждом из подсписков функцией findi требуется не более 7*(7-1)/2=21 сравнений, а для формирования массива W в целом не более 21*(N/7)=3*N сравнений. По предположению индукции для поиска медианы в массиве W длины N/7 требуется 28*(N/7)=4*N сравнений. После удаления из B части элементов с помощью медианы в B' (или в B") останется не более N*5/7 элементов, и для удаления ненужных элементов необходимо количество сравнений порядка N. Для поиска в оставшейся части массива (в B' или B") по предположению индукции требуется не более 28*(N*5/7)=20*N сравнений. Таким образом, всего потребуется 3*N+4*N+N+20*N=28*N сравнений, т.е. выдвинутое предположение доказано.