
Cisco Reader Comment Card

General Information

1 Years of networking experience: Years of experience with Cisco products:

2 I have these network types: LAN Backbone WAN
Other:

3 I have these Cisco products: Switches Routers
Other (specify models):

4 I perform these types of tasks: H/W installation and/or maintenance S/W configuration
Network management Other:

5 I use these types of documentation: H/W installation H/W configuration S/W configuration
Command reference Quick reference Release notes Online help
Other:

6 I access this information through: Cisco.com (CCO) CD-ROM
Printed docs Other:

7 I prefer this access method:

8 I use the following three product features the most:

Document Information

Document Title: Cisco Internet CDN Software Content Provider Guide

Part Number: 78-13749-01 S/W Release (if applicable):

On a scale of 1–5 (5 being the best), please let us know how we rate in the following areas:

Please comment on our lowest scores:

Mailing Information

Company Name Date

Contact Name Job Title

Mailing Address

City State/Province ZIP/Postal Code

Country Phone () Extension

Fax () E-mail

Can we contact you further concerning our documentation? Yes No

You can also send us your comments by e-mail to bug-doc@cisco.com, or by fax to 408-527-8089.

The document is written at my
technical level of understanding.

The information is accurate.

The document is complete. The information I wanted was easy to find.
The information is well organized. The information I found was useful to my job.

% %
% %

E
I T

E P

ME
TE
AS
CA

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES
BUSINESS R
F I R S T - C L A S S M A I L P E R M

POSTAGE WILL B

ATTN DOCU
CISCO SYS
170 WEST T
SAN JOSE
PLY MAIL
N O . 4 6 3 1 S A N J O S E C A

AID BY ADDRESSEE

NT RESOURCE CONNECTION
MS INC
MAN DRIVE
 95134-9883

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 526-4100

Cisco Internet CDN Software
Content Provider Guide

Customer Order Number: DOC-7813749
Text Part Number: 78-13749-01

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT
NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT
ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR
THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION
PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO
LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as
part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE
PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED
OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL
DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR
INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Cisco Internet CDN Software Content Provider Guide
Copyright © 2002, Cisco Systems, Inc.
All rights reserved.

AccessPath, AtmDirector, Browse with Me, CCIP, CCSI, CD-PAC, CiscoLink, the Cisco Powered Network logo, Cisco Systems Networking Academy, the
Cisco Systems Networking Academy logo, Cisco Unity, Fast Step, Follow Me Browsing, FormShare, FrameShare, IGX, Internet Quotient, IP/VC, iQ
Breakthrough, iQ Expertise, iQ FastTrack, the iQ Logo, iQ Net Readiness Scorecard, MGX, the Networkers logo, ScriptBuilder, ScriptShare, SMARTnet,
TransPath, Voice LAN, Wavelength Router, and WebViewer are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn, and
Discover All That’s Possible are service marks of Cisco Systems, Inc.; and Aironet, ASIST, BPX, Catalyst, CCDA, CCDP, CCIE, CCNA, CCNP, Cisco, the
Cisco Certified Internetwork Expert logo, Cisco IOS, the Cisco IOS logo, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo,
Empowering the Internet Generation, Enterprise/Solver, EtherChannel, EtherSwitch, FastHub, FastSwitch, GigaStack, IOS, IP/TV, LightStream, MICA,
Network Registrar, Packet, PIX, Post-Routing, Pre-Routing, RateMUX, Registrar, SlideCast, StrataView Plus, Stratm, SwitchProbe, TeleRouter, and VCO
are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and certain other countries.

All other trademarks mentioned in this document or Web site are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (0110R)

78-13749-01
C O N T E N T S
Preface vii

Document Objectives vii

Audience viii

Document Organization viii

Document Conventions ix

Obtaining Documentation ix

World Wide Web ix

Documentation CD-ROM x

Ordering Documentation x

Documentation Feedback x

Obtaining Technical Assistance xi

Cisco.com xi

Technical Assistance Center xii

Cisco TAC Web Site xii

Cisco TAC Escalation Center xiii

Understanding CDNs 1-1

What a CDN Does 1-1

Security 1-2

Mechanics of Content Routing 1-2

End Users Requesting Content 1-3

Routing End User Requests 1-3

Choosing Content Engines to Serve End User Requests 1-4

Distributing Content 1-5

Proxy Cached and Pre-Positioned Content 1-6
iii
Cisco Internet CDN Software Content Provider Guide

Contents
When to Pre-Position and When to Proxy Cache 1-6

About Hosted Domains 1-7

About the Manifest File 1-8

Supported Content Types 1-10

HTTP Content Types 1-10

Apple QuickTime Content Types 1-10

Microsoft Windows Media Content Types 1-11

RealNetworks RealServer Content Types 1-11

Understanding the Content Provider Role 2-1

About Creating the CDN Subdomain 2-2

Modifying DNS Configuration to Create a CDN Subdomain 2-3

Creating the Hosted Domain 2-4

About Configuring Origin Servers for Live Streaming 2-4

About Placing Content on Your CDN 2-5

About Caching Content 2-5

About Pre-Positioning Content 2-5

About Identifying Content to Place on Your CDN 2-6

About Creating the Manifest File 2-6

About Controlling Content Freshness after Deployment 2-7

Refreshing Manifest File Content 2-7

Refreshing the Manifest File 2-8

Verifying Content Freshness 2-8

Obsoleting Bad Content 2-9

Deploying Web Site Content on an Internet CDN 3-1

Configuring Origin Server for Live Streaming 3-1

Configuring RealServer for Live Streaming 3-2

Configuring WMT Publisher for Live Streaming 3-3

On-Demand Caching Web Site Content 3-4
iv
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Contents
Caching Content on Your CDN 3-4

Creating URLs that Link to CDN Content 3-5

URLs for Content Served Using Web Server 3-7

URLs for Content Served Using RealServer 3-7

URLs for Content Served Using Quicktime Server 3-8

URLs for Content Served Using Windows Media Services 3-9

Pre-Positioning Web Site Content 3-11

Creating a List of Web Site Content 3-11

Creating a Manifest File 3-12

Manifest File Limitations 3-13

Manifest File Document Type Definitions 3-13

Manifest File Structure and Syntax 3-16

Sample Manifest File 3-37

Validating Manifest File Syntax 3-39

Obtaining the Manifest File Validator 3-40

Installing the Manifest File Validator 3-41

Running the Manifest File Validator 3-42

Understanding Manifest File Validator Output 3-44

Repairing Manifest File Syntax 3-46

Sample Manifest File Scripts A-1

Overview A-1

Installing PERL on Your Workstation A-2

Obtaining the Scripts A-2

Listing Web Site Content Using the Spider Script A-3

Limiting Scope A-4

Broadening Scope A-4

Re-spidering Servers A-4

Spider Script Syntax Guidelines A-5

Combining Spider Data A-7
v
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Contents
Customizing the Spider Script A-7

Selecting Live and Pre-position Content Using the Manifest Script A-7

Pre-Positioned Versus Live Content A-8

Manifest Script Syntax Guidelines A-8

Customizing the Manifest Script A-11

Creating a Rules File for the Spider and Manifest Scripts A-11

Spider Script Source A-12

Manifest Script Source A-26

CDN Supported Time Zones B-1

Supported Time Zone Abbreviations B-1

Supported Time Zone Designations by Continent B-3

Africa B-3

Americas B-4

Antarctica B-7

Asia and India B-7

Atlantic Nations B-10

Australia B-10

Europe B-11

Pacific Nations B-12

IN D E X
vi
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Preface

This preface contains the following sections:

• Document Objectives, page vii

• Audience, page viii

• Document Organization, page viii

• Document Conventions, page ix

• Obtaining Documentation, page ix

• Obtaining Technical Assistance, page xi

Document Objectives
This guide contains information that enables content providers to prepare their
website content for deployment on a Cisco Internet Content Delivery Network
(CDN). The Cisco Internet CDN is a collection of hardware devices and
proprietary software that, together, significantly improves the delivery of web
content to users of the Internet.

This document focuses on the role and responsibilities of the content provider
organization, which has live and static content that it wants to deploy closer to
users on the Internet using the CDN. The mechanics of content routing are
explained, and clear steps for preparing your website for CDN deployment are
provided. In addition, tips are given for troubleshooting content deployment
issues.
vii
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Preface
Audience
Audience
This guide assumes you are a content provider who is coordinating with a service
provider organization to deploy content on a Cisco Internet CDN. It is assumed
that all CDN hardware and resources are owned and operated by your service
provider, not by you. If this is not the case, refer to the Cisco Internet CDN
Software Configuration Guide and User Guide for information on configuring
CDN devices and using the CDN administrative user interface.

You should be familiar with basic TCP/IP and networking concepts and your
enterprise’s network topology.

Document Organization
This guide contains the following major sections:

Chapter Title Description

Chapter 1 Understanding CDNs Contains a technical background of the
Cisco Internet CDN product including a
discussion of CDN hardware and software,
content routing mechanics, and system
architecture.

Chapter 2 Understanding the Content Provider
Role

Contains information on the role and
responsibilities of the content provider in a
Cisco Internet CDN deployment.

Chapter 3 Deploying Web Site Content on an
Internet CDN

Contains technical information and
instructions on preparing and deploying
website content on a Cisco Internet CDN.

Appendix A Sample Manifest File Scripts Contains detailed syntax information and
code from the manifest generation scripts
that are supplied with the CDN software.

Appendix B CDN Supported Time Zones Contains a list of timezone abbreviations for
all time zones supported by the CDN
software. Timezone designations are
important when deploying content over a
geographically dispersed CDN.
viii
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Preface
Document Conventions
Document Conventions
This guide uses basic conventions to represent text and table information.

Note Means reader take note. Notes contain helpful suggestions of references to
materials not contained in this manual.

Obtaining Documentation
The following sections explain how to obtain documentation from Cisco Systems.

World Wide Web
You can access the most current Cisco documentation on the World Wide Web at
the following URL:

http://www.cisco.com

Convention Description

boldface font Commands, keywords, and button names are in boldface.

italic font Variables for which you supply values are in italics.
Directory names and filenames are also in italics.

screen font Terminal sessions and information the system displays are
printed in screen font.

boldface screen
font

Information you must enter is in boldface screen font.

italic screen
font

Variables you enter are printed in italic screen font.

Vertical bars (|) Vertical bars separate alternative, mutually exclusive,
elements.
ix
Cisco Internet CDN Software Content Provider Guide

78-13749-01

http://www.cisco.com

Preface
Obtaining Documentation
Translated documentation is available at the following URL:

http://www.cisco.com/public/countries_languages.shtml

Documentation CD-ROM
Cisco documentation and additional literature are available in a Cisco
Documentation CD-ROM package, which is shipped with your product. The
Documentation CD-ROM is updated monthly and may be more current than
printed documentation. The CD-ROM package is available as a single unit or
through an annual subscription.

Ordering Documentation
Cisco documentation is available in the following ways:

• Registered Cisco Direct Customers can order Cisco product documentation
from the Networking Products MarketPlace:

http://www.cisco.com/cgi-bin/order/order_root.pl

• Registered Cisco.com users can order the Documentation CD-ROM through
the online Subscription Store:

http://www.cisco.com/go/subscription

• Nonregistered Cisco.com users can order documentation through a local
account representative by calling Cisco corporate headquarters (California,
USA) at 408 526-7208 or, elsewhere in North America, by calling 800
553-NETS (6387).

Documentation Feedback
If you are reading Cisco product documentation on Cisco.com, you can submit
technical comments electronically. Click Leave Feedback at the bottom of the
Cisco Documentation home page. After you complete the form, print it out and
fax it to Cisco at 408 527-0730.

You can e-mail your comments to bug-doc@cisco.com.
x
Cisco Internet CDN Software Content Provider Guide

78-13749-01

http://www.cisco.com
http://www.cisco.com/public/countries_languages.shtml
http://www.cisco.com/cgi-bin/order/order_root.pl
http://www.cisco.com/go/subscription

Preface
Obtaining Technical Assistance
To submit your comments by mail, use the response card behind the front cover
of your document, or write to the following address:

Cisco Systems
Attn: Document Resource Connection
170 West Tasman Drive
San Jose, CA 95134-9883

We appreciate your comments.

Obtaining Technical Assistance
Cisco provides Cisco.com as a starting point for all technical assistance.
Customers and partners can obtain documentation, troubleshooting tips, and
sample configurations from online tools by using the Cisco Technical Assistance
Center (TAC) Web Site. Cisco.com registered users have complete access to the
technical support resources on the Cisco TAC Web Site.

Cisco.com
Cisco.com is the foundation of a suite of interactive, networked services that
provides immediate, open access to Cisco information, networking solutions,
services, programs, and resources at any time, from anywhere in the world.

Cisco.com is a highly integrated Internet application and a powerful, easy-to-use
tool that provides a broad range of features and services to help you to

• Streamline business processes and improve productivity

• Resolve technical issues with online support

• Download and test software packages

• Order Cisco learning materials and merchandise

• Register for online skill assessment, training, and certification programs

You can self-register on Cisco.com to obtain customized information and service.
To access Cisco.com, go to the following URL:

http://www.cisco.com
xi
Cisco Internet CDN Software Content Provider Guide

78-13749-01

http://www.cisco.com

Preface
Obtaining Technical Assistance
Technical Assistance Center
The Cisco TAC is available to all customers who need technical assistance with a
Cisco product, technology, or solution. Two types of support are available through
the Cisco TAC: the Cisco TAC Web Site and the Cisco TAC Escalation Center.

Inquiries to Cisco TAC are categorized according to the urgency of the issue:

• Priority level 4 (P4)—You need information or assistance concerning Cisco
product capabilities, product installation, or basic product configuration.

• Priority level 3 (P3)—Your network performance is degraded. Network
functionality is noticeably impaired, but most business operations continue.

• Priority level 2 (P2)—Your production network is severely degraded,
affecting significant aspects of business operations. No workaround is
available.

• Priority level 1 (P1)—Your production network is down, and a critical impact
to business operations will occur if service is not restored quickly. No
workaround is available.

Which Cisco TAC resource you choose is based on the priority of the problem and
the conditions of service contracts, when applicable.

Cisco TAC Web Site

The Cisco TAC Web Site allows you to resolve P3 and P4 issues yourself, saving
both cost and time. The site provides around-the-clock access to online tools,
knowledge bases, and software. To access the Cisco TAC Web Site, go to the
following URL:

http://www.cisco.com/tac

All customers, partners, and resellers who have a valid Cisco services contract
have complete access to the technical support resources on the Cisco TAC Web
Site. The Cisco TAC Web Site requires a Cisco.com login ID and password. If you
have a valid service contract but do not have a login ID or password, go to the
following URL to register:

http://www.cisco.com/register/
xii
Cisco Internet CDN Software Content Provider Guide

78-13749-01

http://www.cisco.com
http://www.cisco.com/tac
http://www.cisco.com/register/

Preface
Obtaining Technical Assistance
If you cannot resolve your technical issues by using the Cisco TAC Web Site, and
you are a Cisco.com registered user, you can open a case online by using the TAC
Case Open tool at the following URL:

http://www.cisco.com/tac/caseopen

If you have Internet access, it is recommended that you open P3 and P4 cases
through the Cisco TAC Web Site.

Cisco TAC Escalation Center

The Cisco TAC Escalation Center addresses issues that are classified as priority
level 1 or priority level 2; these classifications are assigned when severe network
degradation significantly impacts business operations. When you contact the TAC
Escalation Center with a P1 or P2 problem, a Cisco TAC engineer will
automatically open a case.

To obtain a directory of toll-free Cisco TAC telephone numbers for your country,
go to the following URL:

http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml

Before calling, please check with your network operations center to determine the
level of Cisco support services to which your company is entitled; for example,
SMARTnet, SMARTnet Onsite, or Network Supported Accounts (NSA). In
addition, please have available your service agreement number and your product
serial number.
xiii
Cisco Internet CDN Software Content Provider Guide

78-13749-01

http://www.cisco.com/register/
http://www.cisco.com/tac/caseopen
http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml

Preface
Obtaining Technical Assistance
xiv
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Cisco Internet CDN
78-13749-01
C H A P T E R 1

Understanding CDNs

This chapter provides a conceptual background to the Cisco Internet CDN product
and contains the following sections:

• What a CDN Does, page 1-1

• Mechanics of Content Routing, page 1-2

• Distributing Content, page 1-5

What a CDN Does
When end users experience technical problems the first time they go to a website,
they often lose patience, often moving on to another site that offers similar
information and never returning to the original site.

The most basic technical problem that users encounter is slow content delivery.
To help solve the problem of slow content delivery, Cisco Internet CDN Software
enables your service provider to create and maintain Content Delivery Networks
(CDNs) for your website content. By choosing to deploy your website content on
a CDN, you offer your end users website content they can quickly and reliably
access—even high-impact, high-bandwidth video and multimedia content that has
historically been difficult to deliver reliably over the public Internet.

A Cisco Internet CDN is a collection of hardware devices and proprietary
software that, together, significantly improves the delivery of web content to users
of the Internet
1-1
 Software Content Provider Guide

Chapter 1 Understanding CDNs
Mechanics of Content Routing
The Cisco Internet CDN allows web content to be distributed to caches at various
locations on the Internet and then accessed from those caches. Service providers
can ensure better access to their content, because end users are able to obtain it
from a cache that is both closer to them (in terms of network distance) and less
heavily loaded than the web server where the content originates. In addition, these
caches reduce the load on the web server that belongs to the content provider
where content originates (the origin server).

See the “Mechanics of Content Routing” section on page 1-2 and the
“Distributing Content” section on page 1-5 for more information on how the CDN
software improves access to high bandwidth content on the Internet.

Security
The Cisco Internet CDN Software uses Secure Socket Layer (SSL) for Java to
encrypt all inter-device communications.

Developed by Netscape, the SSL protocol is supported by both the Netscape and
Microsoft browsers and is a widely accepted and deployed encryption technology
on the Internet. SSL uses the sockets method of communication between client
and server, coupled with RSA Security’s public key encryption technology to
secure data using digital certificates as it is transmitted between CDN devices
over the Internet.

Mechanics of Content Routing
The primary job of the Cisco Internet CDN is to deliver content. With content
distributed to up to 2000 geographically dispersed Content Engines, it is vital that
client requests for cached content be handled by Content Engines that are suitable
for the client. Suitability, for the CDN software, means that Content Engines are
online, nearby, and cheap to communicate with. The selected Content Engines
must also be authorized to store the requested content (the hosted domain). Thus,
the job of the routing subsystem is to choose the most suitable Content Engines
to handle a particular client request.
1-2
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 1 Understanding CDNs
Mechanics of Content Routing
The following sections explain how content is routed on a Cisco Internet CDN and
contain information on the following topics:

• End Users Requesting Content, page 1-3

• Routing End User Requests, page 1-3

End Users Requesting Content
When end users attempt to access content on your CDN hosted domain, their
client machines communicate with a local domain name system (DNS) proxy.

If the proxy does not have information on how to properly route the hosted
domain, it communicates through normal DNS mechanisms with one of the
Content Routers that make up the CDN, which begins the routing process.

Routing End User Requests
This section describes how end user requests are processed by the CDN. See the
numbered steps in Figure 1-1 as you read.

Content routing happens as part of the DNS lookup that occurs when a client
machine requests content from a web page by clicking a URL (1). If the requesting
client does not know the IP address associated with a particular DNS name (a
hosted domain), it communicates with a DNS proxy (2), which either knows how
to route the client request to a Content Engine (because of prior communication
with one of the Content Routers) or does not know how to route the request. If it
does not know how to route the request, it sends iterative name server (NS)
requests to each authoritative server, eventually reaching (3) one of the Content
Routers, which are the authoritative DNS servers for the hosted domain.

In response, the Content Router consults its proxy tables to find the preferred
Content Engines that can serve the content from among those Content Engines
that are authorized to serve content for the requested hosted domain. After the
Content Router selects suitable Content Engines, it returns NS records (4) for the
authorized devices.

Next, the DNS proxy sends an NS request to one of the Content Engines named
by the Content Router (5), typically the first one. The Content Engine responds
with its own A-record.
1-3
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 1 Understanding CDNs
Mechanics of Content Routing
Next, the DNS proxy passes (6) the Content Engine A-record, which contain the
Content Engine IP address, to the client.

Finally, the client makes its content request directly to the Content Engine (7)
identified in the A-record, and the Content Engine serves the content.

Figure 1-1 Cisco Internet CDN Routing

Choosing Content Engines to Serve End User Requests

The Content Router chooses Content Engines that are suitable for the client
request from its proxy tables—automatically maintained lists that contain
information about the proximity of Content Engines to particular DNS proxies.

71
07

6

1

2

3

4
5

6

7

CDN location A

CE1-A CE1-C
CE1-B

CE2-A CE2-C
CE2-B

CDN location C
CDN location B

http://www.cp1.sp.com/path/picture.gif

Authoritative DNS for
sp.comDNS Proxy

Content Routers are
Authoritative DNS for

cp1.sp.com

A
B

C

1-4
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 1 Understanding CDNs
Distributing Content
Content routing decisions are based on DNS proximity of the client's DNS server
to Content Engines on the network that can serve the requested content. DNS
proximity is measured by Round Trip Time (RTT) probes.

The Content Router returns information about the Content Engines it has selected
from its routing tables to the DNS proxy in the form of NS records.

Each record identifies a Content Engine that can cache the desired content. The
Content Router also returns Address (“glue”) records for the Content Engines so
that the DNS proxy knows the IP addresses of the Content Engines.

Several NS records are sent in the reply. The number of records returned and the
length of time that they can be used by the proxy (the Time To Live, or TTL value)
are controlled by the Content Router. The Content Router adjusts these values
depending on how confident it is that its choices are suitable. For example, if the
Content Router is certain that particular Content Engines are appropriate for the
client, then just two or three name server records are provided to the DNS proxy,
with relatively long TTL values. If, however, the Content Router is uncertain
about which Content Engines can best provide the requested content, then up to
eight name server records are provided to the DNS proxy, with relatively short
TTL values.

Distributing Content
In addition to understanding how content is routed between CDN devices, you
must also understand what type of content is placed on the CDN to begin with,
and how it is placed there. The following sections explain how content
distribution from your origin server to the CDN typically occurs and contain
information on the following topics:

• Proxy Cached and Pre-Positioned Content, page 1-6

• When to Pre-Position and When to Proxy Cache, page 1-6

• About Hosted Domains, page 1-7

• About the Manifest File, page 1-8

• Supported Content Types, page 1-10
1-5
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 1 Understanding CDNs
Distributing Content
Proxy Cached and Pre-Positioned Content
The Cisco Internet CDN distributes content in two ways:

• Proxy caching—Also referred to as “on-demand” caching. Using this method
of content distribution, content is identified as belonging to the CDN by its
domain name, which points to a CDN hosted domain. When content is
requested by users, it is fetched directly from the origin server by each of the
Content Engines in your hosted domain using reverse proxy caching. The
content is stored on the Content Engines that belong to a hosted domain.

After it is retrieved from the origin server, the cached content is periodically
refreshed as indicated by an expires attribute associated with the content
item.

Subsequent requests for the content are retrieved from the Content Engine
cache, assuming the TTL of the object has not expired.

• Pre-positioning (for video-on-demand streamed content, live streamed
content, and content served using HTTP)—content is named in an
XML-format manifest file, which is read by the CDN software at an interval
set using the Content Distribution Manager graphical user interface. Content
named in the manifest file is then “fetched” from the origin server, with the
exception of live content, and placed on the Content Engines belonging to a
hosted domain. Each pre-positioned content item can specify its own start and
end time, during which it will be served to users.

When to Pre-Position and When to Proxy Cache
The CDN software allows content providers to pre-position and cache large
amounts of content. In theory, an entire web site could be placed on a Internet
CDN hosted domain. However, depending on the availability and cost of network
bandwidth versus storage and CPU time on your service provider’s Content
Engines, this may or may not be prudent. For example, while it is possible to
cache a series of small JPG files from your web site on your CDN hosted domain,
it may not be necessary to do so.
1-6
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 1 Understanding CDNs
Distributing Content
Although the needs of each content provider are different, consider certain
guidelines when deciding whether to proxy-cache or pre-position a particular
piece of content on your CDN:

• All streamed content must be pre-positioned using the manifest file.

• Large content items should be proxy-cached to provide good quality service
to the first customer who requests the content item.

• Content that must always be available, even when it is not being accessed very
often, should be pre-positioned. The content expiration tags in the manifest
allow vital content to avoid being purged even when it has not been accessed
in a while. See the “Manifest File Structure and Syntax” section on page 3-16
for instructions on setting the expiration time for content items.

• Content that should be generally available to users and may be frequently
requested may be proxy-cached.

• Content for which you want to control the availability by specifying start- and
stop serving times should be pre-positioned. See the “Manifest File Structure
and Syntax” section on page 3-16 for instructions on setting start and stop
times for CDN content items.

• Single files larger than 500 MB cannot be proxy-cached. This ceiling can be
raised by your service provider. If you will be proxy-caching very large files,
first coordinate with your service provider on the maximum allowable file
size.

About Hosted Domains
As a content provider, your web site content will be stored on one or more
subdomains or “hosted domains,” of your web site.

Each hosted domain is created by the administrator for the authoritative DNS
servers for your CDN. Subdomains are created as branches in the DNS tree for the
web site you are hosting. For example, the following might be hosted domains for
some popular web sites:

http://www.videos.cnn.com

http://www.sports.bbc.co.uk/

Each hosted domain contains a set of related content that you want to treat as a
unit for the purposes of caching. That content is stored in the caches of Content
Engines associated with the hosted domain.
1-7
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 1 Understanding CDNs
Distributing Content
For each hosted domain, you must define an origin server, which is the fully
qualified domain name (FQDN) of the web server where the actual content for
that hosted domain is stored.

See the “About Creating the CDN Subdomain” section on page 2-2 for more
information on configuring DNS for CDN deployment.

If live, video-on-demand, or pre-positioned content will be distributed from the
hosted domain, a manifest file is also required to identify which live and
video-on-demand content on the origin server will be pre-positioned on a hosted
domain.

Note The CDN software has a configureable limit on the number of content
items deployed across all hosted domains. If you will be deploying a very
large number of content items on your hosted domain, in excess of
400,000, coordinate with your service provider ahead of time to ensure
that the ceiling is adjusted.

See the “Pre-Positioning Web Site Content” section on page 3-11 for more
information on creating and validating manifest file content.

From the perspective of your end users, a hosted domain is identified by its DNS
name. The end user accesses content either by entering a URL in a web browser
or by clicking a link on a web page. When the user requests content, the DNS
server returns the IP address of a cache that is storing the requested content and
the user receives the content.

The Cisco Internet CDN Software routing system provides a way of translating a
subdomain name into the IP address of a cache that stores content and is a good
choice for the client making the request. The client can then send Hypertext
Transfer Protocol (HTTP) requests directly to the selected cache. If the cache does
not already contain the cached content, it obtains the content from the origin
server for the requested hosted domain.

About the Manifest File
The manifest file is an XML-based reference file that you, the content provider,
will use to list content that is to be served for a hosted domain. Each hosted
domain has only one manifest file.
1-8
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 1 Understanding CDNs
Distributing Content
Manifest files are positioned on a web server at a location that you choose. The
URL of this location is provided to the Internet CDN administrator when the
hosted domain is created, and a link is created between the hosted domain and
manifest file using the CDM graphical user interface. The CDN software fetches
the manifest first from the origin server using this URL.

After it has been uploaded to the CDN, the manifest is copied out to each Content
Engine assigned to the hosted domain according to a set distribution hierarchy.

Manifest files solve the following problems:

• They allow administrators to fetch content from multiple origin servers and
fail-over to backup origin servers and/or the default origin server specified on
the Hosted Domain Configuration page of the Content Distribution Manager
user interface, thus providing for a degree of fault tolerance.

• They allow the system to import items via HTTP, while serving them using
another streaming protocol based on a designated server-type to play the
requested file.

• They allow content retrieval and distribution to be controlled by setting
specific dates and times when it is to be available or not available.

• They allow the use of wildcards (“*”) when specifying live content. This
permits you to broadcast new live streams without having to update the
manifest with a new item description.

Note Any number of origin servers can be defined in a manifest file. The number of
content items, however, is limited to 10,000.

Administrators must be very careful to not make syntax mistakes when creating
manifests. Like HTML, even a small mistake will cause errors when the file is
imported and parsed. For this reason, Cisco provides a manifest file syntax
validator. See the “Validating Manifest File Syntax” section on page 3-39 for
directions on obtaining and using this utility to check your manifest file syntax.

For more information on the role of the content provider in deploying web site
content on a CDN, see Chapter 2, “Understanding the Content Provider Role.”
1-9
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 1 Understanding CDNs
Distributing Content
Supported Content Types
Cisco Internet CDN Software supports delivery of the following file formats:

• HTTP Content Types

• Apple QuickTime Content Types

• Microsoft Windows Media Content Types

• RealNetworks RealServer Content Types

HTTP Content Types

The Cisco CDN Software supports any standard content type served by an HTTP
server, including:

• Graphics Interchange Format (GIF)

• Hypertext Markup Language (HTML, HTM)

• Joint Photographic Experts Group (JPG)

• Motion Picture Experts Group (MPEG, MPG)

• MPEG Audio Layer 3 (MP3)

• Portable Document Format (PDF)

Apple QuickTime Content Types

• Audio Visual Interleaved (AVI)

• QuickTime (QT)

• QuickTime Movie (MOV)
1-10
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 1 Understanding CDNs
Distributing Content
Microsoft Windows Media Content Types

• Microsoft Windows Media Player (ASF and ASX)

• Microsoft Windows Media Audio (WMA)

• Microsoft Windows Media Video (WMV)

• Microsoft PowerPoint (PPT)

• Microsoft Word (DOC)

RealNetworks RealServer Content Types

• RealAudio (RA)

• RealMedia (RM)

• RealPix (RP)

• RealText (RT)

• RealVideo (RV)

RealNetworks synchronized container format (SMIL)
1-11
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 1 Understanding CDNs
Distributing Content
1-12
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Cisco Internet CDN
78-13749-01
C H A P T E R 2

Understanding the Content Provider
Role

This chapter and the next, Chapter 3, “Deploying Web Site Content on an Internet
CDN,” describe the following processes, which you must complete to prepare
your web site for a CDN deployment:

• About Creating the CDN Subdomain, page 2-2

• About Configuring Origin Servers for Live Streaming, page 2-4

• About Placing Content on Your CDN, page 2-5

• About Controlling Content Freshness after Deployment, page 2-7

As a content provider, your organization delivers high value, high-bandwidth
content to your customers or staff over an intranet or the public Internet. You may
be a corporation that wants to offer live, streamed broadcasts of its CEO’s
quarterly earnings announcements to employees at their desktops, or you may be
a public university that needs to deliver classroom content to distance learners in
remote locations.

Whatever your business, you need a reliable, fast, and efficient means to deliver
high-bandwidth web content to end users. To do this, you have likely turned to an
outside “service provider” organization to help you manage your content
distribution. That service provider has chosen the Cisco Internet Content Delivery
Network (CDN) Software to manage the distribution of content to your users.

This chapter is designed to help you understand more fully the delineation of your
responsibilities in deploying your CDN solution, as well as those of your service
provider.
2-1
 Software Content Provider Guide

Chapter 2 Understanding the Content Provider Role
About Creating the CDN Subdomain
With the necessary technology infrastructure and the expertise on-staff to
maintain and fine-tune the Cisco CDN hardware and software, your service
provider handles day to day maintenance of your CDN.

However, some of the work of deploying your web site content on a CDN rests
with you, the content provider. This work involves:

1. Coordinating with your service provider to create the DNS subdomains of
your domain on which CDN content will reside. This includes assigning
authoritative DNS control of your CDN subdomains to the content routers
that will direct user requests to Content Engines.

2. Configuring origin content servers for live streaming. (Optional.)

3. Identifying content on your web site that needs to be pre-positioned or
on-demand cached on your CDN hosted domain.

4. Changing the URLs of content you want cached to point to your CDN hosted
domain.

5. Generating a manifest file that identifies the web site content you wish to
pre-position on your CDN.

6. Notifying your service provider of the name and location of a manifest file
for deployment on your designated hosted domain.

7. Monitoring content freshness after deployment.

About Creating the CDN Subdomain
With the help of the Cisco Internet CDN solution, selected content from your web
site is mirrored on one or more CDN subdomains referred to as hosted domains.
Each of these hosted domains is a subdomain in the DNS tree where clients make
DNS resolution requests to CDN-controlled Content Routers.

Hosted domains use a subdomain name that is related to your web site’s domain
name. For example, if your web site DNS address is:

http://www.cisco.com

Users might access a copy of your web site from the following accelerated CDN
hosted domain:

http://www.cdn.cisco.com
2-2
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 2 Understanding the Content Provider Role
About Creating the CDN Subdomain
Each hosted domain contains a collection of cached or pre-positioned
video-on-demand content that can be served from Content Engines deployed
throughout your CDN. Your organization may be deploying one or more
CDN-enhanced hosted domains—each corresponding to a different DNS
subdomain—at once.

The following section explains how to modify a DNS server to create a CDN
subdomain and explains the various options available to you, as a content
provider, in deploying a CDN subdomain for your web page.

Modifying DNS Configuration to Create a CDN Subdomain
CDN hosted domains are created when you modify your web site’s DNS tree to
create one or more new subdomains to host CDN content. Each subdomain must
be delegated to the Content Routers responsible for managing user requests on the
CDN.

Refer to the following guidelines when creating a subdomain for use with the
Cisco Internet CDN Software:

1. The hosted domain name must be a valid subdomain name. For example:

www.cdn.cisco.com

a. The first part of the domain name (www in this example) is open, and can
be defined by you when you create the hosted domain name.

b. The remaining subdomain (the three segments after the first dot) must
correspond to entries on your DNS server to provide a functional
mapping for the CDN Content Routers that ultimately provide the
appropriate DNS records.

2. The DNS server on which the subdomain is created must be given the right to
act as the authoritative DNS server for the subdomain you specify.

3. The hosted domain name cannot contain underscore (_) characters.

Refer to the Cisco Internet CDN Software User’s Guide or the documentation for
your DNS server software for more information on creating subdomains or
appending name server (NS) records.
2-3
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 2 Understanding the Content Provider Role
About Configuring Origin Servers for Live Streaming
Creating the Hosted Domain
After you have created the necessary DNS subdomains that will store your CDN
content, your service provider can create the actual hosted domain using the CDN
administrative software.

Using the CDN administrative interface, your service provider creates the hosted
domain, assigns it a name, and associates it with the new DNS subdomain using
the Content Distribution Manager graphical user interface.

Next, one or more Content Engines are assigned to the hosted domain using the
Content Distribution Manager graphical user interface. Content Engines store the
pre-positioned and cached content, then serve it to local users.

If you will be pre-positioning video on demand or live streamed content, your
service provider must also link the hosted domain to a manifest file you have
created.

See the “Pre-Positioning Web Site Content” section on page 3-11 for instructions
on creating a manifest file that identifies the web site content you want to
pre-position and the “On-Demand Caching Web Site Content” section on
page 3-4 for instructions on modifying content URLs to cache web site content on
your CDN hosted domain.

About Configuring Origin Servers for Live Streaming
If you will be hosting live content on your CDN, you may need to modify the
configuration of your live content servers. Currently, the Cisco Internet CDN
Software supports live broadcasts from the following platforms:

• Real Networks’ RealServer Version 8.0 or later

• Microsoft’s Windows Media Services

See the “Configuring Origin Server for Live Streaming” section on page 3-1 for
detailed instructions on modifying your origin servers for live streaming over the
CDN.
2-4
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 2 Understanding the Content Provider Role
About Placing Content on Your CDN
About Placing Content on Your CDN
Your web site contains a variety of content types, from static image files in GIF
or JPG format, to external documents, maybe in Adobe PDF format, to live
content streamed by RealServer or Windows Media Services.

As part of the process of preparing your website for deployment on a CDN, you
must decide which of this content you want to have accessed from your CDN and
which will continue to be accessed and served from your web servers.

There are two options for deploying content. These options are not mutually
exclusive; both can be used to deploy content on a hosted domain:

• Caching—Modify your web site HTML for specific content items so that the
HREF tags point to your CDN hosted domain instead of your web site origin
servers. This results in the content item being cached on the Content Engines
assigned to your hosted domain. This is appropriate for most web content
served by HTTP, but cannot be used with live and on-demand content.

• Pre-positioning—Generate an XML-format manifest file that lists all the
content you will be deploying on your CDN, then provide your service
provider with the location of this XML file. Pre-positioning is appropriate for
use with on-demand and live streams as well as content served using HTTP.

Each of these options is explained, in detail, in the sections that follow.

About Caching Content
After your hosted domain has been created and content has been pre-positioned
on it, you are ready to change your web site’s content URLs to point to the new
hosted domain address supplied by your service provider.

See the “Caching Content on Your CDN” section on page 3-4 for instructions on
modifying your web site’s content URLs to point to your CDN.

About Pre-Positioning Content
To pre-position content, you must:

• Identify the content you want to place on your CDN.

• Create the manifest file.
2-5
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 2 Understanding the Content Provider Role
About Placing Content on Your CDN
About Identifying Content to Place on Your CDN

As the content provider, you are responsible for compiling a list of the content you
want to deploy on the CDN and providing that list to your CDN administrator in
the form of an XML-format manifest file.

The easiest way to generate a list of content on your web site is to create an
automated script that “crawls” your entire web site (or as much of it as you want
to be crawled) and identifies content that needs to be pre-positioned on the CDN
based on rules you provide.

Cisco provides a free PERL script, Spider, you can use as a template for the
creation of your spider script. When run, Spider outputs a database of web site
content, based on rules you supply in a separate configuration file, that can be
used to build a functioning manifest file in a fraction of the time it would take to
author a manifest file by hand.

See the “Pre-Positioning Web Site Content” section on page 3-11 as well as
“Listing Web Site Content Using the Spider Script” section on page A-3 for
instructions on identifying content to place on your CDN.

About Creating the Manifest File

The easiest way to generate a manifest file that lists the content you want to
pre-position is to create an automated script that builds the manifest, based on the
data generated by the Spider script.

Cisco provides a free PERL script, Manifest, that you can use as a template for
your own script. When run, Manifest outputs a valid, CDN manifest file based on
the database of web site content generated by the Spider script and content rules
that you supply in a separate configuration file.

See the “About the Manifest File” section on page 1-8 for more information on
the manifest file. Then see the “Creating a Manifest File” section on page 3-12 to
create your manifest file. Detailed information on the Manifest script can be found
in the “Selecting Live and Pre-position Content Using the Manifest Script”
section on page A-7.

After you have generated your manifest file, you will inform your service provider
about it, and supply them with its location on your origin server. Your service
provider will link the manifest file to the hosted domain created for your content,
after which the process of pre-positioning content on the CDN can begin.
2-6
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 2 Understanding the Content Provider Role
About Placing Content on Your CDN
About Controlling Content Freshness after Deployment
One of the primary concerns you will have once you have deployed your content
on a Cisco Internet CDN is controlling content freshness: making sure that users
are accessing up-to-date content from CDN caches, and making sure that updated
material is quickly disseminated throughout the CDN.

Refreshing Manifest File Content

Because you create and maintain the manifest file and host it on your web server,
you can determine when any content item is refreshed.

The frequency with which individual content items on the CDN are refreshed is
controlled using the both the expires and ttl (Time to Live) attributes in the
manifest file.

• expires—designates a time (in yyyy-mm-dd hh:mm:ss format) after which
the named content item will no longer be served from the CDN. The time
specified is always as of the time zone specified by the timezone attribute of
the <options> tag. If no time zone is specified, the default (GMT) is used.

• ttl—identifies the frequency, in minutes, with which the origin server is
polled to see if a content item has changed, judging by the content item
timestamp or file size. The default ttl value, which is controlled from the
Content Distribution Manager administrative interface is 30 minutes.

Note The default ttl time can be modified by your service provider using the
Content Distribution Manager administrative interface. Please consult
with your service provider if you would like to change the default ttl
value.

As content is changed and updated on your origin server, it will also be updated
on the CDN at an interval represented by the ttl attribute. Keep in mind, however,
that the ttl attribute represents the minimum time in which the content will be
updated. Depending on the volume of content that must be refreshed at any given
time and the file size of the piece of content that must be refreshed, it could take
longer than the interval specified by the ttl attribute to refresh any one piece of
content.
2-7
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 2 Understanding the Content Provider Role
About Placing Content on Your CDN
See the “Manifest File Structure and Syntax” section on page 3-16 for
information on using the expires and ttl attributes.

Refreshing the Manifest File

While the expires and ttl attributes are the most common methods for controlling
the freshness of individual content items that are named in the manifest file and
that have been updated, if you will be making a large number of changes to your
manifest file, you may want to update, or re-fetch, the entire manifest.

Fetching is initiated from the Content Distribution Manager administrative
interface. Coordinate with the operations person at your service provider
organization to re-fetch the manifest for your hosted domain(s).

Content that is only partially fetched from your origin server is not added to the
CDN and will not be served from you hosted domain. See the “Verifying Content
Freshness”section next for information on how content freshness and replication
status is monitored by your service provider.

Verifying Content Freshness

The Cisco Internet CDN software provides a wealth of information to CDN
administrators on the status of content replication and freshness through a variety
of logging mechanisms.

Log files allow CDN operations personnel and administrators to monitor the
status of all devices on the CDN as well as the status of content replication and
content freshness on hosted domains.

From the Content Distribution Manager administrative interface, your service
provider can verify whether content replication to a hosted domain was
successful.

To verify if a piece of content has been refreshed, your service provider will look
at manifest log files that reside on each Content Engine belonging to your hosted
domain. Within that log file are entries pertaining to each content item on the
hosted domain. Your operations person will want to look for log entries pertaining
to the particular content file name and verify that it was successfully imported to
or refreshed on the hosted domain.

In the event that errors were encountered during replication, either because the
disk space allocation for the hosted domain content was exceeded, or because
replication failed for a particular content item, your service provider has a number
2-8
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 2 Understanding the Content Provider Role
About Placing Content on Your CDN
of tools available to them to correct the problem, including allocating more disk
space for the hosted domain and re-fetching the manifest file. In the event that a
corrupt content item is causing problems, your service provider may ask you to
remove references to that content from your website or manifest file. See the
“Obsoleting Bad Content” section next for more information on removing bad
content from your hosted domain.

Because access to the CDN log files requires direct access to CDN devices, much
of this logging is transparent to you as a content provider. Coordinate with your
service provider regarding content updates.

Obsoleting Bad Content

If you have accidentally positioned a bad content item on your hosted domain with
an expiration date in the distant future, you can remove that content. Do so by
revising your content URL or your manifest file to omit the reference to the
damaged content item. If you need to update your manifest file, remember to ask
your service provider to re-fetch the manifest file. The bad content item will no
longer be accessible from the CDN because it is not named in the manifest and
the disk space allocated by the obsoleted content item will be reallocated for valid
content.

See the “Creating a Manifest File” section on page 3-12 for instructions on
creating your manifest file.
2-9
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 2 Understanding the Content Provider Role
About Placing Content on Your CDN
2-10
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Cisco Internet CDN
78-13749-01
C H A P T E R 3

Deploying Web Site Content on an
Internet CDN

This chapter contains information on the following topics:

• Configuring Origin Server for Live Streaming, page 3-1

• On-Demand Caching Web Site Content, page 3-4

• Pre-Positioning Web Site Content, page 3-11

Configuring Origin Server for Live Streaming
The Cisco Internet CDN Software supports media associated with a wide variety
of content servers, including RealServer, Windows Media Server, and Apple
QuickTime Server. In addition, the Internet CDN Software supports
video-on-demand (VOD) via HTTP.

Both TCP and UDP Unicast streams are supported, however multicast streaming
is not supported.

Live streaming is supported when using either the RealServer Version 8.0 or
higher, as well as Windows Media Server platforms. Live streaming with
QuickTime Server is not supported.

The following sections will help you configure your origin content servers for live
streaming:

• Configuring RealServer for Live Streaming, page 3-2

• Configuring WMT Publisher for Live Streaming, page 3-3
3-1
 Software Content Provider Guide

Chapter 3 Deploying Web Site Content on an Internet CDN
Configuring Origin Server for Live Streaming
Configuring RealServer for Live Streaming
Cisco Internet CDN Software supports the splitting of live streams, which enables
live broadcasts to be forwarded from an origin RealServer (referred to as a
transmitter) to one or more receiver RealServers.

Note Cisco Internet CDN Software only supports RealServer Version 8.0 and
higher.

Splitting makes it possible to replicate streams to locations close to requesting
clients, which improves the response time for client requests and the quality of the
streamed broadcast and makes it possible to serve a larger number of clients.

Before taking advantage of the live splitting feature, make sure that the following
conditions have been met:

• You must have RealServer Version 8.0 or higher running on your origin
server.

• A pull-split source must be defined using the RealSystem Administrator
utility.

Refer to Chapter 12, “Splitting Live Presentations,” in the RealServer
Administration Guide for instructions on setting live stream security as well
as configuring your transmitting server for pull splitting using the
RealSystem Administrator utility.

The RealServer Administration Guide is available online at the following web
address:

http://service.real.com/help/library/guides/server8/realsrvr.htm

• If a pull-split listen port other than the default (2030) will be used, the
manifest file for the hosted domain should identify the port to be used along
with the host name under the server definition.

For example, if port 2070 were to be used, the manifest file would read:

<server name=”transmitting-server”>
<host name= ”10.89.1.1:2070”/>
</server>

If no port is defined after the host name, the default port is used as the listen
port.
3-2
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Configuring Origin Server for Live Streaming
See the “Manifest File Structure and Syntax” section on page 3-16 for
instructions on modifying the <host /> attribute in your manifest file to
include the nondefault listen port on the transmitting RealServer.

• The Security Type parameter is set to None.

Configuring WMT Publisher for Live Streaming
To serve live content using Windows Media Services over your CDN, make sure
the following conditions have been met:

• Windows Media Services are installed and running on your origin server.

If you are running Microsoft Windows® 2000 Server, Windows Media
Services is included. Otherwise, download Windows Media Services from the
Windows Media Web site at the following address and then install it:

http://www.microsoft.com/windows/windowsmedia/default.asp

Directions for installing Windows Media Services can be found at:

http://www.microsoft.com/windows/windowsmedia/serve/wms_install.asp

Note When installing Windows Media Services, make sure you are logged
on as the administrator.

• Your firewall has been configured to allow traffic to and from the Windows
Media servers and clients.

Generally, content streamed using TCP Unicast uses TCP port 1755 for traffic
in to and out from the Windows Media servers, while content streamed using
UDP Unicast uses TCP Port 1755 for traffic in to the Windows Media servers
and a UDP port between 1024 and 5000 for traffic out from the Windows
Media servers.

However, different configurations exist depending on your own network and
firewall configuration. Refer to the Microsoft documentation on “General
Protocol and Firewall Information” for Windows Media Services online at:

http://www.microsoft.com/windows/windowsmedia/serve/firewall.asp
3-3
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
On-Demand Caching Web Site Content
• A publishing point for live streamed content has been created. With live
content, the Windows Media Encoder is used to encode directly from the
source (that is, a live video feed) to a publishing point. Each requesting client
receives a separate live stream.

Refer to the Microsoft documentation on configuring Windows Media
Services for live unicasting online at:

http://www.microsoft.com/Windows/windowsmedia/serve/basics_wm4.asp

On-Demand Caching Web Site Content
This section explains the steps necessary to publish content on your CDN and to
create functioning links to CDN content on your web page. This section contains
information on the following topics:

• URLs for Content Served Using Web Server, page 3-7

• URLs for Content Served Using RealServer, page 3-7

• URLs for Content Served Using Quicktime Server, page 3-8

• URLs for Content Served Using Windows Media Services, page 3-9

For all example URLs, refer to the sample manifest file provided in Example 3-2
on page 3-38.

Caching Content on Your CDN
To place content on your CDN, you must alter your web site content URLs to
point to your CDN hosted domain.

For example, if your web site contains the following content URL:

http://www.cisco.com/images/logo.gif

You can place the content named on your CDN hosted domain,
http://www.elearning.cisco.com by modifying the original URL to read:

http://www.elearning.cisco.com/images/logo.gif

When a user visiting your web site requests the page on which the logo.gif is
located, that image is retrieved from the nearest CDN cache. If the image is not
already cached on a Content Engine that is assigned to the specific hosted domain,
3-4
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
On-Demand Caching Web Site Content
it is retrieved from the origin server and placed in the cache of Content Engines
belonging to the hosted domain. Subsequent requests for the image are retrieved
from the cache rather than the origin server.

Creating URLs that Link to CDN Content
All URLs pointing to CDN content use the following structure:

http://hosted_domain_name/cdn-url

Optionally, CDN URLs can contain a CDN media tag that force a media
play server designation (for example, RealServer, Windows Media Server,
QuickTime Server) for the content item using the following format:

http://hosted_domain_name/cdn_media_tag/cdn-url

Links rely on playserver mappings for each type of content that is hosted (that is,
PDF, JPG, MPG, WMV, AVI, RM). Play server mappings can be found in the
manifest file or the PlayServerTable and are consulted by the CDN software using
the following hierarchy:

• A playserver designation embedded in the actual content URL is checked
first.

• The playserver attribute for the <item /> tag corresponding to the piece of
content is checked second.

• The playserver attribute for the <item-group /> tag corresponding to the piece
of content is checked third.

• If defined, the playserver attribute for the hosted domain in
<playServerTable> </playServerTable> in the manifest is checked fourth,
according to the following order:

– <content-type /> tags are checked first in <playServerTable>

– <extension> tags are checked second in <playServerTable>

Though removing CDN media tags from URLs makes the job of modifying web
site content for deployment on a CDN much easier, it also requires increased
attention to playserver mappings in the manifest file to ensure that all file types
being served have been associated with one of the supported playserver types.

The elements of these URLs are described in Table 3-1. Be aware that all URL
information is case sensitive—ignoring case sensitivity in your published web
pages will result in the CDN being unable to retrieve the requested content.
3-5
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
On-Demand Caching Web Site Content
Table 3-1 Components of a CDN URL

URL Component Description

hosted_domain_name Fourth-level domain name assigned to your hosted
domain or the alias assigned to that hosted domain. See
the “About Creating the CDN Subdomain” section on
page 2-2 for more information on creating CDN
subdomains.

cdn_media_tag Optional. The media server designated to handle the
content item to which you are linking.

If no cdn media tag is supplied, the playserver attributes
in the manifest file are checked in order of preference as
described on page 3-5.

CDN-media is used as the default playserver
designation and causes the request to be resolved using
a playserver mapping in the manifest file. See Table 3-3
for a list of media formats, organized by extension.

The following cdn media tags are supported in CDN
URLs:

• cdn-media

• cdn-real

• cdn-qtss

• cdn-http

• cdn-wmt

cdn-url Relative location of the content item on the CDN device.
This value is supplied by the cdn-url or src attribute in
the <item> tag in the manifest file for each piece of
content.

Wildcard characters are accepted in the cdn-url attribute
only when you link to live content. Actual content URLs
must of course point to the actual content item.
3-6
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
On-Demand Caching Web Site Content
URLs for Content Served Using Web Server

The web server can be used to serve content that cannot be served using other
content servers (RealServer, WMT, or QuickTime). What follows are two
examples of URLs for content that will be served using the web server:

http://www.cisco.meetings.com/agendas/q4results.pdf

http://www.cisco.meetings.com/cdn-http/agendas/q4results.pdf

• In the first example, no cdn media tag is applied in the URL, so the request
will resolve to the web server based on a mapping of the PDF extension in the
<playServerTable> area of the manifest file.

• In the second example, a cdn media tag, cdn-http, is supplied in the URL
forcing the CDN software to stream the content file using the designated
server.

URLs for Content Served Using RealServer

RealServer Version 8.0 or higher can be used to serve a variety of RealNetworks
content types including RealAudio (RA), RealMedia (RM), and SMIL format
files, as well as live presentations.

URLs for On-Demand Content Served Using RealServer

What follows are three examples of valid URLs for on-demand (not live) content
served from the CDN using RealServer, based on the sample manifest file in
Example 3-2 on page 3-38:

http://www.cisco.meetings.com/present/q4presentation.rm

http://www.cisco.meetings.com/cdn-real/present/q4presentation.rm

http://www.cisco.meetings.com/cdn-media/present/q4presentation.rm

• In the first example, no CDN media tag is applied in the URL, so the request
will resolve to the content server based on a mapping of the RM extension in
the <playServerTable> area of the manifest file.

• In the second example, a CDN media tag, cdn-real, is supplied in the URL
forcing the CDN software to stream the content file using the designated
server.
3-7
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
On-Demand Caching Web Site Content
• In the third example, the default CDN media tag, cdn-media, is supplied,
causing the file to be served according to the <extension> mapping for RM in
the <playServerTable> area of the manifest file.

URLs for Live Content Served Using RealServer

Live presentations can be resolved just like any other content handled by
RealServer, provided you know the name of the live content in advance. For
example, your manifest file might name the following item:

<!--live content item-->
<item src="/encoder/q4live.rm" cdn-url="/live/q4presentation.rm"
type=”live”/>

In this case, your published URL linking to this file might look like this:

http://www.cisco.meetings.com/present/live/q4presentation.rm

However, because many live presentations are not named in advance of when they
air, the Cisco CDN software allows you to wildcard references to live
presentations in the manifest file in addition to specifying file names in advance.

Wildcarding allows the CDN software to properly map all live RealNetworks
streams to RealServer, regardless of name, as long as they carry the proper file
extension (for example, RM).

See the sample manifest file provided in Example 3-2 on page 3-38 to view the
wildcarded mapping for RealServer live content.

If you will be wildcarding references to live presentations in your manifest file,
you need to supply the cdn-live tag to any URLs for live content. For example:

http://www.cisco.meetings.com/cdn-live/present/live/q4presentation.rm

The cdn-live tag ensures that a connection is established to the RealServer
encoder mountpoint based on the <extension> mapping in the <playServerTable>,
even though no exact filename mapping is possible.

URLs for Content Served Using Quicktime Server

QuickTime server can be used to serve a variety of content types including MOV,
QT, MP4, and AVI.
3-8
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
On-Demand Caching Web Site Content
Note We recommend mapping AVI files to Windows Media as opposed to
QuickTime, due to the easy availability of the Windows Media Player on
end user desktops.

What follows are three examples of URLs for QuickTime content that will be
served using QuickTime Server:

http://www.cisco.meetings.com/facilities/newHQ.mov

http://www.cisco.meetings.com/cdn-qtss/facilities/newHQ.mov

http://www.cisco.meetings.com/cdn-media/facilities/newHQ.mov

• In the first example, no CDN media tag is applied in the URL, so the request
will resolve to the content server based on a mapping of the MOV extension
in the <playServerTable> area of the manifest file.

• In the second example, a CDN media tag, cdn-qtss, is supplied in the URL
forcing the CDN software to stream the content file using the designated
server.

• In the third example, the default CDN media tag, cdn-media, is supplied,
causing the file to be served according to the <extension> mapping for MOV
in the <playServerTable> area of the manifest file.

URLs for Content Served Using Windows Media Services

Microsoft’s Windows Media Services can be used to serve a variety of Windows
media content types including Windows Media Audio (WMA), Windows Media
Video (WMV), and Active Server (ASF) format files, as well as live presentations.

URLs for On-Demand Content Served Using Windows Media Services

What follows are three examples of valid URLs for on-demand (not live) content
served from the CDN using Windows Media Services, based on the sample
manifest file in Example 3-2 on page 3-38:

http://www.cisco.meetings.com/marketing/prodroadmap.asf

http://www.cisco.meetings.com/cdn-wmt/marketing/prodroadmap.asf

http://www.cisco.meetings.com/cdn-media/marketing/prodroadmap.asf
3-9
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
On-Demand Caching Web Site Content
• In the first example, no CDN media tag is applied in the URL, so the request
will resolve to Windows Media Services based on a mapping of the ASF
extension in the <playServerTable> area of the manifest file.

• In the second example, a CDN media tag, cdn-wmt, is supplied in the URL
forcing the CDN software to stream the content file using the designated
server.

• In the third example, the default CDN media tag, cdn-media, is supplied,
causing the file to be served according to the <extension> mapping for ASF
in the <playServerTable> area of the manifest file.

URLs for Live Content Served Using Windows Media Services

Live presentations can be resolved just like any other content handled by
Windows Media Services, provided you know the name of the live content in
advance. For example, your manifest file might name the following item:

<!--live content item-->
<item src="/encoder/roadmap.asf" cdn-url="/live/prodroadmap.asf"
type=”live”/>

In this case, your published URL linking to this file might look like this:

http://www.cisco.meetings.com/marketing/live/prodroadmap.asf

However, because many live presentations are not named in advance of when they
air, the Cisco CDN software allows you to wildcard references to live
presentations in the manifest file in addition to specifying file names in advance.

Wildcarding allows the CDN software to properly map all live Windows Media
streams to Windows Media Services, regardless of name, as long as they carry the
proper file extension (for example, ASF).

See the sample manifest file provided in Example 3-2 on page 3-38 to view the
wildcarded mapping (for RealServer live content in the example).

If you will be wildcarding references to live presentations in your manifest file,
you need to supply the cdn-live tag to any URLs for live content. For example:

http://www.cisco.meetings.com/cdn-live/marketing/live/prodroadmap.asf

The cdn-live tag ensures that a connection is established to the Windows Media
Services encoder mountpoint based on the <extension> mapping in the
<playServerTable>, even though no exact filename mapping is possible.
3-10
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
Pre-Positioning Web Site Content
To pre-position content on your CDN, you must create a manifest file that points
to that content. A manifest file might point to content in one location on your web
server, or name content from a number of different web server locations. Before
building a manifest file, however, you first have to know the relative location for
all content items that you will be pre-positioning on the CDN.

After you have a list of all the content on your web site that you will be placing
on your CDN and its relative location on your origin server, you can generate a
manifest file that identifies the content—live or VoD—to the CDN software. See
the “Pre-Positioning Web Site Content” section on page 3-11 for instructions on
generating a manifest file.

Creating a List of Web Site Content
The simplest way to generate a list of web site content is manually. If you have a
small amount of content that you will be pre-positioning, or content that is
centralized in one or two locations on your web server, you may not need to
separately list your web site content before generating a manifest file for it.

If you are pre-positioning only a small, or easily managed amount of content,
proceed to the “Creating a Manifest File” section on page 3-12.

Spider Script

If, however, you will be placing all your website content on a CDN, the easiest
and most efficient way to generate a list of all the content that must be
pre-positioned is to use a spidering tool (called “Spider”) to “crawl” your site. The
Spider script follows any HREF links back to the content they point to, and makes
a record of that content and its location.

For more information on the Spider script, see the “About Placing Content on
Your CDN” section on page 2-5.

For instructions on using the Spider script to generate a list of your web site
content, or modifying the Spider script to suit the needs of your own web servers,
see the “Listing Web Site Content Using the Spider Script” section on page A-3.
3-11
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
Creating a Manifest File
After you have successfully crawled your web site, reviewed the output from your
Spider script, and decided which content you will be pre-positioning, you are
ready to generate a manifest file.

This section contains instructions for generating a manifest file and information
on the following topics:

• Manifest File Limitations, page 3-13

• Manifest File Document Type Definitions, page 3-13

• Manifest File Structure and Syntax, page 3-16

• Validating Manifest File Syntax, page 3-39

• Repairing Manifest File Syntax, page 3-46

The manifest file is an XML-based file that provides powerful features for
representing and manipulating CDN data. Manifest files need to be created for
each of your hosted domains and exist in a one-to-one relationship with the hosted
domain. After reading the manifest file, the CDN software uses its instructions to
replicate content from your web server to Content Engines on the CDN that are
assigned to your hosted domain.

Manifest Script

The easiest and most efficient way to generate your manifest file is to use an
automated script that builds the manifest syntax based on content rules you
specify, and use the list of content items generated by your Spider script.

As with the Spider script, Cisco provides a generic manifest generation script
(“Manifest”) to its CDN customers. Written in PERL, this script can be used to
output an XML-format manifest file that conforms to Cisco CDN standards.

For instructions on locating and using the Manifest script to generate a manifest
file that points to your web site content, see the “Selecting Live and Pre-position
Content Using the Manifest Script” section on page A-7.
3-12
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
Manifest File Limitations

When generating your manifest file, keep in mind the following limitations:

• For versions of the Internet CDN software prior to Version 2.1.1, the manifest
cannot contain more than 10,000 content items.

• The total of size of all the objects named in any single manifest file for a
hosted domain cannot exceed 2 gigabytes. (Live content does not count
toward the hosted domain size.)

Manifest File Document Type Definitions

Example 3-1 provides type definitions for the various elements of an Internet
CDN manifest file. Details on each manifest file element follow.
3-13
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
Example 3-1 Manifest Document Type Definitions (DTDs)

<!-- CdnManifest - DTD for Cisco iCDN 2.0 pre-positioned content manifest. Copyright (c)
2001 by Cisco Systems, Inc., Waltham, Massachusetts -->

<!ENTITY % playServerTable SYSTEM "PlayServerTable.dtd">
%playServerTable;

<!ELEMENT CdnManifest (playServerTable?, options?, server*, (item | item-group)*)>
 <!ELEMENT options EMPTY>
 <!ATTLIST options
 clearlog (true | false) "false"
 rd CDATA #IMPLIED
 prepos-tag CDATA #IMPLIED
 live-tag CDATA #IMPLIED
 notFoundUrl CDATA #IMPLIED
 noRedirectToOrigin (true | false) "false"
 timeZone CDATA #IMPLIED
 manifest-id CDATA #IMPLIED>

 <!ELEMENT host EMPTY>
 <!ATTLIST host
 name CDATA #REQUIRED
 proto (http) "http"
 port CDATA #IMPLIED
 user CDATA #IMPLIED
 password CDATA #IMPLIED>

 <!ELEMENT server (host+)>
 <!ATTLIST server
 name CDATA #REQUIRED>

 <!ELEMENT contains EMPTY>
 <!ATTLIST contains
 cdn-url CDATA #REQUIRED>

 <!ELEMENT item (contains*)>
 <!ATTLIST item
 cdn-url CDATA #IMPLIED
 src CDATA #REQUIRED
 server CDATA #IMPLIED
 playserver (real | wmt | http | qtss) #IMPLIED
 type (prepos | live) #IMPLIED
 ttl CDATA #IMPLIED
 serve CDATA #IMPLIED
 prefetch CDATA #IMPLIED
 expires CDATA #IMPLIED
 alternateUrl CDATA #IMPLIED
3-14
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
 streamProperty CDATA #IMPLIED
 noRedirectToOrigin (true | false) #IMPLIED>

 <!ELEMENT item-group (item | item-group)*>
 <!ATTLIST item-group
 server CDATA #IMPLIED
 playserver (real | wmt | http | qtss) #IMPLIED
 type (prepos | live) #IMPLIED
 ttl CDATA #IMPLIED
 alternateUrl CDATA #IMPLIED
 cdnPrefix CDATA #IMPLIED
 srcPrefix CDATA #IMPLIED
 streamProperty CDATA #IMPLIED
 noRedirectToOrigin (true | false) #IMPLIED>
3-15
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
Manifest File Structure and Syntax

Table 3-2 CDN Manifest File Syntax

Manifest Tag Description Options Syntax Example

<CdnManifest>
</CdnManifest>

Required.

The <CdnManifest>
tag marks the
beginning and end of
the manifest file
content. At a
minimum, each
<CdnManifest> tag set
must contain at least
one item that will be
fetched and stored on
the hosted domain, and
may optionally
reference a list of host
servers from which
content will be fetched.

Any number of
servers, hosts, and
items can be defined,
up to a limit of 10,000
items in the manifest
file.

<CdnManifest>
<server name=“origin-ser
ver”>
<host
name=”www.name.com”
proto="http"
port="80" />
</server>
<item cdn-url=
“logo.jpg”
server=”originserver”
src= “images/img.jpg”
type=“prepos”
playserver=“http”
ttl=300/>
</CdnManifest>
3-16
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<playServerTable>
</playServerTable>

Optional.

Playserver tables
provide a way for you
to set default mappings
for a variety of media
types on your hosted
domains. Mappings
can be set for both
MIME content types
(the preferred
mapping) and file
extensions. Playserver
tables allow you to
override default
mappings on the
Content Engine for
content types on a
particular hosted
domain.

<playServerTable>
tags are enclosed
within the
<CdnManifest> tags
and name at least one
playserver, for
example, RealServer,
to which certain MIME
types and file
extensions are mapped.

<CdnManifest>
<playServerTable>
<playServer name="real">
<contentType
name="application/x-pn-r
ealaudio" />
<contentType
name="application/vnd.rn
-rmadriver" />
<extension name="rm" />
<extension name="ra" />
<extension name="rp" />
<extension name="rt" />
<extension name="smi" />
</playServer>
<playServer name="wmt">
<extension name="asx" />
<extension name="asf" />
<extension name="avi" />
</playServer>
<playServer name="http">
<contentType
name="application/pdf"
/>
<contentType
name="application/postsc
ript" />
<extension name="pdf" />
<extension name="ps" />
</playServer>
</playServerTable>
<server
name="test.origin.com/">
<host
name="http://tst.orgn.co
m" proto="http" />
</server>
<item cdn-url="pic1.mpg"
src="pic1.mpg"
server="seaotter.sightpa
th.com/"
type="live" ttl="1" />
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-17
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<playServer>
</playServer>

Required for
<playServerTable> tag.

The <playServer> tag
names a media server
type on the Content
Engine that will be
responsible for playing
the content types and
files with extensions
that are mapped to it
using the
<content-type> and/or
<extension> tags.

The <playServer> tag
is enclosed within
<playServerTable>
tags.

name (required)

Each <playServer> tag
names the type of server
to which content will be
mapped using the name
attribute. Content
Engines support four
types of playservers:

• real (RealMedia
RealServer)

• http (web server)

• qtss (Apple
QuickTime)

• wmt (Microsoft
Windows Media)

<CdnManifest>
<playServerTable>
<playServer name="real">
<contentType
name="application/x-pn-r
ealaudio" />
<contentType
name="application/vnd.rn
-rmadriver" />
<extension name="rm" />
<extension name="ra" />
<extension name="rp" />
<extension name="rt" />
<extension name="smi" />
</playServer>
<playServer name="wmt">
<extension name="asx" />
<extension name="asf" />
<extension name="avi" />
</playServer>
<playServer name="http">
<contentType
name="application/pdf"
/>
<contentType
name="application/postsc
ript" />
<extension name="pdf" />
<extension name="ps" />
</playServer>
</playServerTable>
<server
name="test.origin.com/">
<host
name="http://tst.orgn.co
m" proto="http" />
</server>
<item cdn-url="pic1.mpg"
src="pic1.mpg"
server="tst.orgn.com/"
type="live" ttl="1" />
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-18
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<contentType> Optional.

The <contentType> tag
names a MIME content
type that is being
mapped to a playserver.

The <contentType> tag
must be enclosed
within a <playServer>
tag set. When both
<contentType> and
<extension> tags are
present in a
PlayServerTable for a
particular media type,
the <contentType>
mapping takes
precedence.

name (required)

The MIME content type
of media that will be
mapped to the
playserver.

<CdnManifest>
<playServerTable>
<playServer name="real">
<contentType
name="application/x-pn-r
ealaudio" />
<contentType
name="application/vnd.rn
-rmadriver" />
<extension name="rm" />
<extension name="ra" />
<extension name="rp" />
<extension name="rt" />
<extension name="smi" />
</playServer>
</playServerTable>
<server
name="test.origin.com/">
<host
name="http://tst.orgn.co
m" proto="http" />
</server>
<item cdn-url="pic1.mpg"
src="pic1.mpg"
server="tst.orgn.com/"
type="live" ttl="1" />
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-19
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<extension> Optional.

The <extension> tag
names a file extension
that is being mapped to
a playserver.

The <extension> tag
comes after the
<playServer> tag.
When both
<contentType> and
<extension> tags are
present in a
playServerTable for a
particular media type,
the <contentType>
mapping takes
precedence.

name (required)

Provides the file
extension for a mapped
content type. Valid
extensions are:

Playserver = real

• rm

• smi

• ra

• rp

• rt

Playserver = http

• pdf

• ps

• asx

• wax

• wvx

• wmx

Playserver = qtss

• qt

• mov

• mp4

Playserver = wmt

• asf

• wma

• wmv

• wm

<CdnManifest>
<playServerTable>
<playServer name="real">
<contentType
name="application/x-pn-r
ealaudio" />
<contentType
name="application/vnd.rn
-rmadriver" />
<extension name="rm" />
<extension name="ra" />
<extension name="rp" />
<extension name="rt" />
<extension name="smi" />
</playServer>
</playServerTable>
<server
name="test.origin.com/">
<host
name="http://tst.orgn.co
m" proto="http" />
</server>
<item cdn-url="pic1.mpg"
src="pic1.mpg"
server="tst.orgn.com/"
type="live" ttl="1" />
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-20
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<server> </server> Required (minimum of
one host).

The <server> tags
define a host or set of
hosts (or “origin
servers”) from which
content is to be
retrieved.

The <server> tags are
contained within
<CdnManifest> tags
and contain one or
more <host> tags,
which identify hosts
(server locations) from
which content will be
retrieved.

Within each <server>
tag set, be sure to list
hosts in order of
importance.

name (required)

Primary hostname or IP
address of the server
from which content will
be retrieved.

<CdnManifest>
<server name=“origin-ser
ver”>
<host
name=”www.name.com”
proto="http"
port="80" />
</server>
<item cdn-url=
“logo.jpg”
server=”originserver”
src= “images/img.jpg”
type=“prepos”
playserver=“http”
ttl=300/>
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-21
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<host /> Required.

The <host/> tag
(defines a web or live
server from which
content is to be
retrieved for hosting on
the hosted domain.
Multiple host servers
can be defined within a
single <server> tag set.

The <host> tag must be
enclosed within
<server> tags. Multiple
<host> tags may
appear within the same
<server> tag set, and
should be listed
according to their
importance, with the
most important host
listed first.

name (required)

Identifies the DNS
name or IP address of
the host. This attribute
may also point to a
directory on the host.

port (optional)

Identifies the TCP port
through which traffic to
and from the host will
pass. The port used is
dependent on the
protocol used. The
default port is 80.

proto (optional)

Identifies the
communication
protocol that is used to
fetch content from the
host. HTTP is the only
supported protocol.

user (optional)

Identifies the secure
login used to access the
host.

password (optional)

Identifies the password
for the user account
required to access the
host server.

<CdnManifest>
<server name=“origin-ser
ver”>
<host
name=”www.name.com”
proto="http"
port="80" />
</server>
<item cdn-url=
“logo.jpg”
server=”originserver”
src= “images/img.jpg”
type=“prepos”
playserver=“http”
ttl=300/>
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-22
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<options/> Optional.

The <options/> tag is a
manifest designation
that allows you to
specify global settings
for the hosted domain
using the predefined
attributes described in
the paragraphs that
follow.

The <options> tag is
enclosed within the
<CdnManifest> tags
and specifies at least
one global setting for
the hosted domain.
When omitted, default
values or <item>-level
equivalents are used.

If parameters are
defined in both the
manifest file <options>
tag and the <item> tag
for a particular piece of
content, the
<item>-level
designation
takes precedence.

manifest-id (optional)

Specifies a unique,
numeric identifier for
the manifest file that is
used to distinguish it
from other manifest
files on your CDN.

noRedirectToOrigin
(optional)

When set to false, this
attribute allows the
CDN to redirect
requests for a content
item to the origin server
if it has not been
pre-positioned yet.

When set to true, this
attribute prevents the
CDN from redirecting
content to the origin
server if it has not been
pre-positioned on the
hosted domain cache.

<CdnManifest>
<server name=“origin-ser
ver”>
<options timeZone="EST"
noRedirectToOrigin=
"true" />
<host
name=”www.name.com”
proto="http"
port="80" />
</server>
<item cdn-url=
“logo.jpg”
server=”originserver”
src= “images/img.jpg”
type=“prepos”
playserver=“http”
ttl=300/>
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-23
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<options /> timeZone (optional)

Specifies the time zone
that is used by all
content items and item
groups on the hosted
domain.

When not specified, the
default timezone,
Greenwich Mean Time
(GMT), is used.

See Appendix B, “CDN
Supported Time
Zones,” for a list of
supported time zone
abbreviations.

clearlog (optional)

Determines whether or
not the hosted domain
log file is purged
whenever a new
manifest file is received.
By default, this option is
set to false.

When set to false, the
CDN software
continues to append log
file entries to the
existing log file even
after the manifest has
changed.

When set to true, hosted
domain log file is
purged when a new
manifest is received.

<CdnManifest>
<server name=“origin-ser
ver”>
<options timeZone="EST"
clearlog= "true" />
<host
name=”www.name.com”
proto="http"
port="80" />
</server>
<item cdn-url=
“logo.jpg”
server=”originserver”
src= “images/img.jpg”
type=“prepos”
playserver=“http”
ttl=300/>
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-24
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<item /> Required.

The <item> tag names
a single piece of
content on the hosted
domain, for example, a
graphic, MPEG video,
or RealAudio sound
file.

Content items may be
listed individually, or
items with shared
attributes may be
grouped using the
<item-group> tag.

The <item> tag must be
enclosed within
<CdnManifest> tags
and may also be
enclosed within
<item-group> tags.

Each manifest can
contain a maximum of
10,000 items.

src (required)

Relative path to the
content item on the
origin server, starting
from the host URL.

When no cdn-url value
is specified, the src
attribute is used in the
published content URL.

type (optional)

Indicates how the
content should be
handled. Two options
are supported:

• prepos—Content
should be pre-
positioned on the
hosted domain.
This is the default
value.

• live—Content is a
live broadcast and
cannot be pre-
positioned. When
the type is live, the
playserver must be
either real or wmt.

alternateUrl (optional)

Names an absolute path
to a content file (for
example, an error
message page) that is
used if the src (source)
location is invalid.

<CdnManifest>
<server name=“origin-ser
ver”>
<host
name=”www.name.com”
proto="http"
port="80" />
</server>
<item cdn-url=
“logo.jpg”
server=”originserver”
src= “images/img.jpg”
type=“prepos”
playserver=“http”
ttl=300/>
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-25
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<item /> cdn-url (optional)

Relative location of the
content on the Content
Engine.

It is possible to use
wildcard (*) values in
the manifest file only
when the content item is
live content (type =
“live”). The published
content URL must point
to the live content item
on the live server.

The value supplied for
the cdn-url attribute
becomes one part of the
published request URL
that end users see and
link to. If no cdn-url
value is supplied, the
cdn-url is set to the src
attribute.

<CdnManifest>
<server name=“origin-ser
ver”>
<host
name=”www.name.com”
proto="http"
port="80" />
</server>
<item cdn-url=
“images/logo.jpg”
server=”originserver”
src= “images/img.jpg”
type=“prepos”
playserver=“http”
ttl=300/>
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-26
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<item /> (continued) (continued) noRedirectToOrigin
(optional)

When set to false,
allows the CDN to
redirect requests for a
content item to the
origin server if the
content item is not yet
pre-positioned at the
location specified by the
src attribute tag.

When set to true,
prevents the CDN from
redirecting content to
the origin server if it
cannot be found in the
hosted domain cache

expires (optional)

Designates a time in
yyyy-mm-dd hh:mm:ss
format after which the
content item will no
longer be served from
the CDN.

All dates and times are
interpreted as being
local for the Content
Engine.

As long as the expires
attribute designates a
time in the future, the
content item will
continue to be served
from the CDN.

<CdnManifest>
<server name=“origin-ser
ver”>
<host
name=”www.name.com”
proto="http"
port="80" />
</server>
<item cdn-url=
“logo.jpg”
server=”originserver”
src= “images/img.jpg”
type=“prepos”
playserver=“http”
ttl=300/>
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-27
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<item /> (continued) (continued) playserver (optional)

Names the server that
will be used to play this
media item. When
specified, this value
overrides any content
mapping in the
<playServerTable>
area.

Valid playservers are:

• real (RealServer)

• wmt (Windows
Media Services)

• qtss (QuickTime
Server)

• http

The CDN software
supports live streaming
only on the RealServer
and Windows Media
Services platforms.

prefetch (optional)

Designates a time in
yyyy-mm-dd hh:mm:ss
format after which a
content item should be
retrieved from the
origin server and
repositioned on the
Content Engine.

Date and time are local
to the Content Engine.

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-28
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<item /> (continued) (continued) serve (optional)

Specifies the date and
time after which
grouped content items
can be requested from
the Content Engine in
yyyy-mm-dd hh:mm:ss
format.

The default time zone is
GMT unless otherwise
specified using the
<options> tag.

server (optional)

Identifies the server
from which the content
item will be fetched.
The name specified
must match the <server
name = ““> value.

If omitted, the origin
server of the hosted
domain is assumed to be
the server.

This attribute can also
be used within an
<item-group>.

<CdnManifest>
<server name=“origin-ser
ver”>
<host
name=”www.name.com”
proto="http"
port="80" />
</server>
<item cdn-url=
“logo.jpg”
server=”originserver”
src= “images/img.jpg”
type=“prepos”
playserver=“http”
ttl=300 />
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-29
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<item /> (continued) streamProperty
(optional)

For use with Windows
Media files (WMA,
WMV, and ASF) only.

Specifies one or more
file attributes that are
displayed in the
Windows Media Player
when the file is played.

The supported attributes
are:

• Abstract

• Title

• Author

• Copyright

ttl (optional)

The ttl attribute
identifies the period, in
minutes, for which the
content item should be
controlled for changes
before release. The
default value is 30
minutes.

<CdnManifest>
<server name=“origin-ser
ver”>
<host
name=”www.name.com”
proto="http"
port="80" />
</server>
<item cdn-url=
“q4results.asf”
server=”originserver”
src=
“video/q4results.asf”
type=“live”
playserver=“wmt”
streamProperty =
"author='paul roberts'
title='Cisco Q4 Results'
copyright='Cisco 02'"
ttl=300/>
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-30
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<contains /> Optional.

Identifies other pieces
of content that are
embedded within the
content item currently
being described. For
example, the
components of a
SMIL-format file

Requests for an item
using <contains />
links are only accepted
after the CDN
determines that all
dependent content
items are present in the
cache.

The <contains /> tag
must be enclosed
within the <item>
</item> tags.

cdn-url (required)

Identifies the public
location for the content
item on the hosted
domain.

The value supplied for
the cdn-url attribute
becomes one part of the
published request URL
that end users see and
link to. If no cdn-url
value is supplied, the
cdn-url is set to the src
attribute.

<CdnManifest>
<server name=“origin-ser
ver”>
<host
name=”www.name.com”
proto="http"
port="80" />
</server>

<item cdn-url="house.rp"
src="house/house.rp">
<contains
cdn-url="img08.jpg"/>
<contains
cdn-url="img09.jpg"/>
<contains
cdn-url="img1.jpg"/>
<contains
cdn-url="img2.jpg"/>
<contains
cdn-url="img3.jpg"/>
</item>
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-31
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<item-group>
</item-group>

Optional.

The <item-group> tag
names a collection of
content items with
shared attributes on the
hosted domain, for
example, a group of
graphics on the same
host with the same
Time To Live (TTL)
value. If an attribute is
specified in both the
<item-group> tag and
separately for a
grouped content item,
the <item>-level
attribute takes
precedence over the
group attribute.

The <item-group> tag
must be enclosed
within <CdnManifest>
tags and contain two or
more <item> tags
identifying content
items that share the
attributes named by the
<item-group> tag.

<item /> (required)

Names a content item.
Any <item-group> must
have at least one content
item and no more than
10,000 total items
named in a single
manifest file.

alternateUrl (optional)

An alternate absolute
path to a single content
file, for example an
error page, that will be
used in the place of the
content item if the src
(source) location is
invalid.

cdnPrefix (optional)

Names a directory or
partial path that is
placed in the published
request URL
immediately before the
value named by the
item’s cdn-url attribute.

<CdnManifest>
<server name=“orgsv”>
<host
name=”www.name.com”
proto="http"
port="80" />
</server>
<item-group
server="web-server"
type="prepos" ttl="300">
<item cdn-url="wild.ram"
src="wildlife.ram"/>
<item cdn-url="gg.mpeg"
src="GoldenGate.mpeg”/>
<item cdn-url="jbg.mp3"
src="JohnnyBeGood.mp3"
/>
<item cdn-url="paul.asx"
src="fin371k.asx" />
</item-group>
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-32
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<item-group>
</item-group>
(continued)

(continued) noRedirectToOrigin
(optional)

When set to false,
allows hosted domain
Content Engines to
redirect requests to the
origin server if they
cannot be found at the
location specified by the
src attribute.

When set to true,
prevents hosted domain
Content Engines from
redirecting requests to
the origin server if they
cannot be found in the
hosted domain cache.

playserver (optional)

Names the server that
will be used to play the
grouped content items.
This value overrides any
content mapping in the
<PlayServerTable>.
Valid playservers are:

• real (RealServer)

• wmt (Windows)

• qtss (QuickTime)

• http

Live streaming is only
supported for real and
wmt. See Table 3-3 for a
list of files supported by
each playserver.

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-33
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<item-group>
</item-group>
(continued)

(continued) server (optional)

The origin server from
which the grouped
content items will be
fetched. The name
specified must match
the server name in the
<server> tag.

srcPrefix (optional)

Names a directory or
partial path that is used
to build a directory
structure for the items in
the content item group.
The value specified by
the srcPrefix attribute is
placed in the published
request URL before the
item’s src attribute.

streamProperty
(optional)

For use with Windows
Media files (WMA,
WMV, and ASF) only.
Specifies one or more
file attributes that are
displayed in the
Windows Media Player
when the file is played.
The supported attributes
are:

• Abstract

• Title

• Author

<CdnManifest>
<server name=“orgsv”>
<host
name=”www.name.com”
proto="http"
port="80" />
</server>
<item-group
server="web-server"
type="prepos" ttl="300">
<item cdn-url="wild.ram"
src="wildlife.ram"/>
<item cdn-url="gg.mpeg"
src="GoldenGate.mpeg”/>
<item cdn-url="jbg.mp3"
src="JohnnyBeGood.mp3"
/>
<item cdn-url="paul.asx"
src="fin371k.asx" />
</item-group>
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-34
Cisco Internet CDN Software Content Provider Guide

78-13749-01

• Copyright

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<item-group>
</item-group>
(continued)

(continued) ttl (optional)

Identifies the period, in
minutes, for which the
grouped content item
should be controlled for
changes before release.
The default value is
30 minutes.

type (optional)

Indicates how each
grouped content item
should be handled. Two
options are supported:

• prepos—Content
should be
pre-positioned on
the hosted domain.
This is the default
value, which is
applied in the event
that no type is
specified.

• live—Content is a
live broadcast and
cannot be
pre-positioned.

<CdnManifest>
<server name=“orgsv”>
<host
name=”www.name.com”
proto="http"
port="80" />
</server>
<item-group
server="web-server"
type="prepos" ttl="300">
<item cdn-url="wild.ram"
src="wildlife.ram"/>
<item cdn-url="gg.mpeg"
src="GoldenGate.mpeg”/>
<item cdn-url="jbg.mp3"
src="JohnnyBeGood.mp3"
/>
<item cdn-url="paul.asx"
src="fin371k.asx" />
</item-group>
</CdnManifest>

Table 3-2 CDN Manifest File Syntax (continued)

Manifest Tag Description Options Syntax Example
3-35
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
Table 3-3 Supported Media File Formats Grouped by Manifest File Content Type

Extension Supported Formats Notes

http • Audio Visual Interleaved (AVI)

• Graphics Interchange Format (GIF)

• Hypertext Markup Language (HTML, HTM)

• Joint Photographic Experts Group (JPG)

• Microsoft PowerPoint (PPT)

• Microsoft Word (DOC)

• Motion Picture Experts Group (MPEG, MPG)

• MPEG Audio Layer 3 (MP3)

• Portable Document Format (PDF)

• QuickTime Movie (MOV)

• ASX

The content item will be handled
by an HTTP server; this tag is
used for content that cannot be
streamed by any of the servers
listed in the previous section, for
example, Adobe PDF, PostScript
(PS), and MPG files.

media • AVI

• GIF

• HTML, HTM

• JPG

• PPT

• DOC

• MPEG, MPG)

• MP3

• PDF

This is the default value used by
the Cisco Internet CDN
Software. Use the media tag
when no playserver is specified
to handle a content item; the
linked item may be a
pre-positioned or a live content
item.

qtss • QuickTime (QT)

• MOV

The content item will be handled
by the Apple QuickTime Darwin
Streaming Server.
3-36
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
Sample Manifest File

Example 3-2 shows a functional manifest file. Use this sample as a model when
creating or troubleshooting your own manifest files.

real • RealAudio (RA)

• RealMedia (RM)

• RealPix (RP)

• RealText (RT)

• Synchronized Container Format (SMIL)

The content item will be handled
by RealServer.

wmt • ASF (includes WMA and WMV)

• ASX

The content item will be handled
by Windows Media Services.

Table 3-3 Supported Media File Formats Grouped by Manifest File Content Type (continued)

Extension Supported Formats Notes
3-37
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
Example 3-2 Manifest File Containing Pre-positioned and Live Content

<?xml version="1.0"?>
<!DOCTYPE CdnManifest SYSTEM "CdnManifest.dtd">
<CdnManifest>

<!--playserver mappings for content type-->
<!--these are consulted after URL, item, then item-group mappings-->
<playServerTable>
<playServer name="real">
 <contentType name="application/x-pn-realaudio" />
 <contentType name="application/vnd.rn-rmadriver" />
 <extension name="rm" />
 <extension name="ra" />
 <extension name="rp" />
 <extension name="rt" />
 <extension name="smi" />
 </playServer>
<playServer name="qtss">
 <contentType name="application/qt-foo" />
 <extension name=".mov" />
 </playServer>
<playServer name="wmt">
 <extension name="asx" />
 <extension name="asf" />
 <extension name="avi" />
 </playServer>
<playServer name="http">
 <contentType name="application/pdf" />
 <contentType name="application/postscript" />
 <extension name="pdf" />
 <extension name="ps" />
 </playServer>
</playServerTable>

<!--manifest file options-->
<options timeZone="EST" />

<!--origin servers -->
<server name="origin-web-server">
 <host name="http://www.cisco.com/media"/>
 <host name= “192.168.3.15” />
</server>

<!--secondary origin server that also runs RealServer -->
<server name= “live-streamer”>
 <host name=”192.168.3.15” />
<server/>
3-38
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
<!--grouped content items-->
<item-group
 server="origin-web-server"
 type="prepos"
 ttl="300">
 <item cdn-url="newHQpresentation.rm" src="newHQpresentation.rm" />
 <item cdn-url="animatedlogo.mpg" src="animlogo.mpg" />
 <item cdn-url="companytheme.mp3" src="cotheme.mp3" />
 <item cdn-url="newHQlayout.avi" src="newHQ.mov" />
</item-group>]

<item-group
 server="origin-web-server"
 type="prepos"
 ttl="300">
 <item cdn-url="roadmap.asf" src="prodroadmap.asf" />
 <item cdn-url="roadmaptalk.wma" src="rmtalk.wma" />
 <item cdn-url="newHQlayout.avi" src="newHQ.avi" />
</item-group>]

<!--non-grouped content items-->
<item cdn-url="q3presentation.rm"
 src="present/q3presentation.rm"/>
<item cdn-url="q1.smi"
 src="house/house.smi">
 <contains cdn-url="q1presentation.rm"/>
 <contains cdn-url="q1.rt"/>
 </item>

<!--live content-->
<item-group server="live-streamer" type="live">
 <item src="/encoder/live.rm" cdn-url="/present/live/*" />
</item-group>
</CdnManifest>

Validating Manifest File Syntax
Because correct and accurate manifest file syntax is vital to the proper
deployment of your web site content on the CDN, Cisco makes a manifest file
syntax checker available, at no cost, to its customers. This command-line based
utility can be used to proof the manifest files you have created for your hosted
domain.
3-39
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
When run, the manifest validator reviews each line of your manifest file,
identifying syntax errors where they exist and determining whether or not the
manifest is valid and ready for use in importing content to your hosted domain.
The results of the manifest validator’s review of the manifest file are output to a
text file in a location that you name.

Obtaining the Manifest File Validator

The manifest validator is designed to run in both the Windows (95/98, NT, 2000
and XP) environment and the Linux (RedHat 6.2) environments.

Cisco provides the manifest validator utility free of cost through its website,
Cisco.com.

To obtain a copy of the manifest validator:

Step 1 Launch your preferred web browser and point it to:

http://www.cisco.com/cgi-bin/tablebuild.pl/cdn-sp

Step 2 When prompted, log in to Cisco.com using your designated Cisco.com username
and password.

The Cisco Internet CDN Software download page appears, which lists the
available software updates for the Cisco Internet CDN Software product.

Step 3 Locate the file named manifest-validator.zip. This is a ZIP archive containing the
files for the manifest validator utility.

Step 4 Click the link for the manifest-validator.zip file. The download page appears.

Step 5 Click the Software License Agreement link. A new browser window will open
displaying the license agreement.

Step 6 After you have read the license agreement, close the browser window displaying
the agreement and return to the Software Download page.

Step 7 Click the filename link labeled Download.

Step 8 Click Save to file and then choose a location on your workstation to temporarily
store the zip file.

Step 9 See the “Installing the Manifest File Validator” section on page 3-41 for
instructions on installing the validator utility.
3-40
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
Installing the Manifest File Validator

Before installing the manifest validator, you must first install the Java (TM) 2
Runtime Environment, version 1.2 or 1.3 on your workstation. The Java 2
Runtime Environment (JRE) contains the Java virtual machine, runtime class
libraries, and Java application launcher. These components are necessary to run
the Cisco manifest validator utility.

If you are using an earlier version of the JRE on your workstation, please install
either version 1.2 or 1.3. You can download the latest version of the JRE along
with instructions for installing it from the following web site:

http://java.sun.com

After you install the JRE, use the following instructions to install, then run the
Cisco manifest validator utility:

Step 1 Create a directory for the manifest validator on your local drive. For example:

c:\manifest

Step 2 Locate the manifest validator archive. This file is named manifest-validator.zip
and was provided to you by your service provider.

Step 3 Unzip the manifest validator files into the directory you created.

Step 4 Verify that all manifest validator files are present in the manifest directory you
created. Table 3-4 contains a list of the sources files that constitute the manifest
validator utility and their purpose.

Table 3-4 Manifest Validator Source Files

Validator File Name Purpose

xerces.jar syntax parser

manval.zip standalone manifest
validator

CdnManifest.dtd document type
definitions for the CDN
manifest file
3-41
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
Running the Manifest File Validator

After you have installed the Java 2 Runtime Environment and the Cisco manifest
validator program files, you are ready to run the validator on a manifest file that
you have created.

If you have not created a manifest file yet, see the “Pre-Positioning Web Site
Content” section on page 3-11 and Appendix A, “Sample Manifest File Scripts.”

The manifest file validator can be run in one of two modes:

• Default mode—the manifest validator checks the syntax of your manifest file
to make sure that source files are named for each content item in the manifest.

• Check size mode—the manifest validator checks the syntax of your manifest
file to make sure that source files are named for each content item in the
manifest, then follows the URL for each content item to verify that the
content is placed correctly and, if possible, to determine the size of the item.
A special switch (-s) is used to run the validator in “check size” mode.

When running the manifest file validator, you are required to input the following
information:

• The name and location of your manifest file, expressed either as a network
file location <file> or a valid Internet URL <url>

• The name and location of the manifest validator’s output file <output>.

PlayServerTable.dtd document type
definitions for CDN
PlayServerTables, used
to define media servers
(Real, Windows Media)
for the CDN

validate shell script used to run
the validator

validate.bat batch file to run the
validator

Table 3-4 Manifest Validator Source Files (continued)

Validator File Name Purpose
3-42
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
• (Optional.) When running the manifest file validator in check size mode, the
length of time <seconds> that the manifest file validator should attempt to
confirm the existence of content named in the manifest.

To run the manifest validator utility:

Step 1 If you are running Windows, open a command prompt. Otherwise, proceed
to Step 2.

Step 2 Change directories to the program directory for the manifest validator. For
example, if you are running Windows, you would enter the following at the
command prompt:

C:\>cd manifest
C:\manifest>

Step 3 Run the manifest validator as follows:

• If you are running Windows, enter the validate command and provide
either a path and file name or URL pointing to your manifest file in the
following format:

validate -f [<file> | -u <url>] -o <output> [-s <seconds>]

• If you are running Linux, enter the following commands, providing either
a path and file name or URL that points to your manifest file in the
following format:

chmod u+x validate
validate -f [<file> | -u <url>] -o <output> [-s <seconds>]

After you execute the validator, text output is displayed, which indicates that the
validator is running.

Step 4 Wait until the following message is displayed, which indicates that the validator
has completed processing the manifest file you pointed to:

Finish parsing /<manifest_file_name>.xml

Step 5 Locate the output file in the location you specified and review it for errors.

The final lines of the manifest file validator’s output will indicate whether or not
the manifest is valid or not. For example, a valid manifest file output might read:

number of manifest warnings: 1
number of manifest errors: 0
manifest syntax is CORRECT
finish parsing
3-43
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
In this instance, one non-fatal syntax irregularity was located, but the manifest file
as found to be syntactically correct. This file could be transferred to your service
provider and used to deploy web site content to your CDN.

The output file for an invalid manifest file will list the number of errors and
warnings issued. For example:

number of manifest warnings: 1
number of manifest errors: 1
manifest syntax is INCORRECT
finish parsing

See the “Understanding Manifest File Validator Output” section next for detailed
information that will help you understand the manifest file validator results.

Understanding Manifest File Validator Output

Your manifest file validator output file will appear in the location you specified
(using the -o option) when the validator was run.

Each output file will have a similar structure and syntax and will clearly identify
any errors or warning messages stemming from your manifest file syntax.
Manifest files are judged by the validator either to be:

• CORRECT—possibly containing syntax irregularities, but syntactically valid
and ready for deployment on a CDN

• INCORRECT—containing syntax errors and unsuitable for deployment on a
CDN

Syntax Errors

The manifest file validator issues syntax errors only when the manifest file
validator cannot identify a source file for a listed content item—either because it
is not listed, or it is listed using improper syntax. All files containing syntax errors
are marked INCORRECT.

Syntax errors are identified in the output with the ERROR label. The line number
containing the error is provided, as well as the manifest attribute for which the
error was issued, valid options, and the default value for that attribute. For
example, the following error appears in Example 3-3:
3-44
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
ERROR: japan.xml:13:Skip item because src is not defined.

In this example:

• japan.xml is the manifest file name.

• 13 is the manifest file line number where the error occurs.

• src is the manifest file attribute generating the warning.

Example 3-3 Manifest File Validator Output Containing Errors and Warnings

start parsing file japan.xml
start options
 option clearlog: false
 option rd: null
 option prepos-tag: null
 option live-tag: null
 option notFoundUrl: null
 option noRedirectToOrigin: false
 option timezone: JST
 option manifest-id: null
end options
start server
 server name: WMTServer
start host
 host name: origin.cdn-japan.com
 host proto: http
 host port: 80
 host user: ceadmin
 host password: 3kDC
 creating new hash entry for WMTServer and origin.cdn-japan.com
 end host
end server
WARNING: japan.xml:13:Attribute "src" is required and must be
specified for element type "item".
start item
 item src: null
 ERROR: japan.xml:13:Skip item because src is not defined.
end item
end CdnManifest
number of items processed: 1
number of manifest warnings: 1
number of manifest errors: 1
manifest syntax is INCORRECT
finish parsing

A total number of errors encountered in the manifest file is provided at the end of
the validator output file.
3-45
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
Syntax Warnings

The manifest file validator issues syntax warnings for a wide variety of
irregularities in the manifest syntax. Files containing syntax warnings may be
marked CORRECT or INCORRECT, depending on whether or not syntax errors
have also been issued.

Syntax warnings are identified in the output with the WARNING label. In addition
to the label, the line number containing the warning is provided, as well as the
manifest attribute for which the warning was issued, valid options and the default
value for that attribute. For example, the following warning might appear in the
output for the japan.xml manifest file:

WARNING: /~content/manifest/japan.xml:12:Attribute "type" with value
"vod" must have a value from the list "(prepos|live)"

In this example:

• japan.xml is the manifest file name.

• 12 is the manifest file line number where the warning was issued.

• type is the manifest file attribute generating the warning.

• vod is the offending value.

• (prepos | live) are the valid options for that attribute.

A total number of warnings encountered in the manifest file is provided at the end
of the validator output file.

Repairing Manifest File Syntax
After you have identified syntax errors and warnings using the output from the
manifest file validator tool, you can correct your manifest file syntax, then re-run
the manifest file script on the corrected file.

To repair your manifest file:

Step 1 Open your manifest file using your preferred XML- or text-editing tool.

Step 2 Referring to your manifest file validator output, use the line numbers provided by
the manifest file validator to locate the syntax violations in your manifest file.
3-46
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
In general, it is a good idea to review each WARNING and ERROR tag in your
manifest. Some warnings, while still allowing the manifest file validator to find
your manifest file syntax correct, may still be the source of problems when you
deploy your web site content.

Step 3 After you have made all necessary corrections for syntax warnings and errors,
save your manifest file.

Step 4 Run the manifest file through the manifest file validator again and review the
validator output for errors and warnings.

Step 5 Repeat Step 1 through Step 4 until all errors and warnings have been adequately
resolved and until the manifest validator labels your manifest file CORRECT.
3-47
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Chapter 3 Deploying Web Site Content on an Internet CDN
Pre-Positioning Web Site Content
3-48
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Cisco Internet CDN
78-13749-01

A
 P P E N D I X A

Sample Manifest File Scripts

This appendix contains information that you can use to automate the creation of
manifest files for your web site.

This appendix contains the following sections:

• Overview, page A-1

• Installing PERL on Your Workstation, page A-2

• Obtaining the Scripts, page A-2

• Listing Web Site Content Using the Spider Script, page A-3

• Selecting Live and Pre-position Content Using the Manifest Script, page A-7

• Creating a Rules File for the Spider and Manifest Scripts, page A-11

• Spider Script Source, page A-12

• Manifest Script Source, page A-26

Overview
Two sample scripts are provided in this appendix:

• Spider—crawls over the content of an origin server and outputs a database file
containing a list of URLs for all potentially pre-positioned or live content
objects on that origin server, regardless of whether that content will
eventually be pre-positioned or streamed live from the hosted domain.
A-1
 Software Content Provider Guide

Appendix A Sample Manifest File Scripts
Installing PERL on Your Workstation
• Manifest—reads the database file output by the Spider script and, using rules
set out by the content provider, produces an XML-format manifest file
containing the URLs of just those items or types of content that a content
provider wants to make available to users through a hosted domain.

These scripts shipped with your CDN software and can serve as the basis for your
own automation scripts.

Installing PERL on Your Workstation
You need to have PERL installed on your workstation prior to working with or
running the Spider or Manifest scripts. It may also be useful to have a PERL
compiler available. PERL is open source software and can be downloaded for free
from a variety of locations on the Internet. Refer to the Comprehensive PERL
Archive Network (CPAN) at http://www.cpan.org, or http://www.perl.com.

Obtaining the Scripts
The Spider and Manifest scripts can be obtained from Cisco.com using the same
procedure that is used to obtain updated versions of the Cisco Internet CDN
Software.

To obtain the Manifest and Spider scripts from Cisco.com:

Step 1 Launch your preferred web browser and point it to:

http://www.cisco.com/cgi-bin/tablebuild.pl/cdn-sp

Step 2 When prompted, log in to Cisco.com using your designated Cisco.com username
and password.

The Cisco Internet CDN Software download page appears, listing the available
software updates for the Cisco Internet CDN Software product.

Step 3 Locate the file named manifest-tools.zip. This is a ZIP archive containing both the
Manifest and Spider PERL scripts.

Step 4 Click the link for the manifest-tools.zip file. The download page appears.

Step 5 Click the Software License Agreement link. A new browser window will open
displaying the license agreement.
A-2
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Listing Web Site Content Using the Spider Script
Step 6 After you have read the license agreement, close the browser window displaying
the agreement and return to the Software Download page.

Step 7 Click the filename link labeled Download.

Step 8 Click Save to file and then choose a location on your workstation to temporarily
store the zip file containing the scripts.

Step 9 Use your preferred unzip program to unpack the scripts to a location on your
workstation or your network.

After you have unzipped the scripts, you are ready to begin using them to build
manifest files for your website. See the “Listing Web Site Content Using the
Spider Script” section on page A-3 and the “Selecting Live and Pre-position
Content Using the Manifest Script” section on page A-7 for instructions on
running the scripts.

Listing Web Site Content Using the Spider Script
This section contains information on the following topics:

• Spider Script Syntax Guidelines, page A-5

• Combining Spider Data, page A-7

• Customizing the Spider Script, page A-7

In the simplest scenario, the spider is pointed to the address of an origin server
and given the name of a database (.db) file into which it will place any valid URLs
it discovers on that site. For example, if you wanted to analyze the contents of
www.cisco.com for content that might be pre-positioned, you would issue the
following command:

spider --start=www.cisco.com --db=ciscocontent.db
A-3
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Listing Web Site Content Using the Spider Script
Limiting Scope
But spidering the entirety of www.cisco.com might take hours and produce much
more information than you are interested in. What if you want to limit your review
of an origin server to just a particular part of that server? The Spider script
contains a variety of tools that enable you to limit as well as broaden the scope of
a spider’s action.

For example, to limit the spider’s search of www.cisco.com to just that part of the
server containing product-related support information, you could enter the
following command:

spider --start=www.cisco.com/public/support/ --db=ciscocontent.db

Broadening Scope
Or, to ask the spider to follow links from www.cisco.com to the Cisco networking
professionals forum, you could enter the following spider command:

spider --start=www.cisco.com --allow=forums.cisco.com
--db=ciscocontent.db

Re-spidering Servers
In addition to covering new origin servers, the Spider script can also be run on
sites that have already been analyzed and that contain links into the CDN. When
spidering a server that has already been analyzed, you use the --hd keyword to
specify the name of hosted domain on which content from the origin server will
be hosted, and the --map keyword to provide mapping information between URLs
on the origin server and on the Internet CDN.

For example, the following commands will trace the content mapped to the
/support area on the hosted domain www.hosted.cisco.com back to its origins in
in the support area of www.cisco.com:

--start=http://www.cisco.com/public/support/tac/home.html
--hd=www.hosted.cisco.com
--map=http://www.cisco.com/public/support/tac/=/support
--db=ciscocontent.db
A-4
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Listing Web Site Content Using the Spider Script
In each of these examples listed, the Spider analyzes the URL of each piece of
content on the origin server or in that area of the origin server that has been
targeted and applies filters to them that incorporate the parameters supplied when
the Spider was run and identify potential pre-positioning or live streaming
candidates. If the URL matches the pattern provided by the Spider, it is accepted
and its URL is recorded in the database being created by the Spider. If the pattern
does not match, the content is rejected and the Spider moves on.

Spider Script Syntax Guidelines
The Spider script accepts the following syntax:

spider {--start=origin_server_url
[--allow=allowed_url | --depth=number | --file=filename |
{--hd=hosted_domain_name --map={origin_server_url_prefix=cdn_prefix} } |
--limit=number | --prefix=url_prefix | --reject=disallowed_url |]
--db=database_name.db}

Table A-1 Spider Script Keywords

Keyword Description Syntax

--start Names the location (URL) of the
origin server that will be
analyzed.

--start=www.cisco.com

--db Names the database file in which
content URLs from the origin
server and any allowed locations
will be placed.

--db=ciscocontent.db

--allow (optional) Names a location other than that
specified using the start keyword
that will be accepted when it is
found in URLs.

--allow=forums.cisco.com

--depth (optional) Causes the Spider script to stop
after following links a specified
number of levels deep on the
origin server.

--depth=6
A-5
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Listing Web Site Content Using the Spider Script
--file (optional) Causes the Spider script to read
its commands from a specified
rules file, one line at a time.

--file=cisco-rules.cfg

--hd (optional) Identifies a hosted domain on
your CDN as the hosted domain
for the content being spidered.
Used with the --map keyword
for mapping content from the
CDN back to the origin server.

--hd=www.hosted.cisco.com

 --map (optional) Causes the Spider script to
substitute the second URL prefix
(appearing after the second =)
for the first in any URLs from the
origin server, or substitute the
first prefix for the second when
re-spidering content an origin
server.

--map=http://www.cisco.com/
public/support/tac/=/support

--limit (optional) Causes the Spider script to stop
after retrieving a specified
number of pages from the origin
server. The default is 100.
Specifying 0 sets no limit for the
number of pages retrieved.

--limit 1000

--prefix (optional) Specifies a URL prefix which,
when it is encountered, will be
accepted by the Spider.

--prefix=http://www.cisco.co
m/partners/CDN/

--reject (optional) Names a location that will be
rejected when it is found in
URLs.

--reject=cgi-bin

Table A-1 Spider Script Keywords (continued)

Keyword Description Syntax
A-6
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Selecting Live and Pre-position Content Using the Manifest Script
Combining Spider Data
What if you ran the Spider script on two separate locations on an origin server, but
would like to combine the content into one database from which a manifest file
will be generated?

The data output by the Spider can easily be combined—just open the *.db file
containing the data you want to move, select that data, and copy it. Next, open the
*.db file you want to serve as the merged file, locate the end of the file, and paste
the data you copied into it.

The Manifest script can now be run on the merged data.

Customizing the Spider Script
Because the Spider script anticipates certain platforms and scenarios that might
not correspond to your own web site configuration, Cisco provides you with the
PERL source code for the Spider script, which you can modify to suit your own
needs.

See the “Spider Script Source” section on page A-12 to review the source code for
the Spider script.

Selecting Live and Pre-position Content Using the
Manifest Script

Whereas the Spider script is used to gather a list of potential hosted content from
an origin server, the Manifest file is where you will cull through all the
information gathered by the Spider and decide which content you will actually
import to the CDN for placement on a hosted domain.

This section contains information on the following topics:

• Pre-Positioned Versus Live Content, page A-8

• Manifest Script Syntax Guidelines, page A-8

• Customizing the Manifest Script, page A-11
A-7
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Selecting Live and Pre-position Content Using the Manifest Script
Pre-Positioned Versus Live Content
The Manifest script distinguishes between content that needs to be pre-positioned
and live, streamed content that, by definition, cannot be pre-positioned.

Using the prepos command, you identify and pre-position all content that meets
criteria that you specify. For example, to pre-position all image files from
cisco.com larger than one megabyte, you would enter the following command:

manifest --prepos=’type(image/*) and size > 1000k’
--db=ciscocontent.db --xml=cisco.xml

Using the live command, you identify the URLs of live content. Unlike
pre-positioned content, live content cannot be identified by information stored in
the header, so you will need to devise a method of locating live content based
solely on information contained in the URL of that content. For example, you
might identify streamed content with the following command:

manifest --live=‘match(rtsp://*)’

Manifest Script Syntax Guidelines
manifest {[--file=filename | --live=’keyword_comparison’ |
--prepos=‘keyword_comparison’ | --set=‘attribute=value :
keyword_comparison’ | --playservertable=filename |
--map={origin_server_url_prefix=cdn_prefix}] --db=database_name.db
--xml=manifest_file_name.xml}
A-8
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Selecting Live and Pre-position Content Using the Manifest Script
Table A-2 Manifest Script Keywords

Keyword Description Syntax

--file Causes the Manifest script to
read its commands from a
specified rules file, one line at a
time.

--file=ciscocontent.cfg

--live Marks content URLs in the
database file that match the
terms of the keyword
comparison as live (type=“live”)
content in the manifest file.

--live=‘match(rtsp://*)’

--prepos Marks content URLs in the
database file that match the
terms of the keyword
comparison as pre-positioned
content (type=‘prepos’) in the
manifest file.

--prepos=‘type(image/jpg)
and size > 1000k’

--set Sets the specified attribute to the
value provided for all content
items with URLs in the database
file that match the keyword
comparison.

--set=‘ttl=10000 :
match(*/urgent/*)’

--playservertable Adds the playserver table in the
specified file to the manifest file.
Playserver tables map MIME
content types and filename
extensions to specific server
types to use (for example, “real”
or “wmt”) for the content in a
specific hosted domain.

See the “Manifest File Structure
and Syntax” section on
page 3-16 for more information
on the <playServerTable>
attributes.

--playservertable=info.txt
A-9
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Selecting Live and Pre-position Content Using the Manifest Script
--map Causes the Manifest script to
substitute the second URL prefix
(appearing after the second =)
for the first in any URLs from the
origin server.

--map=http://www.cisco.com/
public/support/tac/=/support

--db Names the database file in which
content URLs from the origin
server and any allowed locations
are located. This file provides
the data that the Manifest script
analyzes.

--db=ciscocontent.db

--xml Names the manifest file that is
generated by the Manifest script.

--xml=ciscomanifest.xml

match A comparison keyword that
locates text in content URLs that
are identical to a value that is
provided.

--prepos=‘match
(http://forums.cisco.com/*)’

size A comparison keyword that
identifies content named in the
database file according to the
specified filesize parameter (in
kilobytes).

--prepos=‘size >= 1000k’

time A comparison keyword that
identifies content named in the
database file according to the
time since the content was last
modified (in hours).

--prepos= ‘time < 72 hours’

type A comparison keyword that
identifies content named in the
database file according to its
MIME type (text, application,
image, and so on).

--prepos=‘type(image/gif)’

Table A-2 Manifest Script Keywords (continued)

Keyword Description Syntax
A-10
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Creating a Rules File for the Spider and Manifest Scripts
Customizing the Manifest Script
Because the Manifest script anticipates certain platforms and scenarios that might
not correspond to your own web site configuration, Cisco provides you with the
PERL source code for the Manifest script, which you can modify to suit your own
needs.

See the “Manifest Script Source” section on page A-26 to review the source code
for the Manifest script.

Creating a Rules File for the Spider and Manifest
Scripts

When using the Spider and Manifest scripts on a large web server, the parameters
and rules you set for your scripts may be numerous and complex. When this is the
case, it may make more sense to create a file containing all your instructions to
the scripts that you can then simply point to than having to type a long series of
commands time and again.

Using a rules file makes it easy to re-run the Spider and Manifest scripts, and be
confident that the scripts are receiving identical commands each time. In addition,
the same commands file can be read by both the Manifest and Spider scripts
without generating incorrect output; the Spider script simply ignores commands
for the Manifest script, and vice versa.

To create a rules file for the Spider and Manifest scripts to use:

Step 1 Open your preferred text editor.

Step 2 Enter your commands one at a time and each on its own line. Each line of your
rule file is sent to the scripts as a single argument.

For example, a rules file for the Cisco web site might read:

--start=www.cisco.com
--allow=forums.cisco.com
--reject=cgi-bin
--limit=0
--db=ciscocontent.db
--prepos=‘match(image/gif) and size > 1000k’
--xml=ciscomanifest.xml
A-11
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Spider Script Source
Step 3 Save your file in a location relative to the Spider and Manifest scripts.

Step 4 Use the file command to run each script using your rules file. For example:

spider --file=cisco-rules.cfg
manifest --file=cisco-rules.cfg

Spider Script Source
#!/usr/bin/perl -w
use strict;
my @todo = (); # Array of urls we still have to fetch
my %seen = (); # Hash of urls we've fetched

use Getopt::Long;
my $limit = 100; # Maximum number of URLs we might
fetch.
my $depth = 0; # Spidering depth (0 == infinite)
my @prefix = ();
my @filters = (); # A filter is a regexp and a bool.
(["mit\.edu", 1], [".", 0]) means accept mit.edu urls, reject all
others
my @start =(); # URLs to start spidering
my $db = ""; # The filename to write the database
to.
my $proxy = ""; # The proxy to use when making HTTP
requests

These allow us be intelligent about spidering sites that have
already
been rewritten to contain links to the hosted domain.
my @map = (); # origin to cdn-url mappings
my $hd = ""; # The hosted domain

my $debug = 0; # Print extra debugging info?

Return an array containing each line from a file.
Used by the --file option to allow stuffing @ARGV with args from a
file.
'#' until end of line is a comment character (ie it is not
returned)
whitespace is stripped from the beginning and end of lines
empty lines (or just comments and/or whitespace) are ignored
sub lines ($) {
A-12
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Spider Script Source
 my ($filename) = @_;
 open (F, "< $filename") or die "$filename: $!\n";
 my @lines = map { s/\#.*//g; s/\s*(\S*)\s*/$1/; $_ || (); } <F>;
 close F or die $!;
 return @lines;
}

We want spider and manifest to be runnable from a single config
file, so
each take all of the arguments of the other. Naturally, these
arguments
are ignored if they are irrelevent. When running this way, it's
important to use the "--start" option to name urls in spider, and
the
"--db" option to name databases in manifest.
my $junk;
GetOptions("limit=n" => \$limit,
 "depth=n" => \$depth,
 "prefix=s" => \@prefix,
 "accept=s" => sub {my ($opt, $val) = @_; push @filters,
[$val,1]},
 "reject=s" => sub {my ($opt, $val) = @_; push @filters,
[$val,0]},
 "hd|rd=s" => \$hd,
 "map=s" => \@map,
 "db=s" => \$db,
 "proxy=s" => \$proxy,
 "start=s" => \@start,
 "<>" => sub { push @start, $_[0]; },
 # Arguments that all scripts take
 "file=s" => sub {my ($opt, $val) = @_; unshift @ARGV,
lines($val)},
 "debug!" => \$debug,
 # Arguments that are really only for 'manifest' or
'rewrite'
 "prepos=s" => \$junk,
 "live=s" => \$junk,
 "set=s" => \$junk,
 "recursive!" => \$junk,
 "playservertable=s" => \$junk,
 "xml=s" => \$junk,
 "file-map=s" => \$junk,
 "index=s" => \$junk,
 "od|origin=s" => \$junk,
 "always-rewrite=s" => \$junk,
) or die "Bad argument syntax\n";

my %rmap; # Reverse map
A-13
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Spider Script Source
for my $map (@map) {
 my ($origin, $cdn) = split('=', $map);
 $rmap{$cdn} = $origin;
}

Allow crawling to any --prefix specified paths. They can be comma
separated.
@prefix = split(/,/,join(',',@prefix));
my %prefix; # Use a hash to avoid dupicates
for (@prefix) {
 $prefix{$_} = 1;
}

Given a url, extract the "prefix". That is, everything up to and
including the last '/'.
sub prefix ($) {
 my ($prefix) = @_;
 $prefix =~ s|(.*/).*|$1|;
 return $prefix;
}

use URI;

The reason to do this at all is so rtsp and mms urls have methods
like
host().
my $http_impl= URI::implementor('http');
URI::implementor('rtsp', $http_impl);
URI::implementor('mms', $http_impl);

push @todo, map { s|^|http://| unless /:/; URI->new($_)->canonical }
@start;

for my $uri (@todo) {
 next if $seen{$uri}++;
 $prefix{prefix($uri)} = 1;
}
unshift @todo, $depth if $depth; # Integers in the todo list limit
depth
my $depth_left = 1; # Used to stop getting links if in
last round

my $prefix_re = "^(".join('|', map {quotemeta($_)} keys %prefix).")";
#warn "$prefix_re\n";
push @filters, [$prefix_re, 1]; # Accept appropriate prefixes
push @filters, [".",0]; # Reject anything that gets to the end

Filter debugging
A-14
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Spider Script Source
#for my $f (@filters) {
warn "$f->[0] $f->[1]\n";
#}

my %extractors = ("text/html" => \&html_extract,
 # Real Networks formats
 "application/smil" => \&smil_extract,
 "image/vnd.rn-realpix" => \&rp_extract,
 "text/vnd.rn-realtext" => \&rt_extract,
 "audio/x-pn-realaudio" => \&list_extract,
 "audio/x-pn-realaudio-plugin" => \&list_extract,
 # Microsoft formats
 "video/x-ms-asf" => \&asx_extract,
 "audio/x-ms-wax" => \&asx_extract,
 "video/x-ms-wvx" => \&asx_extract,
 # Flash
 "application/x-shockwave-flash" => \&swf_extract,
 # JavaScript
 "application/x-javascript" => \&js_extract,
 # .m3u files aren't really standardized...
 "audio/x-m3u" => \&list_extract,
 "audio/m3u" => \&list_extract,
 "audio/x-mpegurl" => \&list_extract,
);

Web servers are often stupid. Try to guess an extractor based on
these
extensions if mime type doesn't work.
my %ext_extractors = (# Real networks
 "smi" => \&smil_extract,
 "rp" => \&rp_extract,
 "rt" => \&rt_extract,
 "ram" => \&list_extract,
 "rpm" => \&list_extract,
 # Microsoft
 "asf" => \&asx_extract,
 "wax" => \&asx_extract,
 "wvx" => \&asx_extract,
 # Flash
 "swf" => \&swf_extract,
 # JavaScript
 "js" => \&js_extract,
 # And for good measure
 "m3u" => \&list_extract);

Given a URI and a mime type, return the appropriate extractor if it
is a
container type, else 0;
A-15
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Spider Script Source
sub extractor ($$) {
 my ($uri, $type) = @_;
 my $ext = lc($uri);
 $ext =~ s/(.*\.)//; # Remove everything up to the last .

 # Sleezy hack, but blame Real. They have code to differentiate .ram
 # files from .rm and .ra files instead of separate mime types. I
really
 # don't want to suck down a multimegabyte binary file thinking it's
a ram
 # file, so bail now.
 return 0 if $ext =~ /^r[ma]$/;

 return $extractors{lc($type)} if exists $extractors{lc($type)};
 # Might want to use extention only for text/plain...
 return $ext_extractors{$ext} if exists $ext_extractors{$ext};
 return 0;
}

HTML extractor

The following hash is taken from HTML::LinkEtor. I've commented out
all
the places where links appear but they don't seem to be necessary to
view
the page, leaving things that should be considered embedded.
http://www.w3.org/TR/html4/ was used to determine what things meant.
Applet and object are supported poorly -- that is the 'base'
attributes
don't work yet, nor does 'archive'.

my %emb =
(
a => 'href',
 applet => [qw(code)], #archive codebase)], unsupported for now
area => 'href',
base => 'href',
 bgsound => 'src',
blockquote => 'cite',
 body => [qw(background)],
del => 'cite',
embed is not in w3c spec - described at
http://home.netscape.com/assist/net_sites/embed_tag.html
 embed => [qw(src pluginspage)],
form => 'action',
 frame => [qw(src longdesc)],
 iframe => [qw(src longdesc)],
 ilayer => [qw(background)],
A-16
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Spider Script Source
 img => [qw(src lowsrc longdesc)], # usemap)], usemap is a local
anchor
 input => [qw(src)], #usemap)], usemap is a local anchor
ins => 'cite',
isindex => 'action',
head => 'profile',
 layer => [qw(background src)],
#'link' => 'href',
 object => [qw(classid data)], #codebase archive usemap)],
unsupported for now
'q' => [qw(cite)],
 script => [qw(src)], #for)], "for" is not in w3c spec. Unsure what
it means
 table => [qw(background)],
 td => [qw(background)],
 th => [qw(background)],
xmp => 'href', Deprecated, and I doubt an href is "embedded"
anyway
);

use HTML::LinkExtor;
my $ex = HTML::LinkExtor->new();
sub html_extract ($) {
 my ($content) = @_;
 my (@refs,@embs);
 $ex->parse($content);
 for my $link ($ex->links) {
 my ($tag, %attr) = @$link;
 KEY:
 while (my ($key, $val) = each(%attr)) {
 if (exists $emb{$tag}) {
 for my $attr (@{$emb{$tag}}) {
 if ($attr eq $key) {
 push @embs, $val;
 next KEY;
 }
 }
 }
 push @refs, $val # If it's not embedded, it must be a ref
 }
 }

 # Hackish. Since js_extract is lame anyway, we're not even
bothering to
 # extract the JavaScript, just let js_extract look at the whole
thing.

 my ($js_refs, $js_embs) = js_extract($content);
A-17
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Spider Script Source
 push @refs, @$js_refs;
 push @embs, @$js_embs;

 (\@refs,\@embs);
}

Trivial list format extractor. Assumes that URLs must be absolute
because these formats are usually used in a way that precludes their
interpretters from knowing the context, thus they must be absolute.
This
has the advantage of being able to ignore "noise lines" like
--stop-- in
Real files.
sub list_extract ($) {
 my ($content) = @_;
 my @embs = grep { m|^\s*[a-zA-Z]+://| } split("\n", $content);
 ([],\@embs);
}

JavaScript extractor can't be perfect, but we can at least check out
the
first argument to any window.open calls. If it's a constant
(enclosed by
quotes), assume it's a url.

Furthermore, this won't extract corrcetly if there is a comma
inside
the first argument.

sub js_extract ($) {
 my ($content) = @_;
 my @refs;
 while ($content =~ m/window\.open\s*\(\s*([^\)]+)\)/g) {
 my @args = split(/,/,$1);
 my $first = $args[0];
 push @refs, $1 if $first =~ /^\'([^\']*)\'$/;
 push @refs, $1 if $first =~ /^\"([^\"]*)\"$/;
 }
 (\@refs,[]);
}

XML base extractors (smil, rp, rt, asx)
use XML::Parser;
my $xp = XML::Parser->new();
sub smil_extract ($) {
 my ($content) = @_;
 my (@refs,@embs);
 my @links = ();
A-18
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Spider Script Source
 $xp->setHandlers('Start' => sub {
 shift; my $elt = shift;
 my %attrs = @_;
 push @refs, $attrs{href} if exists $attrs{href};
 push @embs, $attrs{src} if exists $attrs{src};
 });
 $xp->parse($content);
 (\@refs,\@embs);
}

Real has a command syntax that can be used in RealText files as
something
to do when a link is clicked. One common use is to open a link in a
new
window. command() either returns its argument, or if it's argument
is
such a command, returns the URL that it mentions. If it's a command
that
does not mention a URL, return an empty list.

sub command ($) {
 my ($command) = @_;
 return $command unless $command =~ /command:/;
 return () unless $command =~ /command:openwindow/;
 return () unless $command =~ /,([^,\)]*)[,\)]/; # Put second
argument into $1
 my $url = $1;
 $url =~ s/\s*(\S*)\s*/$1/; # Trim whitespace
 return $url;
}

sub rp_extract ($) {
 my ($content) = @_;
 my (@refs,@embs);
 $xp->setHandlers('Start' => sub {
 shift;
 my $elt = shift;
 my %attrs = @_;
 push @refs, command($attrs{url}) if exists
$attrs{url};
 push @embs, $attrs{name} if $elt eq "image";
 });
 $xp->parse($content);
 (\@refs,\@embs);
}

sub rt_extract ($) {
 my ($content) = @_;
A-19
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Spider Script Source
 my @refs;
 $xp->setHandlers('Start' => sub {
 shift; my $elt = shift;
 my %attrs = @_;
 push @refs, command($attrs{href}) if exists
$attrs{href};
 });
 $xp->parse($content);
 (\@refs,[]);
}

sub asx_extract ($) {
 my ($content) = @_;
 my (@refs,@embs);
 $xp->setHandlers('Start' => sub {
 shift; my $elt = shift;
 my %attrs = @_;
 push @embs, $attrs{href} if exists $attrs{href};
 });
 $xp->parse($content);
 (\@refs,\@embs);
}

sub bin ($) {
 my ($str) = @_;
 my $num = 0;
 while ($str ne "") {
 $num *= 2;
 $num += substr($str,0,1);
 substr($str,0,1) = "";
 }
 return $num;
}

sub swf_extract ($) {
 # For format info, see http://www.openswf.org/SWFfilereference.html
 my ($content) = @_;
 my (@refs,@embs);

 my $ndx = 8; # Start after sig, ver and length

 # Skip a RECT. See
http://www.openswf.org/SWFfilereference.html#RECT
 my $bits = substr($content, $ndx, 1); $ndx += 1;
 $bits = bin(unpack("B5", $bits));
 my $bytes = int(((5 + (4*$bits))+1)/8);
 $ndx += $bytes;
A-20
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Spider Script Source
 $ndx += 4; # skip frame rate and count

 while ($ndx < length($content)) {
 my $buf = substr($content, $ndx, 2); $ndx += 2;
 $buf = unpack("S", $buf);
 my $tag = $buf >> 6;
 my $len = $buf & 0x3F;
 if ($len == 0x3f) {
 $len = substr($content, $ndx, 4); $ndx += 4;
 $len = unpack("L", $len);
 }
 if ($tag == 12) { # DoAction
 my $action;
 while ($len) {
 my $action = substr($content, $ndx, 1); $ndx += 1; $len--;
 $action = unpack("C", $action);
 if ($action & 0x80) {
 my $sublen = substr($content, $ndx, 2); $ndx += 2; $len -=
2;
 $sublen = unpack("S", $sublen);
 $buf = substr($content, $ndx, $sublen);
 $ndx += $sublen; $len -= $sublen;
 if ($action == 0x83) { # Get URL
 $buf =~ m/^([^\000]+)/;
 push @embs, $1;
 }
 }
 }
 }
 $ndx += $len;
 }
 (\@refs,\@embs);
}

use LWP::UserAgent;
#use LWP::Debug qw(+);

my $ua = new LWP::UserAgent;
$ua->proxy('http', $proxy);

sub fetch ($) {
 my ($uri) = @_;
 warn "Retreiving $uri\n" if $debug;
 my $req = HTTP::Request->new(HEAD => $uri);
 $uri->scheme =~ /http|ftp|file/ or # Someday it would be nice to
DESCRIBE
 return HTTP::Response->new(200); # rtsp urls. For now, act like
we got it.
A-21
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Spider Script Source
 my $res = $ua->request($req);
 # Check the outcome of the response
 if (!$res->is_success) {
 warn "Unable to HEAD $uri: ".$res->status_line."\n" if $debug;
 # This is bit cheesy, but since some servers barf on HEAD
requests,
 # we do a GET on a hard failure.
 if ($res->code == 500) {
 $req = HTTP::Request->new(GET => $uri);
 $res = $ua->request($req);
 warn "Unable to GET $uri: ".$res->status_line."\n" unless
 $res->is_success;
 }
 return $res unless $res->is_success;
 }

 # If we can parse it then we should actually GET it, so we can
spider off
 # links. Also, no need to retreive if we are going no deeper.
 return $res unless extractor($uri, $res->content_type) &&
$depth_left;

 unless ($req->method eq 'GET') { # Don't bother if we already had to
GET
 $req = HTTP::Request->new(GET => $uri);
 $res = $ua->request($req);
 warn "Unable to GET $uri: ".$res->status_line."\n" unless
$res->is_success;
 }
 # Insert Content-Length if it's not there
 $res->headers->header("Content-Length", length($res->content))
unless
 $res->headers->header("Content-Length");
 return $res;
}

Make sure a URI points to its origin, not the cdn.
sub originify ($) {
 my ($uri) = @_;
 # Look for URLs the content providers have already rewritten. We
 # will revert them to their original form (to find their origin
 # location) and spider that instead. (We don't want to spider the
cdn.)
 return $uri unless defined $uri->host && $uri->host eq $hd;

 # It's a link to the hd. We have to reverse it or throw it away.
 my @path = $uri->path_segments;
 shift @path; # First segment is always nothing;
A-22
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Spider Script Source
 if (@path and $path[0] =~ '^cdn-') {
 my @tail;
 shift @path; # Remove cdn-* tag
 unshift @path, ""; # Put that first segment back.
 while (@path) {
 my $path = join('/', @path);
 if (exists $rmap{$path}) {
 my $new = URI->new(join('/', $rmap{$path}, @tail))->canonical;
 return $new;
 }
 unshift @tail, pop @path;
 }
 }
 warn "Unreversable cdn link: $uri\n";
 return 0;
}

Convert an ARL back to it's original URL. Works only on one type of
ARL.
Maybe it should return 0 if it sees an ARL it doesn't understand?
sub deakamize ($) {
 my ($arl) = @_;
 # 7 is hard coded because that is the typecode for this kind of ARL
 if ($arl =~
m@http://[^/]*akamai(?:tech)?.net/7/\d+/\d+/[\dabcdef]+/(.*)@) {
 return URI->new("http://$1");
 } else {
 return $arl;
 }
}

Filter out schemes we don't understand and queries, then convert the
rest
to a standard form - pointing into the origin instead of cdn.
sub canonicalize {
 my ($base, @urls) = @_;
 @urls = map { s/\#.*//; $_; } @urls; # Get rid of fragments
 @urls = map { URI->new_abs($_, $base)->canonical } @urls; # Standard
form
 @urls = grep {
 $_->scheme =~ /http|ftp|file|rtsp|mms/ && # Filter for "normal"
schemes
 ! $_->query; # and non-queries
 } @urls;
 return map { deakamize(originify($_)); } @urls # To origin
}

return true if $url is ACCEPTed by filters.
A-23
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Spider Script Source
sub filter ($$) {
 my ($filters, $url) = @_;
 for my $filter (@$filters) {
 return $filter->[1] if "$url" =~ $filter->[0];
 }
}

my %catalog = (); # Maps URIs to response headers

Main spidering loop
my $fetched = 0;
while (my $uri = shift @todo) {
 # Stop if we are at max --depth
 if (!ref($uri)) { # A non-ref must be an integer, used
for DEPTH
 if ($uri) { # Non-zero means we keep going
 push @todo, $uri-1;
 $depth_left = $uri-1;
 next;
 }
 my $left = @todo;
 warn "Stopping with $left urls left because --depth=$depth\n";
 last; # Hit a zero, meaning stop
 }

 my $res = fetch($uri);
 next unless $res->is_success;
 $catalog{$uri} = $res->headers;
 $fetched++;

 if (my $extract = extractor($uri, $res->content_type)) {
 my ($refs, $embs) = &$extract($res->content);

 # Get urls into standard form
 @$refs = canonicalize($res->base, @$refs);
 @$embs = canonicalize($res->base, @$embs);

 # Get rid of urls we don't care about
 @$embs = grep { filter(\@filters, $_) } @$embs;
 @$refs = grep { filter(\@filters, $_) } @$refs;

 # Remove duplicate embs before saving.
 # Dup removal is unnecessary for correctness, but it avoids big
CONTAINS
 my %dup = ();
 @$embs = grep { !$dup{$_}++ } @$embs;
 $catalog{$uri}->header(CONTAINS=>"@$embs");
A-24
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Spider Script Source
 # Add unseen urls to the todo list
 push @todo, grep { !$seen{$_}++ } (@$refs, @$embs);
 }

 # Stop if we have hit our --limit
 if ($fetched == $limit) {
 my $left = @todo;
 warn "Stopping with $left urls left because --limit=$limit\n";
 last;
 }

 if ($debug and $fetched % 100 == 0) {
 warn sprintf "%d fetched, %d todo\n", $fetched, scalar @todo;
 }
}

Output loop. The only reason this loop isn't built into the input
loop is
so the output can be sorted. Maybe we don't really care about. If
not,
it should be moved into the input loop so that output will continue
as
progress is made and memory for the catalog will not be required.

datapoint: 20k URLs from hgtv cause 70Mb process and take > 11hrs

use IO::File;
my $DB = IO::Handle->new_from_fd(fileno(STDOUT),"w");
$DB = IO::File->new("> $db") or die "$db: $!\n" if $db;
my @headers = qw/Content-Type Content-Length Last-Modified CONTAINS/;
for my $key (sort keys %catalog) {
 print $DB "URL: $key\n";
 for my $h (@headers) {
 print $DB "$h: ".$catalog{$key}->header($h)."\n"
 if $catalog{$key}->header($h);
 }
 print $DB "\n";
}
close $DB or die $! if $db;
A-25
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Manifest Script Source
Manifest Script Source
#!/usr/bin/perl -w

use strict;

use Getopt::Long;
my @db = (); # URL databases to read in
my $xml = ""; # XML filename to write manifest to
my @setters = (); # General attribute setters
my $playservertable = ""; # File that contains the
PlayServerTable
my @map = (); # origin to cdn-url mappings
my $debug = 0; # Print extra debugging info?
my $recursive = 1; # Should prepos containers prepos
their kids?

Return an array containing each line from a file.
Used by the --file option to allow stuffing @ARGV with args from a
file.
'#' until end of line is a comment character (ie it is not
returned)
whitespace is stripped from the beginning and end of lines
empty lines (or just comments and/or whitespace) are ignored
sub lines ($) {
 my ($filename) = @_;
 open (F, "< $filename") or die "$filename: $!\n";
 my @lines = map { s/\#.*//g; s/\s*(\S*)\s*/$1/; $_ || (); } <F>;
 close F or die $!;
 return @lines;
}

Convert a glob pattern to a regular expression.
Assumes that the glob matches only if it matches the entire string.
sub glob2regex ($) {
 # Note: This does not allow the writer of glob patterns to escape
them.
 # * and ? are always special, [,],and- are always passed through.
 my ($glob) = @_;
 $glob = quotemeta($glob); # First, escape everything
 $glob =~ s/*/.*/g; # Convert * to .*
 $glob =~ s/\\\?/./g; # Convert ? to .
 $glob =~ s/\\(\[|\-|\])/$1/g; # Reconstruct things like [a-z].
 return "^$glob\$";
}

sub process_type ($$) {
A-26
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Manifest Script Source
 my ($opt, $val) = @_;
 push @setters, parse_setter("type=$opt:$val");
}

We want all scripts to be runnable from a single config file, so
each
take all of the arguments of the others. Naturally, these arguments
are
ignored if they are irrelevent. If you want to use identical
command
lines for all three scripts, be sure to use the --start, --db, and
--xml
options.

my $junk;
GetOptions("prepos=s" => \&process_type,
 "live=s" => \&process_type,
 "set=s" => sub {my $val = $_[1]; push @setters,
parse_setter($val)},
 "recursive!" => \$recursive,
 "playservertable=s" => $playservertable,
 "xml=s" => \$xml,
 "map=s" => \@map,
 "db=s" => \@db,
 "<>" => sub { push @db, $_[0]; },
 # Arguments that all scripts take
 "file=s" => sub {my ($opt, $val) = @_; unshift @ARGV,
lines($val)},
 "debug!" => \$debug,
 # Arguments that are really only for 'spider' or 'rewrite'
 "limit=n" => \$junk,
 "depth=n" => \$junk,
 "prefix=s" => \$junk,
 "accept=s" => \$junk,
 "reject=s" => \$junk,
 "hd|rd=s" => \$junk,
 "start=s" => \$junk,
 "file-map=s" => \$junk,
 "index=s" => \$junk,
 "od|origin=s" => \$junk,
 "always-rewrite=s" => \$junk,
) or die "Bad argument syntax\n";

sub parse_setter ($) {
 my ($setter) = @_;
 my ($settings, $sub) = split ':', $setter, 2;
 my @settings = split ' ', $settings;
 my %settings = ();
A-27
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Manifest Script Source
 for my $setting (@settings) {
 my ($key, $val) = split '=', $setting;
 $settings{$key} = $val;
 }
 return [parse_sub($sub), \%settings];
}

sub parse_sub ($) {
 local ($_) = @_;
 warn "Changing `$_'\n" if $debug;

 # Allow comparisons to size, including shortcuts like 10k
 s/\bsize\b/\$H{'Content-Length'}/gio;
 s/\b(\d+)GB?\b/($1*1024M)/gio;
 s/\b(\d+)MB?\b/($1*1024K)/gio;
 s/\b(\d+)KB?\b/($1*1024)/gio;

 # Allow matching on URL
 s+\bmatch\(([^\)]*)\)+"m\@".glob2regex($1)."\@i"+gioe;

 # Allow matching on type
 s+\btype\(([^\)]*)\)+"(exists \$H{'Content-Type'} &&
\$H{'Content-Type'} =~ m@".glob2regex($1)."@)"+gioe;

 warn " into `$_'\n" if $debug;
 my $sub = eval "sub { my (\$i) = \@_; $_ }";
 $sub or die "Unable to understand `$_'\n";
}

my %map;
for my $map (@map) {
 my ($origin, $cdn) = split('=', $map);
 $map{$origin} = $cdn;
}

Convert one URI to another according to map. Always return a new
URI,
even if contents are unchanged.
sub translate ($$) {
 my ($uri, $map) = @_;
 # Try each prefix, longer ones first
 for my $prefix (sort { length($b) <=> length($a) } keys %$map) {
 if (index($uri, $prefix) == 0) {
 my $t = "$uri";
 substr($t, 0, length($prefix)) = $map->{$prefix};
 return URI->new($t)
 }
 }
A-28
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Manifest Script Source
 return $uri->clone;
}

my @backups = grep { /=/ } @ARGV; # args with = in them are backup
specifiers
@ARGV = grep { ! /=/ } @ARGV;

use URI;

my %servers = ();
my %items = (); # Catalog of all URLs
my @items = (); # Same as %items, but sorted.

my $depth = 0;
my %default = (); # Current attributes in effect because
of group
my @chain = (); # Undo chain as groups are closed

sub push_params (%) {
 my %hash = @_;
 my $str = params(%hash);
 my $changes = {};
 while (my ($key,$val) = each %hash) {
 $changes->{$key} = $default{$key};
 $default{$key} = $val;
 }
 push @chain, $changes;
 return $str;
}

sub pop_params () {
 my $changes = pop @chain;
 while (my ($key,$val) = each %{$changes}) {
 $default{$key} = $val;
 }
}

my %xml_ent = ('&' => 'amp', '<' => 'lt', '>' => 'gt', '"' => 'quot');
sub xml_attr ($) {
 my ($val) = @_;
 $val =~ s/([\&\<\>\"])/&$xml_ent{$1};/;
 return "\"$val\"";
}

sub params (%) {
 my %hash = @_;
 my $str = "";
 while (my ($key,$val) = each %hash) {
A-29
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Manifest Script Source
 $str .= " $key=" . xml_attr($val)
 unless defined $default{$key} && $default{$key} eq $val;
 }
 return $str;
}

sub open_server (@) {
 return (" " x $depth++) . "<server".params(@_).">\n";
}
sub close_server () {
 die "More close_server()s than open_server()s!" unless $depth;
 return (" " x --$depth) . "</server>\n";
}
sub host (%) {
 return (" " x $depth) . "<host".params(@_)."/>";
}

sub open_group (@) {
 return (" " x $depth++) . "<item-group".push_params(@_).">\n";
}
sub close_group () {
 die "More close_group()s than open_group()s!" unless $depth;
 pop_params();
 return (" " x --$depth) . "</item-group>\n";
}

sub item ($) {
 my ($item) = @_;
 my $str = (" " x $depth) . "<item".params(%{$item->{attrs}});
 if (! @{$item->{contains}}) {
 return "$str/>";
 }
 $str .= ">\n";
 $depth++;
 for my $contained (@{$item->{contains}}) {
 if ($contained->{type} eq 'prepos') {
 my $path = translate($contained->{uri}, \%map)->path;
 $str .= (" " x $depth) .
"<contains".params('cdn-url'=>$path)."/>\n";
 }
 }
 $depth--;
 $str .= (" " x $depth) . "</item>";
 return $str;
}

sub header () {
 return <<HEADER
A-30
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Manifest Script Source
<?xml version="1.0" standalone="no"?>
<!DOCTYPE CdnManifest SYSTEM "CdnManifest.dtd">

<CdnManifest>
HEADER
}

sub footer () {
 return "</CdnManifest>\n";
}

sub set ($$) {
 my ($setter, $i) = @_;
 my ($pred, $attrs) = @$setter;
 use vars "%H";
 local ($_, %H) = ($i->{uri}, %{$i->{hdrs}});
 if (&$pred($i)) {
 for my $key (keys %$attrs) {
 $i->{attrs}->{$key} = $attrs->{$key};
 }
 return 1;
 }
 return 0;
}

sub print_items {
 my $server = "";
 for my $i (@_) {
 my $uri = $i->{uri};
 if ($uri->host ne $server) {
 print close_group() if $server;
 print open_group(server=>$uri->host);
 $server = $uri->host;
 }
 $i->{attrs}->{src} = $uri->path;
 my $t = translate($uri, \%map);
 $i->{attrs}->{'cdn-url'} = $t if $t ne $uri; # Only include if
needed
 print item($i) . "\n";
 }
 print close_group() if $server;
}

sub preposition_contents {
 my ($item) = @_;

 for my $contained (@{$item->{contains}}) {
 next if $contained->{type}; # Already set, or live
A-31
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Manifest Script Source
 warn "Forcing prepos of ".$contained->{uri}."\n" if $debug;
 $contained->{type} = $contained->{attrs}->{type} = 'prepos';
 preposition_contents($contained);
 }
}

Input loop. Read in all the URLs from the databases
@ARGV = @db;
while (<>) {
 my $item = { uri => undef, # Original url
 hdrs => {}, # Headers from database
 attrs => {},
 contains => [], # items that this one contains
 type => "" # Convenience. It's just
attrs->{type}
 };
 { do { # do {} while IS NOT A LOOP, the extra braces allow "last" to
work
 chomp;
 last unless $_;
 my ($header, $val) = split(": ", $_, 2);
 $item->{hdrs}->{$header} = $val;
 } while (<>); }
 die "Headers without a URL!\n" unless exists $item->{hdrs}->{URL};
 my $uri = $item->{uri} = URI->new($item->{hdrs}->{URL});
 push @items, $items{$uri} = $item;
 $servers{$uri->host} = 1;
}

Figure out what contains what
my %missing = (); # Tracks URI that have been reported
missing
for my $item (@items) {
 if (exists $item->{hdrs}->{CONTAINS}) {
 my @contains = ();
 my @missing = ();
 for my $c (split ' ', $item->{hdrs}->{CONTAINS}) {
 my $contained = $items{$c};
 if ($contained) {
 push @contains, $contained;
 } else {
 # Only consider $c missing if it has not yet been reported
 push @missing, $c unless $missing{$c}++;
 }
 }
 warn $item->{uri}." contains missing urls:\n ".join("\n ",
@missing)."\n"
 if @missing;
A-32
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Manifest Script Source
 $item->{contains} = \@contains;
 }
}

Report URLs that were missing multiple times
my $intro = 0;
while (my ($uri, $times) = each(%missing)) {
 if ($times > 1) {
 warn "Some URLs are missing multiple times:\n" unless $intro++;
 warn sprintf " %3d %s\n", $times, $uri;
 }
}
warn "\n" if $intro;

Run all the command line setters
for my $item (@items) {
 for my $setter (@setters) {
 set($setter, $item);
 }
 $item->{type} = $item->{attrs}->{type} if exists
$item->{attrs}->{type};
}

Recursively preposition anything that is contained in a
prepositioned item
if ($recursive) {
 for my $item (@items) {
 next unless $item->{type} eq 'prepos';
 preposition_contents($item);
 }
}

Spit out the manifest file
if ($xml) {
 open XML, "> $xml" or die "$xml: $!\n";
 select XML;
}

print header();
for my $s (keys %servers) {
 print open_server(name=>$s);
 print host(name=>$s, proto=>'http')."\n";
 print close_server();
}
print "\n<!-- Prepositioned Items -->\n";
print open_group(type=>"prepos");
print_items(grep {$_->{type} eq 'prepos'} @items);
print close_group();
A-33
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Manifest Script Source
print "\n<!-- Live Items -->\n";
print open_group(type=>"live");
print_items(grep {$_->{type} eq 'live'} @items);
print close_group();

if ($playservertable) {
 open TABLE, "< $playservertable" or die "$playservertable: $!\n";
 print <TABLE>;
 close TABLE or die $!;
}

print footer();
close XML or die $! if $xml;
select STDOUT;

Collect and print some simple statistics
my %space = (); # Amount of space used by various
types
my $space;
my %num = (); # Number of pieces of each type pf
content
my $num = 0;
for my $item (grep {$_->{type} eq 'prepos'} @items) {
 if (! exists $item->{hdrs}->{'Content-Type'}) {
 warn $item->{uri} . " has no content type.\n";
 next;
 }
 my $type = $item->{hdrs}->{'Content-Type'};
 $type =~ s/[\s,;].*$//;
 $num{$type} ||= 0;
 $num{$type}++;
 $num++;

 $space{$type} ||= 0;
 if (exists $item->{hdrs}->{'Content-Length'}) {
 $space{$type} += $item->{hdrs}->{'Content-Length'};
 $space += $item->{hdrs}->{'Content-Length'};
 }
}

my $k = 1024; my $m = 1024*$k; my $g = 1024*$m;
sub abbrev ($) {
 my ($num) = @_;
 return 0 unless defined $num;
 return ($num/$g,"G") if $num > $g;
 return ($num/$m,"M") if $num > $m;
 return ($num/$k,"K") if $num > $k;
A-34
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Manifest Script Source
 return ($num,"b");
}

for my $type (sort { $space{$a} <=> $space{$b} } keys %num) {
 warn sprintf "%22s %5d %4d%s\n", $type, $num{$type},
abbrev($space{$type});
}
warn sprintf "%22s %5d %4d%s\n", "Total", $num, abbrev($space);
A-35
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix A Sample Manifest File Scripts
Manifest Script Source
A-36
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Cisco Internet CDN
78-13749-01

A
 P P E N D I X B

CDN Supported Time Zones

This appendix lists time zone designations and abbreviations that are supported
by the Cisco Internet CDN Software. Time zones can be specified for any content
item or content item group using the manifest file.

Specifying a time zone for a content item affects the expiration or activation of
that item in a CDN where remote nodes are dispersed across different time zones.

This appendix contains the following sections:

• Supported Time Zone Abbreviations, page B-1

• Supported Time Zone Designations by Continent, page B-3

Supported Time Zone Abbreviations
ACT—Australian Central Time

AET—Australian Eastern Time

ART—Argentina Time

AST—Arabia Standard Time

BET—Bering Standard Time

BST—Bering Summer Time

CAT—Central Africa Time

EAT—East Africa Time

ECT—Ecuador Time
B-1
 Software Content Provider Guide

Appendix B CDN Supported Time Zones
Supported Time Zone Abbreviations
EET—East European Time

EST—Eastern Standard Time (U.S.)

GMT—Greenwich Mean Time

HST—Hawaiian Standard Time

IST—Israeli Standard Time

JST—Japan Standard Time

MET—Middle European Time

MST—Mountain Standard Time

NST—Newfoundland Standard Time

PNT—Pitcairn Time

PST—Pacific Standard Time

SST—Samoa Standard Time

UTC—Coordinated Universal Time

WET—Western European Time
B-2
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix B CDN Supported Time Zones
Supported Time Zone Designations by Continent
Supported Time Zone Designations by Continent

Africa
Africa/Abidjan

Africa/Accra

Africa/Addis_Ababa

Africa/Algiers

Africa/Asmera

Africa/Bangui

Africa/Banjul

Africa/Bissau

Africa/Blantyre

Africa/Bujumbura

Africa/Cairo

Africa/Casablanca

Africa/Conakry

Africa/Dakar

Africa/Dar_es_Salaam

Africa/Djibouti

Africa/Douala

Africa/Freetown

Africa/Gaborone

Africa/Harare

Africa/Johannesburg

Africa/Kampala

Africa/Khartoum

Africa/Kigali
B-3
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix B CDN Supported Time Zones
Supported Time Zone Designations by Continent
Africa/Kinshasa

Africa/Lagos

Africa/Libreville

Africa/Lome

Africa/Luanda

Africa/Lubumbashi

Africa/Lusaka

Africa/Mbabane

Africa/Malabo

Africa/Maseru

Africa/Mogadishu

Africa/Monrovia

Africa/Nairobi

Africa/Ndjamena

Africa/Niamey

Africa/Nouakchott

Africa/Ouagadougou

Africa/Porto-Novo

Africa/Sao_Tome

Africa/Timbuktu

Africa/Tripoli

Africa/Tunis

Africa/Windhoek

Americas
America/Adak

America/Anchorage

America/Anguilla
B-4
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix B CDN Supported Time Zones
Supported Time Zone Designations by Continent
America/Antigua

America/Aruba

America/Asuncion

America/Barbados

America/Belize

Atlantic/Bermuda

America/Bogota

America/Buenos_Aires

America/Caracas

America/Cayenne

America/Cayman

America/Chicago

America/Costa_Rica

America/Curacao

America/Dawson_Creek

America/Denver

America/Dominica

America/Edmonton

America/El_Salvador

America/Fortaleza

America/Godthab

America/Grand_Turk

America/Grenada

America/Guadeloupe

America/Guatemala

America/Guayaquil

America/Guyana

America/Halifax

America/Havana
B-5
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix B CDN Supported Time Zones
Supported Time Zone Designations by Continent
America/Indianapolis

America/Jamaica

America/La_Paz

America/Lima

America/Los_Angeles

America/Managua

America/Manaus

America/Martinique

America/Mazatlan

America/Mexico_City

America/Montevideo

America/Montreal

America/Montserrat

America/Nassau

America/New_York

America/Noronha

Antarctica/Palmer

America/Panama

America/Paramaribo

America/Phoenix

America/Porto_Acre

America/Port-au-Prince

America/Port_of_Spain

America/Puerto_Rico

America/Regina

America/Santiago

America/Santo_Domingo

America/Sao_Paulo

America/Scoresbysund
B-6
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix B CDN Supported Time Zones
Supported Time Zone Designations by Continent
America/St_Johns

America/St_Kitts

America/St_Lucia

America/St_Thomas

America/St_Vincent

Atlantic/Stanley

America/Tegucigalpa

America/Thule

America/Tijuana

America/Tortola

America/Vancouver

America/Winnipeg

Antarctica
Antarctica/Casey

Antarctica/DumontDUrville

Antarctica/Mawson

Antarctica/McMurdo

Asia and India
Asia/Aden

Asia/Almaty

Asia/Amman

Asia/Anadyr

Asia/Aqtau

Asia/Aqtobe

Asia/Ashkhabad
B-7
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix B CDN Supported Time Zones
Supported Time Zone Designations by Continent
Asia/Baghdad

Asia/Bahrain

Asia/Baku

Asia/Bangkok

Asia/Beirut

Asia/Bishkek

Asia/Brunei

Asia/Calcutta

Asia/Colombo

Asia/Dacca

Asia/Damascus

Asia/Dubai

Asia/Dushanbe

Asia/Hong_Kong

Asia/Irkutsk

Asia/Jakarta

Asia/Jayapura

Asia/Jerusalem

Asia/Kabul

Asia/Kamchatka

Asia/Karachi

Asia/Katmandu

Asia/Krasnoyarsk

Asia/Kuala_Lumpur

Asia/Kuwait

Asia/Macao

Asia/Magadan

Asia/Manila

Asia/Muscat
B-8
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix B CDN Supported Time Zones
Supported Time Zone Designations by Continent
Asia/Nicosia

Asia/Novosibirsk

Asia/Phnom_Penh

Asia/Pyongyang

Asia/Qatar

Asia/Rangoon

Asia/Riyadh

Asia/Saigon

Asia/Seoul

Asia/Shanghai

Asia/Singapore

Asia/Taipei

Asia/Tashkent

Asia/Tbilisi

Asia/Tehran

Asia/Thimbu

Asia/Tokyo

Asia/Ujung_Pandang

Asia/Ulan_Bator

Asia/Vientiane

Asia/Vladivostok

Asia/Yakutsk

Asia/Yekaterinburg

Asia/Yerevan

Indian/Antananarivo

Indian/Chagos

Indian/Christmas

Indian/Cocos

Indian/Comoro
B-9
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix B CDN Supported Time Zones
Supported Time Zone Designations by Continent
Indian/Kerguelen

Indian/Mahe

Indian/Maldives

Indian/Mauritius

Indian/Mayotte

Indian/Reunion

Atlantic Nations
Atlantic/Azores

Atlantic/Canary

Atlantic/Cape_Verde

Atlantic/Faeroe

Atlantic/Jan_Mayen

Atlantic/Reykjavik

Atlantic/South_Georgia

Atlantic/St_Helena

Australia
Australia/Adelaide

Australia/Brisbane

Australia/Broken_Hill

Australia/Darwin

Australia/Hobart

Australia/Lord_Howe

Australia/Perth

Australia/Sydney
B-10
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix B CDN Supported Time Zones
Supported Time Zone Designations by Continent
Europe
Europe/Andorra

Europe/Amsterdam

Europe/Athens

Europe/Belgrade

Europe/Berlin

Europe/Brussels

Europe/Bucharest

Europe/Budapest

Europe/Chisinau

Europe/Copenhagen

Europe/Dublin

Europe/Gibraltar

Europe/Helsinki

Europe/Istanbul

Europe/Kaliningrad

Europe/Kiev

Europe/Lisbon

Europe/London

Europe/Luxembourg

Europe/Madrid

Europe/Malta

Europe/Minsk

Europe/Monaco

Europe/Moscow

Europe/Oslo

Europe/Paris

Europe/Prague
B-11
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix B CDN Supported Time Zones
Supported Time Zone Designations by Continent
Europe/Riga

Europe/Rome

Europe/Samara

Europe/Simferopol

Europe/Sofia

Europe/Stockholm

Europe/Tallinn

Europe/Tirane

Europe/Vaduz

Europe/Vienna

Europe/Vilnius

Europe/Warsaw

Europe/Zurich

Pacific Nations
Pacific/Apia

Pacific/Auckland

Pacific/Chatham

Pacific/Easter

Pacific/Efate

Pacific/Enderbury

Pacific/Fakaofo

Pacific/Fiji

Pacific/Funafuti

Pacific/Galapagos

Pacific/Gambier

Pacific/Guadalcanal

Pacific/Guam
B-12
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix B CDN Supported Time Zones
Supported Time Zone Designations by Continent
Pacific/Kiritimati

Pacific/Kosrae

Pacific/Majuro

Pacific/Marquesas

Pacific/Nauru

Pacific/Niue

Pacific/Norfolk

Pacific/Noumea

Pacific/Pago_Pago

Pacific/Palau

Pacific/Pitcairn

Pacific/Ponape

Pacific/Port_Moresby

Pacific/Rarotonga

Pacific/Saipan

Pacific/Tahiti

Pacific/Tarawa

Pacific/Tongatapu

Pacific/Truk

Pacific/Wake

Pacific/Wallis
B-13
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Appendix B CDN Supported Time Zones
Supported Time Zone Designations by Continent
B-14
Cisco Internet CDN Software Content Provider Guide

78-13749-01

Cisco Internet CD
78-13749-01
I N D E X
Symbols

<CdnManifest> tag 3-16

<contentType> tag 3-19

<extension> tag 3-8, 3-20

<host> tag 3-22

<item> tag

contained in <item-group> 3-32

description 3-25

precedence 3-5

<item-group> tag 3-5, 3-32

<options> tag 3-23

<playServer> tag 3-18

<playServerTable> tag 3-7, 3-8, 3-36

<server> tag 3-21

A

allow

Spider script A-5

alternateUrl attribute

item 3-25

item-group 3-32

A-record 1-4

ASF 1-11, 3-9, 3-37
ASX 1-11, 3-36, 3-37

Audio Visual Interleaved

See AVI

AVI 1-10, 3-8, 3-36

mapped to Windows Media Services 3-9

C

cache

placing content in 3-4

RealServer 3-7

CDN

content type mapping 3-19

end users 1-3

linking to web page 3-5

manifest file 3-12

placing content in cache 3-4

time zones B-1

cdn-http tag 3-6

cdn-live tag 3-8, 3-10

CdnManifest.dtd 3-41

cdn-media 3-6, 3-8

cdnPrefix attribute

item-group 3-32

cdn-qtss 3-6
IN-1
N Software Content Provider Guide

Index
cdn-real 3-6, 3-7

cdn-url attribute

and published URL 3-6

and src 3-25, 3-29

contains 3-31

item 3-25, 3-26

cdn-wmt 3-6

check size mode 3-42

clearlog attribute

options 3-24

configuring

origin server 3-2

contains attribute

item 3-26, 3-31

content

creating a list of 3-11

deploying 2-5

distributing 1-5

expiration date and time 3-28

fetched from server 3-29

freshness 2-7, 2-9

grouping 3-32

identifying for CDN 2-6

live 1-6, 3-8

mapping 3-17

on-demand 1-6

placing on CDN 2-5

pre-positioned 1-6

pre-positioning 3-11
IN-2
Cisco Internet CDN Software Content Provider Guide
proxy caching 1-6

refreshed 2-7

selecting with Manifest script A-7

streamed 1-6

supported 1-10

TTL 3-29

types 2-5

content attribute

listing 3-25

Content Engines

A-record 1-4

assigning to hosted domain 2-4

IP address 1-4

preferred 1-3

reallocating disk space 2-9

removing bad content from 2-9

suitable for routing 1-2

verifying content 2-8

Content Routers

communicate with DNS 1-3

proxy tables 1-3

routing user requests 1-3

subdomains delegated to 2-3

content routing

about 1-2

end user requests 1-3

CORRECTmanifest file syntax validator 3-44

CPAN A-2

crawl
78-13749-01

Index
broadening scope A-4

limiting scope A-4

web site A-4

D

date attribute

expiration 3-28

serve content after 3-29

db

Manifest script A-10

Spider script A-5

default mode

manifest syntax validator 3-42

deleting bad content 2-9

depth

Spider script A-5

disk space

reallocating 2-9

DNS

lookup 1-3

mechanisms 1-3

modifying to create subdomain 2-3

proxy 1-3

DOC 3-36

DOC See Microsoft Word

Document Type Definition

manifest file 3-14

DTD See Document Type Definition
Cisco
78-13749-01
E

end users

requesting content 1-3

expires attribute

about 2-7

item 3-27

proxy-caching 1-6

F

fetch content 1-6

file

attribute

marking for import 3-25

extension

mapping 3-17

tag 3-20

Manifest script A-9

Spider script A-6

firewall 3-3

freshness

content 2-7

verifying 2-8

G

GIF 1-10, 3-36

GMT 3-29
IN-3
Internet CDN Software Content Provider Guide

Index
Graphics Interchange Format

See GIF

group content 3-32

H

hd

Spider script A-6

host attribute

defining 3-22

hosted domain

change HTML to point to. 2-5

Content Engines assigned 2-4

manifest file 3-12

naming conventions 2-3

specifying for Spider script A-4

URL and playserver definitions 3-6

users requesting content from 1-3

HREF

modifying for CDN 2-5

HTML 1-10, 3-36

HTTP playserver name 3-36

Hypertext Markup Language

See HTML

I

INCORRECT manifest file syntax
validator 3-44
IN-4
Cisco Internet CDN Software Content Provider Guide
J

Java Runtime Environment 3-41

Joint Photographic Experts Group

See JPG

JPG 1-10, 3-36

JRE See Java Runtime Environment

L

limit

Spider script A-6

limiting scope A-4

Listen Port splitting 3-2

live command

Manifest script A-9

live content 1-6

publishing point 3-4

selecting with Manifest script A-7

URL 3-8

versus pre-positioned A-8

Windows Media Services 3-10

live See type attribute

M

manifest file

content location 3-11

creating 3-12
78-13749-01

Index
deploying content using 2-5

document type definition 3-14

DTD 3-13

example 3-37

fetching 1-6

hosted domain 3-12

identifying to service provider 2-6

limitations 3-13

Listen Port identified 3-2

pre-positioning 2-4

removing content from 2-9

repairing syntax 3-46

script 2-6

syntax validator

check size mode 3-42

default mode 3-42

example output 3-45

installing 3-41

obtaining 3-40

output 3-44

running 3-42

source files 3-41

warnings 3-46

time zones B-1

updating 2-7

manifest-id attribute

options 3-23

Manifest script

about 2-6, A-2
Cisco
78-13749-01
configuration file 2-6

customizing A-11

generating manifest with 3-12

rules file A-11

selecting content A-7

source code A-26

syntax

guidelines A-8

live command A-8

prepos command A-8

manifest syntax validator 3-43

manval.zip 3-41

map

Manifest script A-10

Spider script A-6

match Manifest script A-10

media

marking for import 3-25

playserver name 3-36

supported 1-10, 3-36

Microsoft

PowerPoint 3-36

supported content 1-11

Word 3-36

MIME content types 3-17, 3-19

Motion Picture Experts Group

See MPG

mountpoint 3-10

MOV
IN-5
Internet CDN Software Content Provider Guide

Index
See QuickTime

See QuickTime Movie

MP3 1-10, 3-36

MP4

see QuickTime

MPG 1-10, 3-36

multicast streaming 3-1

N

name attribute

contentType 3-19

extension 3-20

host 3-22

playServer 3-18

server 3-21

Name Server 1-3

requests 1-3

naming conventions 2-3

noRedirectToOrigin attribute

item 3-26, 3-27, 3-31

item-group 3-33

options 3-23

NS

see Name Server

O

on-demand content
IN-6
Cisco Internet CDN Software Content Provider Guide
see proxy caching

origin server

configuring for live streaming 3-1

content cached from 1-6

content distribution to CDN 1-5

fetching content from 1-6

relative location of content 3-11

output

manifest file syntax validator 3-44, 3-45

P

password attribute

host 3-22

PDF 1-10, 3-36

PERL

installing A-2

Manifest script

about 3-12

source A-26

Spider script

about 2-6

source A-12

playserver

attribute 3-27

hierarchy of tags 3-5

http supported formats 3-36

mappings 3-17

media supported formats 3-36
78-13749-01

Index
qtss supported formats 3-36

real supported formats 3-37

supported 3-1

tables 3-17

playserver attribute

item 3-28

item-group 3-33

playservertable

Manifest script A-9

PlayServerTable.dtd 3-42

Portable Document Format

See PDF

port attribute

host 3-22

PowerPoint 1-11, 3-36

PPT

See Microsoft PowerPoint

prefetch attribute

item 3-28

prefix A-5

Spider script A-6

prepos

Manifest script A-9

See type attribute

prepos command A-8

pre-positioning

versus live A-8

web site content 3-11

proto attribute
Cisco
78-13749-01
host 3-22

proxy caching 1-6

RealServer 3-7

Windows Media Services 3-9

pull-split source 3-2

Q

QT 3-36

QT See QuickTime

qtss playserver name 3-36

QuickTime

content types 1-10

Movie 1-10, 3-36

Server

configuring 3-1

URL 3-8

R

RA

See RealMedia

RealMedia

RealAudio 1-11, 3-37

RealPix 1-11, 3-37

RealText 1-11, 3-37

RealVideo 1-11

real playserver name 3-37

RealServer
IN-7
Internet CDN Software Content Provider Guide

Index
live content 2-4, 3-8, 3-28, 3-33

wildcarding 3-8

receiving 3-2

splitting streams 3-2

reject A-5

Spider script A-6

repair

manifest syntax 3-46

RM

See RealMedia

routing

content 1-2

requests 1-2

to Content Engines 1-2

RP 3-37

RP See RealMedia

RT

See RealMedia

RT See RealMedia

rules

file A-11

Spider and Manifest scripts A-11

RV See RealMedia

S

Security Type 3-3

server attribute

item 3-29
IN-8
Cisco Internet CDN Software Content Provider Guide
item-group 3-34

set Manifest script A-9

size Manifest script A-10

SMIL

SMIL as supported file format 3-37

source code

Manifest script A-26

Spider script A-12

space

reallocating 2-9

Spider script

about 3-11, A-1

broadening scope A-4

combining data A-7

configuration file 2-6

customizing A-7

hd keyword A-4

keywords A-5

limiting scope A-4

map keyword A-4

matching URL A-5

re-running A-4

rules file A-11

source code A-12

syntax guidelines A-5

splitting streams 3-2

src attribute

alternate URL 3-25, 3-32

and cdn-url 3-25
78-13749-01

Index
and published URL 3-6

item 3-25

srcPrefix attribute

item-group 3-34

start Spider script A-5

streamProperty attribute

item 3-30

item-group 3-34

streams

configuring origin server 3-1

publishing point 3-4

splitting 3-2

Windows Media Services 3-3

subdomain

creating 2-3

delegated to Content Routers 2-3

valid names 2-3

syntax

errors 3-44

manifest file

repairing 3-46

Spider script

guidelines A-5

validator 3-39

warnings 3-46

T

TCP 3-1
Cisco
78-13749-01
TCP Unicast port 3-3

text editor creating rules file A-11

time Manifest script A-10

Time to Live

adjusted by Content Router 1-5

attribute 3-29, 3-35

NS records 1-5

timezone attribute

content freshness 2-7

timeZone attribute options 3-24

time zones B-1

ttl attribute 3-30

about 2-7

default value 2-7

TTL See Time to Live

type attribute

item 3-29, 3-35

item-group

live 3-35

prepos option 3-35

options 3-25

type Manifest script A-10

U

UDP Unicast

port 3-3

supported 3-1

underscore characters
IN-9
Internet CDN Software Content Provider Guide

Index
domain name 2-3

URL

cached content 2-5

case sensitivity 3-5

CDN 3-4

components 3-6

creating 3-5

identified by spider A-5

mapping from origin server to hosted
domain A-4

playserver mapping 3-5

QuickTime Server 3-8

RealServer

content types 3-7

live 3-8

on-demand 3-7

web server 3-7

wildcards 3-8

Windows Media Services 3-9

live content 3-10

on-demand 3-9

user attribute 3-22

user See end user

V

validate 3-42

validate.bat 3-42
IN-10
Cisco Internet CDN Software Content Provider Guide
W

web site

crawling 2-6, 3-11

broadening scope A-4

combining data A-7

limiting scope A-4

multiple times A-4

creating list of content 3-11

point to hosted domain 2-5

wildcard live content URLs 3-8, 3-10

Windows Media Audio 1-11

Windows Media Encoder

about 3-4

mountpoint 3-10

Windows Media Player 1-11

Windows Media Server

See Windows Media Services

Windows Media Services

configuring 3-3

live content 2-4

mountpoint 3-10

publishing point 3-4

streams supported 3-1

URL 3-9

Windows Media Video 1-11

WMA 1-11, 3-9, 3-37

WMV 1-11, 3-9, 3-37

Word 1-11
78-13749-01

Index
X

xerces.jar 3-41

XML

manifest file 1-6, 3-12

Manifest script A-10
Cisco
78-13749-01
 IN-11

Internet CDN Software Content Provider Guide

Index
IN-12
Cisco Internet CDN Software Content Provider Guide
78-13749-01

	Contents
	Preface
	Document Objectives
	Audience
	Document Organization
	Document Conventions
	Obtaining Documentation
	World Wide Web
	Documentation CD-ROM
	Ordering Documentation
	Documentation Feedback

	Obtaining Technical Assistance
	Cisco.com
	Technical Assistance Center
	Cisco TAC Web Site
	Cisco TAC Escalation Center

	Understanding CDNs
	What a CDN Does
	Security

	Mechanics of Content Routing
	End Users Requesting Content
	Routing End User Requests
	Choosing Content Engines to Serve End User Requests

	Distributing Content
	Proxy Cached and Pre-Positioned Content
	When to Pre-Position and When to Proxy Cache
	About Hosted Domains
	About the Manifest File
	Supported Content Types
	HTTP Content Types
	Apple QuickTime Content Types
	Microsoft Windows Media Content Types
	RealNetworks RealServer Content Types

	Understanding the Content Provider Role
	About Creating the CDN Subdomain
	Modifying DNS Configuration to Create a CDN Subdomain
	Creating the Hosted Domain

	About Configuring Origin Servers for Live Streaming
	About Placing Content on Your CDN
	About Caching Content
	About Pre-Positioning Content
	About Identifying Content to Place on Your CDN
	About Creating the Manifest File

	About Controlling Content Freshness after Deployment
	Refreshing Manifest File Content
	Refreshing the Manifest File
	Verifying Content Freshness
	Obsoleting Bad Content

	Deploying Web Site Content on an Internet CDN
	Configuring Origin Server for Live Streaming
	Configuring RealServer for Live Streaming
	Configuring WMT Publisher for Live Streaming

	On-Demand Caching Web Site Content
	Caching Content on Your CDN
	Creating URLs that Link to CDN Content
	URLs for Content Served Using Web Server
	URLs for Content Served Using RealServer
	URLs for On-Demand Content Served Using RealServer
	URLs for Live Content Served Using RealServer

	URLs for Content Served Using Quicktime Server
	URLs for Content Served Using Windows Media Services
	URLs for On-Demand Content Served Using Windows Media Services
	URLs for Live Content Served Using Windows Media Services

	Pre-Positioning Web Site Content
	Creating a List of Web Site Content
	Creating a Manifest File
	Manifest File Limitations
	Manifest File Document Type Definitions
	Manifest File Structure and Syntax
	Sample Manifest File

	Validating Manifest File Syntax
	Obtaining the Manifest File Validator
	Installing the Manifest File Validator
	Running the Manifest File Validator
	Understanding Manifest File Validator Output
	Syntax Errors
	Syntax Warnings

	Repairing Manifest File Syntax

	Sample Manifest File Scripts
	Overview
	Installing PERL on Your Workstation
	Obtaining the Scripts
	Listing Web Site Content Using the Spider Script
	Limiting Scope
	Broadening Scope
	Re-spidering Servers
	Spider Script Syntax Guidelines
	Combining Spider Data
	Customizing the Spider Script

	Selecting Live and Pre-position Content Using the Manifest Script
	Pre-Positioned Versus Live Content
	Manifest Script Syntax Guidelines
	Customizing the Manifest Script

	Creating a Rules File for the Spider and Manifest Scripts
	Spider Script Source
	Manifest Script Source

	CDN Supported Time Zones
	Supported Time Zone Abbreviations
	Supported Time Zone Designations by Continent
	Africa
	Americas
	Antarctica
	Asia and India
	Atlantic Nations
	Australia
	Europe
	Pacific Nations

	Index

