
ation
rface

 that
nables
t

ony

 IP

s to
isco's
TAPI Developer Guide for Cisco CME/SRST

Revised 09/1/2005

General Information

Introduction
Telephony Application Programmer’s Interface (TAPI) is the set of classes and principles of oper
that constitute a telephony application programming interface. TAPI implementations are the inte
between computer telephony applications and telephony services.

The Cisco TAPI Service Provider (TSP) allows PC software developers to create customized IP
telephony applications for Cisco IP Phone users; for example, Contact Management applications
require telephony integration to handle inbound and outbound telephone calls. The Cisco TSP e
the Cisco IP Telephony system to integrate with Microsoft Windows™ user-level applications tha
support the Microsoft Windows TAPI standard.

The Cisco TAPI implementation uses the Microsoft™ TAPI specification to support Cisco IP Teleph
Solutions. To enable a Cisco TAPI-based solutions, the following are essential:

• TAPI support/service running on the operating system

• A TAPI-based software application

• A Cisco IP Telephony phone system

Purpose
This document describes the Cisco TAPI implementation for Cisco CallManager Express(CME) and
Cisco Survivable Site Telephony (SRST), detailing the functions that comprise the implementation
software and illustrating how to use these functions to create applications that support the Cisco
Telephony hardware, software, and processes.

One of the primary goals of a standard Application Programming Interface (API), such as TAPI, i
provide an unchanging programming interface under which varied implementations may stand. C
TAPI implementation is designed to conform as closely as possible to the TAPI specification.
1
TAPI Developer Guide

General Information

 C or

nce
Audience
This document is intended for telephony software engineers who are developing Cisco telephony
applications that require TAPI. This document assumes that the engineer is familiar with both the
C++ languages and the Microsoft™ TAPI specification.

Related Documentation
For more information about TAPI specifications, creating an application to use TAPI, or TAPI
administration see:

• Microsoft TAPI 2.1 Features:

http://www.microsoft.com/ntserver/techresources/commnet/tele/tapi21.asp

• Getting Started with Windows Telephony

http://www.microsoft.com/ntserver/techresources/commnet/tele/getstartedtele.asp

• Creating Next Generation Telephony Applications:

http://www.microsoft.com/ntserver/techresources/commnet/tele/tapi21wp.asp

• The Microsoft Telephony Application Programming Interface (TAPI) Programmer's Reference

Conventions
This document uses the following conventions:

Cisco Connection Online
Cisco Connection Online (CCO) is Cisco Systems’ primary, real-time support channel. Maintena
customers and partners can self-register on CCO to obtain additional information and services.

Convention Description

boldfacefont Commands and keywords are inboldface.

italic font Arguments for which you supply values are initalics.

[] Elements in square brackets are optional.

{ x | y | z } Alternative keywords are grouped in braces and separated by
vertical bars.

[x | y | z] Optional alternative keywords are grouped in brackets and
separated by vertical bars.

string An unquoted set of characters. Do not use quotation marks
around the string or the string will include the quotation
marks.

screen font Terminal sessions and information the system displays are in
screen font.

boldface screenfont Information you must enter is inboldface screenfont.

italic screen Arguments for which you supply values are initalic screen
font.
2
TAPI Developer Guide

Architecture

ervices

notes,

e Web
, and

ing
s up

ional

hat is
ter
isco
om.

ith
ed
s of
e

ccess
, or

nts
rm,

Voice
cket
Available 24 hours a day, 7 days a week, CCO provides a wealth of standard and value-added s
to Cisco’s customers and business partners. CCO services include product information, product
documentation, software updates, release notes, technical tips, the Bug Navigator, configuration
brochures, descriptions of service offerings, and download access to public and authorized files.

CCO serves a wide variety of users through two interfaces that are updated and enhanced
simultaneously: a character-based version and a multimedia version that resides on the World Wid
(WWW). The character-based CCO supports Zmodem, Kermit, Xmodem, FTP, and Internet e-mail
it is excellent for quick access to information over lower bandwidths. The WWW version of CCO
provides richly formatted documents with photographs, figures, graphics, and video, as well as
hyperlinks to related information.

You can access CCO in the following ways:

• WWW: http://www.cisco.com

• WWW: http://www-europe.cisco.com

• WWW: http://www-china.cisco.com

• Telnet: cco.cisco.com

• Modem: From North America, 408 526-8070; from Europe, 33 1 64 46 40 82. Use the follow
terminal settings: VT100 emulation; databits: 8; parity: none; stop bits: 1; and connection rate
to 28.8 kbps.

For a copy of CCO’s Frequently Asked Questions (FAQ), contact cco-help@cisco.com. For addit
information, contact cco-team@cisco.com.

Note If you are a network administrator and need personal technical assistance with a Cisco product t
under warranty or covered by a maintenance contract, contact Cisco’s Technical Assistance Cen
(TAC) at 800 553-2447, 408 526-7209, or tac@cisco.com. To obtain general information about C
Systems, Cisco products, or upgrades, contact 800 553-6387, 408 526-7208, or cs-rep@cisco.c

Documentation CD-ROM
Cisco documentation and additional literature are available in a CD-ROM package, which ships w
your product. The Documentation CD-ROM, a member of the Cisco Connection Family, is updat
monthly. Therefore, it might be more current than printed documentation. To order additional copie
the Documentation CD-ROM, contact your local sales representative or call customer service. Th
CD-ROM package is available as a single package or as an annual subscription. You can also a
Cisco documentation on the World Wide Web at http://www.cisco.com, http://www-china.cisco.com
http://www-europe.cisco.com.

If you are reading Cisco product documentation on the World Wide Web, you can submit comme
electronically. Click Feedback in the toolbar and select Documentation. After you complete the fo
click Submit to send it to Cisco. We appreciate your comments.

Architecture
Cisco CallManager Express provides support for SCCP-based IP phones, allowing access to IOS
Gateway services, to IOS telephony interfaces for connection to the PSTN, and to Voice-over-Pa
interfaces for VoIP calls using H.323 and SIP. SeeFigure 1.
3
TAPI Developer Guide

Architecture

appear
e calls
rectly
d

t
one.
4

TAPI Developer Guide

From the perspective of most, general, IOS Voice Gateway services, the SCCP-based IP phones
as normal FXS-port-connected analog phones. This enables IOS Voice Gateway services to rout
to and from SCCP IP phones in the same way it routes calls to and from analog phones that are di
connected to FXS voice ports on the router. This also allows SCCP IP phones to benefit from an
leverage the standard IOS Voice Gateway VoIP protocols for making VoIP calls across the
WAN/Internet.

Figure 1 CME TAPI Architecture

The Cisco CME TAPI interface allows a TAPI-aware application program running under Microsof
Windows™ on a Personal Computer to assert simple 1-to-1 remote control of an individual IP ph

Restrictions

calls.

n a
e PC
ling.

t to the
tion
 IP
d it

n IP

 by
cross
-digit

ndicate

r

Note The TAPI interface does not allow a single PC to simultaneously control multiple IP phones.

The TAPI interface is designed to support only signaling operations, such as placing and receiving
The TAPI interface does not support the sending of voice media packets to and from the PC.

The TAPI interface can be used to control the on-hook and off-hook state of a single phone line o
single IP phone. It also supports the sending of dialing digits from the PC to Cisco CME so that th
can instruct the Cisco CME to place an outbound call using the IP phone, as in address-book dia

When an incoming call is presented to the SCCP phone, a notification message can also be sen
PC that includes incoming caller-id information. The TAPI-aware application can use this informa
to cause a “screen-pop” notification of the incoming call to PC user. The PC can then instruct the
phone to answer the call (in speakerphone mode or with a headset), or reject the call and forwar
elsewhere, such as to voicemail.

The Cisco CME TAPI interface is designed to support personal productivity software applications
running on an individual PC, and to help automate the handling of incoming and outgoing calls to a
phone.

The Microsoft Windows™ TSP driver for Cisco CME plugs into the TSPI layer interface provided
Microsoft TAPI and converts the TSPI function calls into SCCP control messages that are sent a
TCP/IP to the IOS router. SCCP messages indicate operations such as on-hook, off-hook, keypad
press, and soft-key press. The Cisco CME router also sends SCCP messages to the TSP driver to i
operations such as ringer-on, ringer-off, dial-tone, call-display information, and call state.

Restrictions
The following restrictions apply:

• The TSP does not support the sending of media from the router to the PC.

• The TAPI interface does not allow a single PC to simultaneously control multiple IP phones.

TAPI/TSPI Implementation
Table 1 lists the supported TAPI/TSPI functions. For more details about these functions, see the
Microsoft™ TSPI reference.

Table 1 Supported TAPI/TSPI Line Functions at a Glance

TAPI Function TSPI Function Description

lineAnswer TSPI_lineAnswer Answers the specified offering call.

lineAddToConference TSPI_lineAddToConference

lineBlindTransfer TSPI_lineBlindTransfer Performs a blind or single-step transfer of the specified
call to the specified destination address.

lineClose TSPI_lineCloseCall Closes the specified open line device after completing o
aborting all outstanding calls and asynchronous
operations on the device.

lineCompleteTransfer TSPI_lineCompleteTransfer Completes the transfer of the specified call to the party
connected in the consultation call.
5
TAPI Developer Guide

TAPI/TSPI Implementation

.

a

e

n

e
e

lineDial TSPI_lineDial Dials the specified dialable number on the specified call

lineDrop TSPI_lineDrop Drops or disconnects the specified call.

lineGetAddressID TSPI_lineGetAddressID Returns the address identifier associated with address in
different format on the specified line.

TSPI_lineGetCallAddressID Retrieves the address identifier for the indicated call.

lineGetCallInfo TSPI_lineGetCallInfo Returns detailed information about the specified call.

lineGetCallStatus TSPI_lineGetCallStatus Returns the current status of the specified call.

lineGetDevConfig TSPI_lineGetDevConfig Returns a data structure object, the contents of which ar
specific to the line (service provider) and device class,
giving the current configuration of a device associated
one-to-one with the line device.

TSPI_lineGetExtensionID Returns the extension identifier that the service provider
supports for the indicated line device.

lineGetID TSPI_lineGetID Returns a device identifier for the specified device class
associated with the selected line, address, or call.

TSPI_lineGetNumAddressIDs Retrieves the number of address identifiers supported o
the indicated line.

lineHold TSPI_lineHold Places the specified call on hold.

lineMakeCall TSPI_lineMakeCall Places a call on the specified line to the specified
destination address.

lineNegotiateExtVersion TSPI_lineNegotiateExtVersion Returns the highest extension version number the servic
provider can operate under for this device, given the rang
of possible extension versions.

TSPI_lineNegotiateTSPIVersion Returns the highest SPI version the service provider can
operate under for this device, given the range of possible
SPI versions.

lineOpen TSPI_lineOpen Opens the line device whose device identifier is given,
returning the service provider's handle for the device.

lineSetCallParams TSPI_lineSetCallParams Sets certain parameters for an existing call.

TSPI_lineSetDefaultMediaDetectionTells the service provider the new set of media types to
detect for the indicated line, replacing any previous set.

lineSetStatusMessages TSPI_lineSetStatusMessages Enables TAPI to specify which notification messages the
service provider should generate for events related to
status changes for the specified line or any of its
addresses.

lineSetupTransfer TSPI_lineSwapHold Initiates a transfer of the call specified byhdCall.

lineUnhold TSPI_lineUnhold Retrieves the specified held call.

Table 1 Supported TAPI/TSPI Line Functions at a Glance (continued)

TAPI Function TSPI Function Description
6
TAPI Developer Guide

Call Control Functions
Call Control Functions
7
TAPI Developer Guide

Flow Diagrams
Flow Diagrams
The section presents a number of example call flows:

Initialization
8
TAPI Developer Guide

Flow Diagrams
Application to Skinny IP Phone

Hold Call
9
TAPI Developer Guide

Flow Diagrams
Call Transfer
10
TAPI Developer Guide

Appendix A

lete

nd

ither

rror
Appendix A
This section provides an quick reference for supported TSPI functions and messages. For comp
information on TAPI and TSPI functions, seeMicrosoft™ TSPI reference.

This section is divided into the following areas:

• TSPI Line Functions

• TSPI Line Messages

TSPI Line Functions
This section provides an alphabetical listing of supported TSPI Line Functions.

TSPI_lineAddToConference

TheTSPI_lineAddToConference function adds a call to a conference call. The call being added a
the conference call are specified byhdConfCall.

Function Details
LONG TSPIAPI TSPI_lineAddToConference(
DRV_REQUESTID dwRequestID,
HDRVCALL hdConfCall,
HDRVCALL hdConsultCall);

Parameters

• dwRequestID—The identifier of the asynchronous request.

• hdConfCall—The handle to the conference call. The call state of hdConfCall can be
onHoldPendingConference or onHold.

• hdConsultCall—The handle to the call to be added to the conference call. This call cannot be e
a parent of another conference or a participant in any conference.

Depending on the device capabilities indicated in LINEADDRESSCAPS, the hdConsultCall
parameter may not necessarily have been established usingTSPI_lineSetupConference or
TSPI_linePrepareAddToConference.

The call state ofhdConsultCall can be connected, onHold, proceeding, or ringback.

Return Values

ReturnsdwRequestID or an error number if an error occurs. ThelResult actual parameter of the
corresponding ASYNC_COMPLETION is zero if the function succeeds, or an error number if an e
occurs. Possible return values are as follows:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALCALLSTATE

• LINEERR_OPERATIONFAILED

• LINEERR_CONFERENCEFULL

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM
11
TAPI Developer Guide

Appendix A

d

nt
o

lying

rror
Usage Notes

• The service provider returns LINEERR_INVALCALLHANDLE ifhdConsultCall is a parent of
another conference or already a participant in a conference.

• It also provides the same return value ifhdConsultCallcannot be added or if it has been establishe
usingTSPI_lineSetupConference or TSPI_linePrepareAddToConference.

• Any monitoring (media, tones, digits) on a conference call applies only to thehdConfCall
parameter, not to the individual participating calls.

TSPI_lineAnswer

TheTSPI_lineAnswer function answers the specified offering call.

Function Details
LONG TSPIAPI TSPI_lineAnswer(
 DRV_REQUESTID dwRequestID,
 HDRVCALL hdCall,
 LPCSTR lpsUserUserInfo,
 DWORD dwSize
);

Parameters

• dwRequestID—The identifier of the asynchronous request.

• hdCall—The service provider’s handle to the call to be answered. The call state ofhdCall can be
offering or accepted.

• lpsUserUserInfo—A pointer to a null-terminated string containing user-user information to be se
to the remote party at the time of answering the call. If this pointer is NULL, it indicates that n
user-user information is to be sent. User-user information is only sent if supported by the under
network, as indicated in LINEDEVCAPS.

• dwSize—The size, in bytes, of the user-user information inlpsUserUserInfo. If lpsUserUserInfois
NULL, dwSize is ignored.

Return Values

ReturnsdwRequestID or an error number if an error occurs. ThelResult actual parameter of the
corresponding ASYNC_COMPLETION is zero if the function succeeds or an error number if an e
occurs. Possible return values are as follows:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALCALLSTATE

• LINEERR_OPERATIONFAILED

• LINEERR_INUSE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_USERUSERINFOTOOBIG.
12
TAPI Developer Guide

Appendix A

nge
rm
all
he

API
d to

king

port

to

e

lect

urs.
Usage Notes

• When a new call arrives, the service provider sends TAPI a LINE_NEWCALL message to excha
handles for the call. The service provider follows this with a LINE_CALLSTATE message to info
TAPI and its client applications of the call's state. A client application typically answers the c
usingTSPI_lineAnswer. Typically, after the call is successfully answered, the call transitions to t
connected state.

• In some telephony environments, like ISDN, where user alerting is separate from call offering, T
and its client applications may have the option to first accept a call prior to answering, or instea
reject or redirect theoffering call.

• If a call is offered at the time another call is already active, the new call is connected to by invo
TSPI_lineAnswer. The effect this has on the existing active call depends on the line's device
capabilities. The first call may be unaffected, it may automatically be dropped, or it may
automatically be placed on hold. The appropriate LINE_CALLSTATE messages are used to re
state transitions to TAPI about both calls.

TSPI_lineBlindTransfer

TheTSPI_lineBlindTransfer function performs a blind or single-step transfer of the specified call
the specified destination address.

Function Details
LONG lineBlindTransfer(
HCALL hCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode
);

Parameters

• hdCall—The service provider's handle to the call to be transferred. The call state ofhdCall can be
connected.

• lpszDestAddress—A pointer to a null-terminated Unicode string identifying where the call is to b
transferred to. The destination address uses the standard dialable number format.

• dwCountryCode—The country code of the destination. The implementation should use this to se
the call progress protocols for the destination address. If a value of 0 is specified, the service
provider should use a default. TAPI does not validatedwCountryCodewhen this function is called.

Return Values

ReturnsdwRequestID or an error number if an error occurs. ThelResult actual parameter of the
correspondingasync_completion is zero if the function succeeds or an error number if an error occ

Possible return values are as follows:

• LINEERR_INVALCALLHANDLE

• LINEERR_NOMEM

• LINEERR_INVALCALLSTATE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALADDRESS

• LINEERR_OPERATIONFAILED

• LINEERR_ADDRESSBLOCKED
13
TAPI Developer Guide

Appendix A

r is

e

sed,

are as

re

rted
, and

alid."

. For
omm

nges.
• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALCOUNTRYCODE

Usage Notes

• The service provider carries out no dialing if it returns LINEERR_INVALADDRESS.

• In a blind transfer, no consultation call is made visible to TAPI. Typically, after the blind transfe
completed, the specified call is cleared from the line it was on and transitions to theidle state.

• The service provider call handle must remain valid after the transfer is completed. The handl
becomes invalid when it is no longer interested in the transferred call usingTSPI_lineCloseCall.

TSPI_lineCloseCall

TheTSPI_lineClose function closes the specified open line device after completing or aborting all
outstanding calls and asynchronous operations on the device.

Function Detail
LONG TSPIAPI TSPI_lineClose(
HDRVLINE hdLine
);

Parameters

• hdLine—The service provider's handle to the line to be closed. After the line is successfully clo
this handle is no longer valid.

Return Values

Returns zero if the function succeeds or an error number if an error occurs. Possible return values
follows:

• LINEERR_NOMEM

• LINEERR_OPERATIONFAILED

• LINEERR_OPERATIONUNAVAIL

• LINEERR_RESOURCEUNAVAIL

Usage Notes

• The service provider must report completion for every asynchronous operation. IfTSPI_lineClose
is called for a line on which there are outstanding asynchronous operations, the operations a
reported complete with an appropriate result or error code before this procedure returns.

• A similar requirement exists for active calls on the line. Outstanding operations must be repo
complete with appropriate result or error codes. Active calls must also be dropped, if required
if this behavior was indicated by the LINEDEVCAPFLAGS_CLOSEDROP bit in the
LINEDEVCAPS structure.

• After this procedure returns, the service provider must report no furtherhtCall on the line or calls
that were on the line. The service provider handles for the line and calls on the line become "inv

• The service provider must relinquish nonsharable resources it reserves while the line is open
example, closing a line accessed through a comm port and modem should result in closing the c
port, making it once again available for use by other applications.

• The service provider does not issue the LINE_LINEDEVSTATE message in response to this
function invocation because the line closes and there is no longer any interest in its state cha
14
TAPI Developer Guide

Appendix A

e busy

ate of

r
line
 or is

one

r of

ible
TSPI_lineCompleteCall

TheTSPI_lineCompleteCall function specifies how to connect a call that cannot be normally
completed. The network or switch may not be able to complete a call because network resources ar
or the remote station is busy or doesn't answer.

Function Detail
LONG TSPIAPI TSPI_lineCompleteCall(
 DRV_REQUESTID dwRequestID,
 HDRVCALL hdCall,
 LPDWORD lpdwCompletionID,
 DWORD dwCompletionMode,
 DWORD dwMessageID
);

Parameters

• dwRequestID—The identifier of the asynchronous request.

• hdCall—The service provider's handle to the call whose completion is requested. The call st
hdCall can be busy, ringback, or proceeding.

• lpdwCompletionID—A pointer to a DWORD-sized memory location where the service provide
writes a completion identifier. This uniquely identifies a completion request in progress on the
that contains the hdCall. A completion identifier becomes invalid after the request completes
canceled using theTSPI_lineUncompleteCall function. The service provider is free to reuse the
completion identifier as soon as it becomes invalid.

• dwCompletionMode—The way in which the call is to be completed. This parameter uses only
of the LINECALLCOMPLMODE_ constants.

• dwMessageID—The message that is to be sent when completing the call using
LINECALLCOMPLMODE_MESSAGE. This identifier selects the message from a small numbe
predefined messages. This parameter is not validated by TAPI when this function is called.

Return Values

ReturnsdwRequestIDor an error number if an error occurs. ThelResultparameter of the corresponding
ASYNC_COMPLETION is zero if the function succeeds, or an error number if an error occurs. Poss
return values are as follows:

• LINEERR_INVALCALLHANDLE

• LINEERR_NOMEM

• LINEERR_INVALCALLSTATE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALCALLCOMPLMODE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPOINTER

• LINEERR_RESOURCEUNAVAIL

• LINEERR_COMPLETIONOVERRUN

• LINEERR_INVALMESSAGEID

Usage Notes

This function is considered complete when the request is accepted by the network or switch.
15
TAPI Developer Guide

Appendix A

, the
all's

m
est so

l state

fer.

e

uses

rror
When the called station or network enters a state where the call can be completed as requested
service provider must send a LINE_CALLSTATE message with the call state equal to offering. The c
LINECALLINFO record lists the reason for the call as CALLCOMPLETION and provides the
completion identifier as well.

It is possible to have multiple call completion requests outstanding at any given time; the maximu
number is device dependent. The completion identifier is also used to refer to each individual requ
requests can be canceled by callingTSPI_lineUncompleteCall.

TSPI_lineCompleteTransfer

TheTSPI_lineCompleteTransfer function completes the transfer of the specified call to the party
connected in the consultation call. IfdwTransferModeis LINETRANSFERMODE_CONFERENCE, the
original call handle is changed to a conference call. Otherwise, the service provider should send cal
messages changing the calls toidle.

Function Detail
LONG TSPIAPI TSPI_lineCompleteTransfer(
 DRV_REQUESTID dwRequestID,
 HDRVCALL hdCall,
 HDRVCALL hdConsultCall,
 HTAPICALL htConfCall,
 LPHDRVCALL lphdConfCall,
 DWORD dwTransferMode
);

Parameters

• dwRequestID—The identifier of the asynchronous request.

• hdCall—The service provider's handle to the call to be transferred. The call state ofhdCall can be
onHoldPendingTransfer.

• hdConsultCall—A handle to the call that represents a connection to the destination of the trans
The call state ofhdConsultCall can beconnected, ringback, busy, or proceeding.

• htConfCall—This parameter is only valid ifdwTransferMode is specified as
LINETRANSFERMODE_CONFERENCE. The service provider must save this parameter valu
and use it in all subsequent calls to the LINEEVENT procedure reporting events on the call.
Otherwise this parameter is ignored.

• lphdConfCall—A pointer to an HDRVCALL representing the service provider's identifier for the
call. This parameter is only valid ifdwTransferMode is specified as
LINETRANSFERMODE_CONFERENCE. The service provider must fill this location with its
handle for the new conference callbefore returning from this function.

• dwTransferMode—Specifies how the initiated transfer request is to be resolved. This parameter
one of the LINETRANSFERMODE_ constants.

Return Values

ReturnsdwRequestID or an error number if an error occurs. ThelResult actual parameter of the
corresponding ASYNC_COMPLETION is zero if the function succeeds or an error number if an e
occurs. Possible return values are as follows:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONUNAVAIL
16
TAPI Developer Guide

Appendix A

d

When

all
d

r

acks
also

e new

be

 the
gress
 this
• LINEERR_INVALCALLSTATE

• LINEERR_OPERATIONFAILED

• LINEERR_NOMEM

• LINEERR_RESOURCEUNAVAIL

Usage Notes

• This function completes the transfer of the original call,hdCall, to the party currently connected
throughhdConsultCall. The consultation call is typically dialed on the consultation call allocate
as part ofTSPI_lineSetupTransfer, but it can be any call to which the switch is capable of
transferringhdCall.

• The transfer request can be resolved either as a transfer or as a three-way conference call.
resolved as a transfer, the parties connected throughhdCall andhdConsultCall are connected to
each other, and bothhdCall andhdConsultCall transition to the idle state.

• When resolved as a conference, all three parties enter into a conference call. Both existing c
handles remain valid, but transition to theconferencedstate. A conference call handle is created an
returned, and it transitions to theconnected state.

• It may also be possible to perform a blind transfer of a call usingTSPI_lineBlindTransfer.

• This function differs from the corresponding TAPI function in that it follows the TSPI model fo
beginning the lifetime of a call. TAPI and the service provider exchange opaque handles
representing the call with one another. In addition, the service provider is permitted to do callb
for the new call before it returns from this procedure. In any case, the service provider must
treat the handle it returned as "not yet valid" until after the matching ASYNC_COMPLETION
message reports success. In other words, it must not issue any LINEEVENT message for th
call or include it in call counts in messages or status data structures for the line.

TSPI_lineDial

TheTSPI_lineDial function dials the specified dialable number on the specified call.

Function Detail
LONG TSPIAPI TSPI_lineDial(
 DRV_REQUESTID dwRequestID,
 HDRVCALL hdCall,
 LPCWSTR lpszDestAddress,
 DWORD dwCountryCode
);

Parameters

• dwRequestID—The identifier of the asynchronous request.

• hdCall—The service provider's handle to the call to be dialed. The call state ofhdCall can be any
state exceptidle anddisconnected.

• lpszDestAddress—Pointer to a null-terminated Unicode string that specifies the destination to
dialed using the standard dialable number format.

• dwCountryCode—The country code of the destination. The implementation uses this to select
call progress protocols for the destination address. If a value of 0 is specified, a default call-pro
protocol defined by the service provider is used. TAPI does not validate this parameter when
function is called.
17
TAPI Developer Guide

Appendix A

rror

ot

.

ned

n

s that
, and
 use

t after
ple
es to
Return Values

ReturnsdwRequestID or an error number if an error occurs. ThelResult actual parameter of the
corresponding ASYNC_COMPLETION is zero if the function succeeds or an error number if an e
occurs. Possible return values are as follows:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALADDRESS

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALCOUNTRYCODE

• LINEERR_DIALBILLING

• LINEERR_INVALCALLSTATE

• LINEERR_DIALQUIET

• LINEERR_ADDRESSBLOCKED

• LINEERR_DIALDIALTONE

• LINEERR_NOMEM

• LINEERR_DIALPROMPT

• LINEERR_OPERATIONUNAVAIL

Usage Notes

• The service provider returns LINEERR_INVALCALLSTATE if the current state of the call does n
allow dialing.

• The service provider carries out no dialing if it returns LINEERR_INVALADDRESS.

• If the service provider returns LINEERR_DIALBILLING, LINEERR_DIALQUIET,
LINEERR_DIALDIALTONE, or LINEERR_DIALPROMPT, it should perform none of the actions
otherwise performed byTSPI_lineDial (for example, no partial dialing, and no going offhook). This
is because the service provider should pre-scan the number for unsupported characters first

• TSPI_lineDial is used for dialing on an existing call appearance; for example, call handles retur
from TSPI_lineMakeCall with NULL as thelpszDestAddressor ending in ';', call handles returned
from TSPI_lineSetupTransfer or TSPI_lineSetupConference. TSPI_lineDial can be invoked
multiple times in the course of dialing in the case of multistage dialing, if the line's device
capabilities permit it.

• If the string pointed to by thelpszDestAddress parameter in the previous call to the
TSPI_lineMakeCall or TSPI_lineDial function is terminated with a semicolon, an empty string i
the current call toTSPI_lineDial indicates that dialing is complete.

• Multiple addresses can be provided in a single dial string separated by CRLF. Service provider
provide inverse multiplexing can establish individual physical calls with each of the addresses
return a single call handle to the aggregate of all calls to the application. All addresses would
the same country code.

• Dialing is considered complete after the address has been accepted by the service provider, no
the call is finally connected. Service providers that provide inverse multiplexing may allow multi
addresses to be provided at once. The service provider must send LINE_CALLSTATE messag
TAPI to inform it about the progress of the call.
18
TAPI Developer Guide

Appendix A

on at

f the

rror

ot
TSPI_lineDrop

TheTSPI_lineDrop function drops or disconnects the specified call. User-user information can
optionally be transmitted as part of the call disconnect. This function can be called by the applicati
any time. WhenTSPI_lineDrop returns, the call should beidle.

Function Detail
LONG TSPIAPI TSPI_lineDrop(
 DRV_REQUESTID dwRequestID,
 HDRVCALL hdCall,
 LPCSTR lpsUserUserInfo,
 DWORD dwSize
);

Parameters

• dwRequestID—The identifier of the asynchronous request.

• hdCall—The service provider's handle to the call to be dropped. The call state ofhdCall can be any
state exceptidle.

• lpsUserUserInfo—This pointer is only valid if dwSize is nonzero. It specifies a pointer to a
null-terminated string containing user-user information to be sent to the remote party as part o
call disconnect. This pointer is NULL if no user-user information is to be sent. User-user
information is only sent if supported by the underlying network (see LINEDEVCAPS).

• dwSize—The size in bytes of the user-user information inlpsUserUserInfo. If lpsUserUserInfo is
NULL, dwSize is ignored.

Return Values

ReturnsdwRequestID or an error number if an error occurs. ThelResult actual parameter of the
corresponding ASYNC_COMPLETION is zero if the function succeeds or an error number if an e
occurs. Possible return values are as follows:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALCALLSTATE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_USERUSERINFOTOOBIG

• LINEERR_OPERATIONUNAVAIL

Usage Notes

• The service provider returns LINEERR_INVALCALLSTATE if the current state of the call does n
allow the call to be dropped.

• When invokingTSPI_lineDrop, related calls can sometimes be affected as well. For example,
dropping a conference call may drop all individual participating calls. LINE_CALLSTATE
messages are sent to TAPI for all calls whose call state is affected. Typically, a dropped call
transitions to theidle state. InvokingTSPI_lineDrop on a call in theofferingstate rejects the call.
Not all telephone networks provide this capability.

• In situations where the call to be dropped is a consultation call established during transfer or
conference call establishment, the original call that was placed in theOnHoldPending state is
reconnected to and it typically re-enters theconnected call state.
19
TAPI Developer Guide

Appendix A

 the

vice.

is
 the

are as
• TAPI has the option to send user-user information at the time of the drop. Even if user-user
information can be sent, there is no guarantee that the network will deliver this information to
remote party.

Note In various bridged or party line configurations when multiple parties are on the call,TSPI_lineDrop
may not actually clear the call.

TSPI_lineGetAddressID

TheTSPI_lineGetAddressID function returns the address identifier associated with address in a
different format on the specified line.

Function Detail
LONG TSPIAPI TSPI_lineGetAddressID(
 HDRVLINE hdLine,
 LPDWORD lpdwAddressID,
 DWORD dwAddressMode,
 LPCWSTR lpsAddress,
 DWORD dwSize
);

Parameters

• hdLine—The service provider's handle to the line whose address is to be retrieved.

• lpdwAddressID—A pointer to a DWORD-sized memory location where the address identifier is
returned.

• dwAddressMode—The address mode of the address contained inlpsAddress. ThedwAddressMode
parameter is allowed to have one and only one of the LINEADDRESSMODE_ constants.

• lpsAddress—A pointer to a data structure holding the address assigned to the specified line de
The format of the address is determined by thedwAddressMode parameter. If it is
LINEADDRESSMODE_DIALABLEADDR, thelpsAddress parameter uses the common dialable
number format and is NULL terminated.

• dwSize—The size of the address contained inlpsAddress. The parameterdwSizemust be set to the
length of the string (plus one for the NULL) if LINEADDRESSMODE_DIALABLEADDR is used.
If an extended LINEADDRESSMODE is used, the length should match the size of whatever
actually passed in (the DLL checks to be sure it can read the number of bytes specified from
given pointer).

Return Values

Returns zero if the function succeeds or an error number if an error occurs. Possible return values
follows:

• LINEERR_INVALLINEHANDLE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALADDRESS

• LINEERR_OPERATIONFAILED

• LINEERR_NOMEM

• LINEERR_RESOURCEUNAVAIL
20
TAPI Developer Guide

Appendix A

vice

call

ss

are as

exing
tifiers

tion
Usage Notes

This function is used to map a phone number (address) assigned to a line device back to itsdwAddressID
(in the range from 0 through the number of addresses minus one) that is returned in the line's de
capabilities.

TSPI_lineGetCallAddressID

TheTSPI_lineGetCallAddressID function retrieves the address identifier for the indicated call.

Function Detail
LONG TSPIAPI TSPI_lineGetCallAddressID(
 HDRVCALL hdCall,
 LPDWORD lpdwAddressID
);

Parameters

• hdCall—The service provider's handle to the call whose address identifier is to be retrieved. The
state ofhdCall can be any state.

• lpdwAddressID—A pointer to a DWORD into which the service provider writes the call's addre
identifier.

Return Values

Returns zero if the function succeeds or an error number if an error occurs. Possible return values
follows:

• LINEERR_NOMEM

• LINEERR_OPERATIONFAILED

• LINEERR_OPERATIONUNAVAIL

• LINEERR_RESOURCEUNAVAIL

Remarks

• If the service provider models lines as "pools" of channel resources and does inverse multipl
of a call over several address identifiers it should consistently choose one of these address iden
as the primary identifier reported by this function and in the LINECALLINFO data structure.

• This function has no direct correspondence at the TAPI level. It gives TAPI sufficient informa
to implement thelineGetNewCalls function invoked with the LINECALLSELECT_ADDRESS
option.

TSPI_lineGetCallInfo

TheTSPI_lineGetCallInfo function returns detailed information about the specified call.

Function Detail
LONG TSPIAPI TSPI_lineGetCallInfo(
 HDRVCALL hdCall,
 LPLINECALLINFO lpCallInfo
);
21
TAPI Developer Guide

Appendix A

call

ul

are as

ch
Parameters

• hdCall—The service provider's handle to the call whose call information is to be retrieved. The
state ofhdCall can be any state.

• lpCallInfo—A pointer to a variably sized data structure of type LINECALLINFO. Upon successf
completion of the request, this structure is filled with call-related information.

Return Values

Returns zero if the function succeeds or an error number if an error occurs. Possible return values
follows:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_NOMEM

• LINEERR_RESOURCEUNAVAIL

• LINEERR_OPERATIONUNAVAIL

Usage Notes

Table 2indicates which members of the LINECALLINFO data structure are filled in by TAPI and whi
members are filled in by the service provider. The service provider must preserve (it mustnotoverwrite)
the values filled in by TAPI.

Table 2 LINECALLINFO Data Structure

Member name TAPI Service provider

dwTotalSize; X

dwNeededSize; X

dwUsedSize; X

hLine; X

dwLineDeviceID; X

dwAddressID; X

dwBearerMode; X

dwRate; X

dwMediaMode; X

dwAppSpecific; X

dwCallID; X

dwRelatedCallID; X

dwCallParamFlags; X

dwCallStates; X X

dwMonitorDigitModes; X

dwMonitorMediaModes; X

DialParams; X

dwOrigin; X

dwReason; X

dwCompletionID; X
22
TAPI Developer Guide

Appendix A
dwNumOwners; X

dwNumMonitors; X

dwCountryCode; X

dwTrunk; X

dwCallerIDFlags; X

dwCallerIDSize; X

dwCallerIDOffset; X

dwCallerIDNameSize; X

dwCallerIDNameOffset; X

dwCalledIDFlags; X

dwCalledIDSize; X

dwCalledIDOffset; X

dwCalledIDNameSize; X

dwCalledIDNameOffset; X

dwConnectedIDFlags; X

dwConnectedIDSize; X

dwConnectedIDOffset; X

dwConnectedIDNameSize; X

dwConnectedIDNameOffset; X

dwRedirectionIDFlags; X

dwRedirectionIDSize; X

dwRedirectionIDOffset; X

dwRedirectionIDNameSize; X

dwRedirectionIDNameOffset; X

dwRedirectingIDFlags; X

dwRedirectingIDSize; X

dwRedirectingIDOffset; X

dwRedirectingIDNameSize; X

dwRedirectingIDNameOffset; X

dwAppNameSize; X

dwAppNameOffset; X

dwDisplayableAddressSize; X

dwDisplayableAddressOffset; X

dwCalledPartySize; X

dwCalledPartyOffset; X

dwCommentSize; X

Table 2 LINECALLINFO Data Structure (continued)

Member name TAPI Service provider
23
TAPI Developer Guide

Appendix A

nd
ng the

of a
as the
TAPI fills in the size and offset fields for the dwAppNameSize/Offset, dwCalledPartySize/Offset, a
dwCommentSize/Offset members and updates the value in dwUsedSize to reflect these after calli
service provider.

After the service provider returns from theTSPI_lineGetCallInfo function, TAPI sets thedwCallStates
member of the LINECALLINFO structure as follows:

LINECALLINFO.dwCallStates |= LINECALLSTATE_UNKNOWN;

If the service provider models lines as "pools" of channel resources and does inverse multiplexing
call over several address identifiers, it should consistently choose one of these address identifiers
primary identifier reported by this function in the LINECALLINFO data structure.

TSPI_lineGetCallStatus

TheTSPI_lineGetCallStatus function returns the current status of the specified call.

Function Detail
LONG TSPIAPI TSPI_lineGetCallStatus(
 HDRVCALL hdCall,
 LPLINECALLSTATUS lpCallStatus
);

Parameters

• hdCall—The service provider's handle to the call to be queried for its status. The call state ofhdCall
can be any state.

• lpCallStatus—A pointer to a variably sized data structure of type LINECALLSTATUS. This
structure is filled with call status information.

dwCommentOffset; X

dwDisplaySize; X

dwDisplayOffset; X

dwUserUserInfoSize; X

dwUserUserInfoOffset; X

dwHighLevelCompSize; X

dwHighLevelCompOffset; X

dwLowLevelCompSize; X

dwLowLevelCompOffset; X

dwChargingInfoSize; X

dwChargingInfoOffset; X

dwTerminalModesSize; X

dwTerminalModesOffset; X

dwDevSpecificSize; X

dwDevSpecificOffset; X

Table 2 LINECALLINFO Data Structure (continued)

Member name TAPI Service provider
24
TAPI Developer Guide

Appendix A

es are

in
erve

all
f the

ific
ated
Return Values

Returns zero if the function succeeds, or an error number if an error occurs. Possible return valu
as follows:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_NOMEM

• LINEERR_RESOURCEUNAVAIL

• LINEERR_OPERATIONUNAVAIL

Usage Notes

• The following table indicates which members of the LINECALLSTATUS data structure are filled
by the service provider and which members are filled in by TAPI. The service provider must pres
(it mustnot overwrite) the values filled in by TAPI.

• TSPI_lineGetCallStatus returns the dynamic status of a call, whereasTSPI_lineGetCallInfo
returns primarily static information about a call. Call status information includes the current c
state, detailed mode information related to the call while in this state (if any), as well as a list o
available TSPI functions TAPI can invoke on the call while the call is in this state.

TSPI_lineGetDevConfig

TheTSPI_lineGetDevConfigfunction returns a data structure object, the contents of which are spec
to the line (service provider) and device class, giving the current configuration of a device associ
one-to-one with the line device.

Function Detail
LONG TSPIAPI TSPI_lineGetDevConfig(
 DWORD dwDeviceID,
 LPVARSTRING lpDeviceConfig,
 LPCWSTR lpszDeviceClass
);

Table 3

Member name TAPI Service provider

dwTotalSize; X

dwNeededSize; X

dwUsedSize; X

dwCallState; X

dwCallStateMode; X

dwCallPrivilege; X

dwCallFeatures; X

dwDevSpecificSize; X

dwDevSpecificOffset; X
25
TAPI Developer Guide

Appendix A

on
ervice

of

er to

the
ecified

es are

 the

on
to-one

ld
ysical
f

, low
 a
tion of

be
 cases
ch as
Parameters

• dwDeviceID—The line device to be configured.

• lpDeviceConfig—A pointer to a data structure of type VARSTRING where the device configurati
structure of the associated device is returned. Upon successful completion of the request, the s
provider fills this data structure with the device configuration. ThedwStringFormatmember in the
VARSTRING structure must be set to STRINGFORMAT_BINARY. If the dwTotalSize member
the VARSTRING structure pointed to by thelpDeviceConfig parameter is greater than or equal to
the size of the fixed portion of the structure, the service provider sets the dwNeededSize memb
the required size and returns zero.

• lpszDeviceClass—A pointer to a null-terminated Unicode string that specifies the device class of
device whose configuration is requested. Valid device class strings are the same as those sp
for theTSPI_lineGetID function when it is applied to a line device (dwSelect has the value
LINECALLSELECT_LINE).

Return Values

Returns zero if the function succeeds, or an error number if an error occurs. Possible return valu
as follows:

• LINEERR_INVALDEVICECLASS

• LINEERR_NOMEM

• LINEERR_INVALPOINTER

• LINEERR_OPERATIONUNAVAIL

• LINEERR_STRUCTURETOOSMALL

• LINEERR_OPERATIONFAILED

• LINEERR_NODRIVER

• LINEERR_RESOURCEUNAVAIL

Usage Notes

• The call state is device-specific.

• This function can be used to retrieve a data structure from the service provider that specifies
configuration of a device associated one-to-one with the line device. ThelpszDeviceClassparameter
selects which of among possibly several different classes of devices is to have its configurati
retrieved. The set of supported classes is restricted to those whose devices correspond one-
with the line device. For more information about common device classes, seeTSPIDevice Classes.

• A service provider should typically allow the TAPI/line device class under this function. It wou
retrieve parameters that have "line" scope, such as the list of addresses in this line, the list of ph
hardware devices such as COMM ports corresponding to the addresses, maximum number o
concurrent calls (if configurable), and so on.

• In general, this function does not allow media-related device classes such as mci waveaudio
level wave, or datamodem device classes, because these usually apply to a particular call or
particular address. Because there can be more than one of these per line device, the identifica
the particular call or address simply by the line device identifier parameter in this function would
ambiguous. An exception can be made for call-specific or address-specific device classes in
where there is class configuration information that applies to the entire line device scope, su
initial defaults, and so on.
26
TAPI Developer Guide

Appendix A

iguous
hem.
es in
ocols
sses
ly its

kinds

d,

as
ly

file,

ic to
 this
intact

ork in
re to
sing

g
at

e
eros.
• There are several reasons whyexceptional support for call-specific and address-specific device
classes is of only limited value under this function. First, because these classes can be amb
on multiple-address/multiple-call service providers, only a subset of service providers support t
Applications are not likely to add a device-specific dependency on the inclusion of these class
this function. Second, as higher-level media "classes" emerge that implement high-level prot
such as dial-in file system access in terms of low-level transport APIs, configuration for these cla
tends toward "instance" scope instead of "class" scope. The high-level media API must supp
own functions to configure call-specific or address-specific instances.

• Whatever sort of devices and device classes this function supports, it can potentially affect two
of configuration information: permanent and temporary.Permanent information survives across
different "opens" of the line, and even across different "inits" of the service provider itself.
Temporary information survives only within a unique "open" of the line. When the line is close
any such temporary information that has been retrieved or set throughTSPI_lineSetDevConfigcan
revert to default or undefined values.

The caller can reliably retrieve any temporary configuration only by a sequence such as
TSPI_lineOpen, TSPI_lineConfigDialog, TSPI_lineGetDevConfig. The caller can reliably set
temporary configuration information retrieved by such a sequence through a sequence such
TSPI_lineOpen, TSPI_lineSetDevConfig. The temporary part of configuration remains stable on
until the nextTSPI_lineConfigDialog, TSPI_lineSetDevConfig, or TSPI_lineClose. The service
provider must take care of storing any permanent part of the configuration, typically in an .ini
and reloading it whenever the service provider is initialized.

• The exact format of the data contained within the structure returned by this function is specif
the line and device class API, is undocumented, and is undefined. The structure returned by
function cannot be directly accessed or manipulated by the application, but can only be stored
and later used inTSPI_lineSetDevConfig to restore the settings. The structure also cannot
necessarily be passed to other devices, even of the same device class (although this may w
some instances, it is not guaranteed). A service provider should put items in the data structu
allow it to be checked for consistency to guard against failures due to a client application pas
incompatible information.

TSPI_lineGetExtensionID

TheTSPI_lineGetExtensionID function returns the extension identifier that the service provider
supports for the indicated line device.

Function Detail
LONG TSPIAPI TSPI_lineGetExtensionID(
 DWORD dwDeviceID,
 DWORD dwTSPIVersion,
 LPLINEEXTENSIONID lpExtensionID
);

Parameters

• dwDeviceID—The line device to be queried.

• dwTSPIVersion—An interface version number that was already negotiated for this device usin
TSPI_lineNegotiateTSPIVersion. This function operates according to the interface specification
this version level.

• lpExtensionID—A pointer to a structure of type LINEEXTENSIONID. If the service provider
supports provider-specific extensions, it fills this structure with the extension identifier of thes
extensions. If the service provider does not support extensions, it fills this structure with all z
(Therefore, a valid extension identifier cannot consist of all zeros.)
27
TAPI Developer Guide

Appendix A

es are

riate

ice

with

. TAPI

s, or
.

is
ifier.
I) for

the
.ini

for
ess.
Return Values

Returns zero if the function succeeds, or an error number if an error occurs. Possible return valu
as follows:

• LINEERR_NOMEM,

• LINEERR_OPERATIONFAILED,

• LINEERR_OPERATIONUNAVAIL,

• LINEERR_RESOURCEUNAVAIL.

Usage Notes

• This function is typically called by TAPI in response to an application calling the
lineNegotiateAPIVersion function. The result returned by the service provider should be approp
for use in a subsequent call toTSPI_lineNegotiateExtVersion. An extension identifier of all zeros
is not a legal extension identifier, because the all-zeros value is used to indicate that the serv
provider does not support extensions.

TSPI_lineGetID

TheTSPI_lineGetID function returns a device identifier for the specified device class associated
the selected line, address, or call.

LONG TSPIAPI TSPI_lineGetID(
 HDRVLINE hdLine,
 DWORD dwAddressID,
 HDRVCALL hdCall,
 DWORD dwSelect,
 LPVARSTRING lpDeviceID,
 LPCWSTR lpszDeviceClass,
 HANDLE hTargetProcess
);

Parameters

• hdLine—The service provider's handle to the line to be queried.

• dwAddressID—An address on the given open line device. An address identifier is permanently
associated with an address; the identifier remains constant across operating system upgrades
does not validate this parameter when this function is called.

• hdCall—The service provider's handle to the call to be queried.

• dwSelect—Specifies whether the device identifier requested is associated with the line, addres
a single call. ThedwSelect parameter can have only one of the LINECALLSELECT_ constants

• lpDeviceID—A pointer to the memory location of type VARSTRING where the device identifier
returned. Upon successful completion of the request, this location is filled with the device ident
The format of the returned information depends on the method used by the device class (AP
naming devices.

• lpszDeviceClass—A pointer to a null-terminated Unicode string that specifies the device class of
device whose identifier is requested. Valid device class strings are those used in the System
section to identify device classes (such as COM, Wave, and MCI.)

• hTargetProcess—The process handle of the application on behalf of which theTSPI_lineGetID
function is invoked. If the information returned in the VARSTRING structure includes a handle
use by the application, the service provider should create or duplicate the handle for the proc
28
TAPI Developer Guide

Appendix A

e
il.

es are

e the

vice
at

evice
ese

on
If hTargetProcess is set to INVALID_HANDLE_VALUE, then the application is executing on a
remote client system and it is not possible to create a duplicate handle directly. Instead, the
VARSTRING structure should contain a UNC name of a network device or other name that th
remote client can use to access the device. If this is not possible, then the function should fa

Return Values

Returns zero if the function succeeds, or an error number if an error occurs. Possible return valu
as follows:

• LINEERR_INVALLINEHANDLE

• LINEERR_NOMEM

• LINEERR_INVALADDRESSID

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_NODEVICE

• LINEERR_RESOURCEUNAVAIL

Usage Notes

• The service provide returns LINEERR_INVALLINEHANDLE ifdwSelect is
LINECALLSELECT_LINE or LINECALLSELECT_ADDRESS, andhdLine is invalid.

• The service provider returns LINEERR_INVALCALLHANDLE ifdwSelect is
LINECALLSELECT_CALL andhdCall is invalid.

• The service provider should support the tapi/line device class to allow applications to determin
real line device identifier of an opened line. In that case, the variable data returned is the
dwDeviceID. For more information about common device class names, seeTSPI Device Classes.

• A vendor that defines a device-specific media type also needs to define the corresponding
device-specific (proprietary) API to manage devices of the media type. To avoid collisions on de
class names assigned independently by different vendors, a vendor should select a name th
uniquely identifies the vendor and then the media type; for example: "intel/video".

• The service provider fills in all the members of the VARSTRING data structure, except for
dwTotalSize, which is filled in by TAPI. The service provider mustnot overwrite the dwTotalSize
member.

• The service provider does not need to be concerned with handling tapi/line and tapi/phone d
classes because TAPI handles these for the service provider. Therefore, code for handling th
device classes is optional.

TSPI_lineGetNumAddressIDs

TheTSPI_lineGetNumAddressIDs function retrieves the number of address identifiers supported
the indicated line.

Function Detail
LONG TSPIAPI TSPI_lineGetNumAddressIDs(
 HDRVLINE hdLine,
 LPDWORD lpdwNumAddressIDs
);
29
TAPI Developer Guide

Appendix A

s

es are

rror
Parameters

• hdLine—The handle to the line for which the number of address identifiers is to be retrieved.

• lpdwNumAddressIDs—A pointer to a DWORD. The location is filled with the number of addres
identifiers supported on the indicated line. The value is one or larger.

Return Values

Returns zero if the function succeeds, or an error number if an error occurs. Possible return valu
as follows:

• LINEERR_NOMEM

• LINEERR_OPERATIONFAILED

• LINEERR_OPERATIONUNAVAIL

• LINEERR_RESOURCEUNAVAIL

Usage Notes

This function is called by TAPI in response to an application callinglineSetNumRings,
lineGetNumRings, or lineGetNewCalls. TAPI uses the retrieved value to determine if the specified
address identifier is within the range supported by the service provider.

TSPI_lineHold

TheTSPI_lineHold function places the specified call on hold.

Function Detail
LONG TSPIAPI TSPI_lineHold(
 DRV_REQUESTID dwRequestID,
 HDRVCALL hdCall
);

Parameters

• dwRequestID—The identifier of the asynchronous request.

• hdCall—The service provider's handle to the call to be placed on hold. The call state ofhdCall can
beconnected.

Return Values

ReturnsdwRequestID, or an error number if an error occurs. ThelResult actual parameter of the
corresponding ASYNC_COMPLETION is zero if the function succeeds, or an error number if an e
occurs. Possible return values are as follows:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALCALLSTATE

• LINEERR_OPERATIONFAILED

• LINEERR_NOMEM

• LINEERR_RESOURCEUNAVAIL
30
TAPI Developer Guide

Appendix A

 or

ce

arty

ss.
uested.

l

or
 an

ess.

ined

lly
ing

ed

ts
s,
Usage Notes

• The call on hold is temporarily disconnected, allowing TAPI to use the line device for making
answering other calls.TSPI_lineHold performs ahard hold of the specified call, as opposed to a
consultation call. A call on hard hold typically cannot be transferred or included in a conferen
call, whereas a consultation call can. Consultation calls are initiated using
TSPI_lineSetupTransfer, TSPI_lineSetupConference, or TSPI_linePrepareAddToConference.

• After a call is successfully placed on hold, the call state typically transitions toonHold. A held call
is retrieved throughTSPI_lineUnhold. While a call is on hold, the service provider can send
LINE_CALLSTATE messages about state changes of the held call. For example, if the held p
hangs up, the call state can transition todisconnected, and the service provider can send a
LINE_CALLSTATE message indicating the new state.

TSPI_lineMakeCall

TheTSPI_lineMakeCall function places a call on the specified line to the specified destination addre
Optionally, call parameters can be specified if anything but default call setup parameters are req

Function Detail
LONG TSPIAPI TSPI_lineMakeCall(
 DRV_REQUESTID dwRequestID,
 HDRVLINE hdLine,
 HTAPICALL htCall,
 LPHDRVCALL lphdCall,
 LPCWSTR lpszDestAddress,
 DWORD dwCountryCode,
 LPLINECALLPARAMS const lpCallParams
);

Parameters

• dwRequestID—The identifier of the asynchronous request.

• hdLine—The handle to the line on which the new call is to be originated.

• htCall—The TAPI handle to the new call. The service provider must save this and use it in al
subsequent calls to the LINEEVENT procedure reporting events on the call.

• lphdCall—A pointer to a call handle. The service provider must fill this location with its handle f
the call before this procedure returns. This handle is ignored by TAPI if the function results in
error.

• lpszDestAddress—Pointer to a null-terminated Unicode string that specifies the destination addr
This follows the standard dialable number format. This pointer can be specified as NULL for
non-dialed addresses (as with a hot phone, which always automatically connects to a predef
number) or when all dialing is performed usingTSPI_lineDial.

In the latter case,TSPI_lineMakeCall allocates an available call appearance that would typica
remain in the dialtone state until dialing begins. Service providers that have inverse multiplex
capabilities can allow an application to specify multiple addresses at once.

• dwCountryCode—The country code of the called party. If a value of 0 is specified, a default is us
by the implementation.

• lpCallParams—A pointer to a LINECALLPARAMS structure. This structure allows TAPI to
specify how it wants the call to be set up. If NULL is specified, a default 3.1kHz voice call is
established, and an arbitrary origination address on the line is selected. This structure selec
elements such as the call's bearer mode, data rate, expected media type, origination addres
blocking of caller ID information, and dialing parameters.
31
TAPI Developer Guide

Appendix A

rror

in

ng

acters
Return Values

Returns dwRequestID, or an error number if an error occurs. The lResult actual parameter of the
corresponding ASYNC_COMPLETION is zero if the function succeeds, or an error number if an e
occurs. Possible return values are as follows:

• LINEERR_ADDRESSBLOCKED

• LINEERR_INVALLINESTATE

• LINEERR_BEARERMODEUNAVAIL

• LINEERR_INVALRATE

• LINEERR_CALLUNAVAIL

• LINEERR_INVALLINEHANDLE

• LINEERR_DIALBILLING

• LINEERR_INVALADDRESS

• LINEERR_DIALQUIET

• LINEERR_INVALADDRESSID

• LINEERR_DIALDIALTONE

• LINEERR_INVALCALLPARAMS

• LINEERR_DIALPROMPT

• LINEERR_NOMEM

• LINEERR_INUSE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALADDRESSMODE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALBEARERMODE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALCOUNTRYCODE

• LINEERR_RATEUNAVAIL

• LINEERR_INVALMEDIAMODE

• LINEERR_USERUSERINFOTOOBIG

Usage Notes

• The service provider returns LINEERR_INVALLINESTATE if the line is currently not in a state
which this operation can be performed. A list of currently valid operations can be found in the
dwLineFeatures member (of the type LINEFEATURE) in the LINEDEVSTATUS structure. (Calli
TSPI_lineGetLineDevStatus updates the information in LINEDEVSTATUS.)

• If the service provider returns LINEERR_DIALBILLING, LINEERR_DIALQUIET,
LINEERR_DIALDIALTONE, or LINEERR_DIALPROMPT, it should perform none of the actions
otherwise performed byTSPI_lineMakeCall. For example, no partial dialing, and no going
offhook. This is because the service provider should pre-scan the number for unsupported char
first.
32
TAPI Developer Guide

Appendix A

be

r
re sent,

dia

sed

s the

r, the
o the

e
re is

r

acks
also

ude it

ice

d.

sing
at
• After TSPI_lineMakeCall returns a SUCCESS reply callback message to the application, the
service provider must send LINE_CALLSTATE messages to thelpfnEventProc passed in
TSPI_lineOpen to notify TAPI about the progress of the call. A typical reported sequence may
dial tone, dialing, proceeding, ringback, and connected.

The first state reported is not necessarily LINECALLSTATE_DIALTONE. The service provide
chooses how many of these states are reported. It is recommended that as many as possible a
so that applications can take appropriate actions.

• The service provider initially does media monitoring on the new call for at least the set of me
types that were monitored for on the line.

• If the dial string is NULL, the service provider takes the line to the dialtone state (for a Comm-ba
service provider, this would involve ATD) and send a call-state message indicating
LINECALLSTATE_DIALTONE.

• If the dial string ends in ';' (a semicolon), the service provider dials the partial number and send
LINECALLSTATE_DIALING message. This call is completed by calls toTSPI_lineDial.

• If the dial string contains characters (W, @, $, ?) that are not supported by the service provide
service provider must scan the dial string and return (synchronously) an error corresponding t
first invalid character.

• If the LINECALLPARAMFLAGS_IDLE flag is set, the service provider must check the current lin
status (the equivalent of going off-hook and sensing dial tone). If this IDLE flag is set and the
no dial tone, the function fails with the error LINEERR_CALLUNAVAIL. If the IDLE flag is not
set, or there is a dial tone, the dialing can continue.

• This function differs from the corresponding TAPI function in that it follows the TSPI model fo
beginning the lifetime of a call. TAPI and the service provider exchange opaque handles
representing the call with one another. In addition, the service provider is permitted to do callb
for the new call before it returns from this procedure. In any case, the service provider must
treat the handle it returned as "not yet valid" until after the matching ASYNC_COMPLETION
message reports success. It must not issue any LINEEVENT messages for the new call or incl
in call counts in messages or status data structures for the line.

TSPI_lineNegotiateExtVersion

TheTSPI_lineNegotiateExtVersionfunction returns the highest extension version number the serv
provider can operate under for this device, given the range of possible extension versions.

Function Detail
LONG TSPIAPI TSPI_lineNegotiateExtVersion(
 DWORD dwDeviceID,
 DWORD dwTSPIVersion,
 DWORD dwLowVersion,
 DWORD dwHighVersion,
 LPDWORD lpdwExtVersion
);

Parameters

• dwDeviceID—Identifies the line device for which interface version negotiation is to be performe
The value INITIALIZE_NEGOTIATION may not be used for this function.

• dwTSPIVersion—An interface version number that has already been negotiated for this device u
TSPI_lineNegotiateTSPIVersion. This function operates according to the interface specification
this version level.
33
TAPI Developer Guide

Appendix A

n
nt
n is

on
nt
n is

ce
d by
ajor

ange

es are

pen
ested

an

d.
lue:

o

• dwLowVersion—The lowest extension version number under which TAPI or its client applicatio
can operate. The most-significant WORD is the major version number and the least-significa
WORD is the minor version number. TAPI does not validate this parameter when this functio
called.

• dwHighVersion—The highest extension version number under which TAPI or its client applicati
can operate. The most-significant WORD is the major version number and the least-significa
WORD is the minor version number. TAPI does not validate this parameter when this functio
called.

• lpdwExtVersion—A pointer to a DWORD. Upon a successful return from this function, the servi
provider fills this location with the highest extension version number, within the range requeste
the caller, under which the service provider can operate. The most-significant WORD is the m
version number and the least-significant WORD is the minor version number. If the requested r
does not overlap the range supported by the service provider, the function returns
LINEERR_INCOMPATIBLEEXTVERSION.

Return Values

Returns zero if the function succeeds, or an error number if an error occurs. Possible return valu
as follows:

• LINEERR_INCOMPATIBLEAPIVERSION

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INCOMPATIBLEEXTVERSION

• LINEERR_OPERATIONFAILED

• LINEERR_NODRIVER

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

Usage Notes

This function can be called before or after the device is opened by TAPI. If the device is currently o
and has an extension version selected, the function gives that version number if it is within the requ
range. If the selected version number is outside the requested range, the function returns
LINEERR_INCOMPATIBLEEXTVERSION.

TSPI_lineNegotiateTSPIVersion

TheTSPI_lineNegotiateTSPIVersionfunction returns the highest SPI version the service provider c
operate under for this device, given the range of possible SPI versions.

LONG TSPIAPI TSPI_lineNegotiateTSPIVersion(
 DWORD dwDeviceID,
 DWORD dwLowVersion,
 DWORD dwHighVersion,
 LPDWORD lpdwTSPIVersion
);

Parameters

• dwDeviceID—Identifies the line device for which interface version negotiation is to be performe
In addition to device identifiers within the range the service provider supports, this may be the va
INITIALIZE_NEGOTIATION. This value is used to signify that an overall interface version is t
be negotiated.
34
TAPI Developer Guide

Appendix A

inor

inor

t
r can
RD
 the

es are

ng

evice

T

• dwLowVersion—The lowest TSPI version number under which TAPI can operate. The
most-significant WORD is the major version number and the least-significant WORD is the m
version number.

• dwHighVersion—The highest TSPI version number under which TAPI can operate. The
most-significant WORD is the major version number and the least-significant WORD is the m
version number.

• lpdwTSPIVersion—A pointer to a DWORD. The service provider fills this location with the highes
TSPI version number, within the range requested by the caller, under which the service provide
operate. The most-significant WORD is the major version number and the least-significant WO
is the minor version number. If the requested range does not overlap the range supported by
service provider, the function returns LINEERR_INCOMPATIBLEAPIVERSION.

Return Values

Returns zero if the function succeeds, or an error number if an error occurs. Possible return valu
as follows:

• LINEERR_INCOMPATIBLEAPIVERSION

• LINEERR_OPERATIONUNAVAIL

• LINEERR_NODRIVER

• LINEERR_OPERATIONFAILED

• LINEERR_NOMEM

• LINEERR_RESOURCEUNAVAIL

Usage Notes

WhendwDeviceID is INITIALIZE_NEGOTIATION, this function must not return
LINEERR_OPERATIONUNAVAIL, because this function (with that value) is mandatory for negotiati
the overall interface version even if the service provider supports no line devices.

TSPI_lineOpen

TheTSPI_lineOpen function opens the line device whose device identifier is given, returning the
service provider's handle for the device. The service provider must retain the TAPI handle for the d
for use in subsequent calls to the LINEEVENT callback procedure.

Function Detail
LONG TSPIAPI TSPI_lineOpen(
 DWORD dwDeviceID,
 HTAPILINE htLine,
 LPHDRVLINE lphdLine,
 DWORD dwTSPIVersion,
 LINEEVENT lpfnEventProc
);

Parameters

• dwDeviceID—Identifies the line device to be opened.

• htLine—The TAPI handle for the line device to be used in subsequent calls to the LINEEVEN
callback procedure to identify the device.

• lphdLine—A pointer to an HDRVLINE where the service provider fills in its handle for the line
device.
35
TAPI Developer Guide

Appendix A

ce

es are

he line.
ion in
r
MM

edia

the
.

• dwTSPIVersion—The TSPI version.

• lpfnEventProc—A pointer to the LINEEVENT callback procedure supplied by TAPI that the servi
provider calls to report subsequent events on the line.

Return Values

Returns zero if the function succeeds, or an error number if an error occurs. Possible return valu
as follows:

• LINEERR_ALLOCATED

• LINEERR_OPERATIONUNAVAIL

• LINEERR_NODRIVER

• LINEERR_OPERATIONFAILED

• LINEERR_NOMEM

• LINEERR_RESOURCEUNAVAIL

Usage Notes

• The service provider should reserve any non-sharable resources that are required to manage t
However, any actions that can be postponed to lineMakeCall should be. It is a design assumpt
TAPI that lineOpen is an "inexpensive" operation. For example, if the line is opened in monito
mode only, it should not be necessary for a COMM-port-based service provider to open the CO
port.

• This procedure does not correspond directly to any procedure at the TAPI level, at which the
functions of enabling device-specific extensions, selecting line characteristics, and setting m
type detection are included in the functionality defined bylineOpen. At the TSPI level, these
additional capabilities are separated out intoTSPI_lineNegotiateExtVersion,
TSPI_lineSetDefaultMediaDetection, andTSPI_lineConditionalMediaDetection.

TSPI_linePark

TheTSPI_linePark function parks the specified call according to the specified park mode.

Function Details
LONG TSPIAPI TSPI_linePark(
 DRV_REQUESTID dwRequestID,
 HDRVCALL hdCall,
 DWORD dwParkMode,
 LPCWSTR lpszDirAddress,
 LPVARSTRING lpNonDirAddress
);

Parameters

• dwRequestID—The identifier of the asynchronous request.

• hdCall—The handle for the call being parked. The call state ofhdCall is connected.

• dwParkMode—The park mode with which the call is to be parked. It is only one of the
LINEPARKMODE_ constants.

• lpszDirAddress—A pointer toa null-terminated Unicode string that indicates the address where
call is to be parked when using directed park. This parameter is ignored for nondirected park
36
TAPI Developer Guide

Appendix A

ss
ark.

for

d

rror

 new

call

y
s.
• lpNonDirAddress—A pointer to a structure of type VARSTRING. For nondirected park, the addre
where the call is parked is returned in this structure. This parameter is ignored for directed p

Within the VARSTRING structure,dwStringFormat must be set to STRINGFORMAT_ASCII (an
ASCII string buffer containing a null-terminated string), and the terminating NULL is accounted
in thedwStringSize.

If the memory pointed to by thelpNonDirAddress parameter is not large enough for the requeste
address, theTSPI_linePark function returns LINEERR_STRUCTURETOOSMALL.

Return Values

If an error occurs, an error number ordwRequestID is returned. ThelResult parameter of the
corresponding ASYNC_COMPLETION is zero if the function succeeds, or an error number if an e
occurs. Possible return values are as follows:

• LINEERR_INVALCALLHANDLE

• LINEERR_NOMEM

• LINEERR_INVALPARKMODE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALCALLSTATE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALADDRESS

• LINEERR_RESOURCEUNAVAIL

• LINEERR_STRUCTURETOOSMALL

Usage Notes

A parked call enters an idle state after it is successfully parked. The service provider reports the
state using a LINE_CALLSTATE message. A subsequentTSPI_lineUnpark creates a new distinct call
handle, regardless of whetherTSPI_lineCloseCall was used to destroy the old handle.

TSPI_linePickup

TheTSPI_linePickup function picks up a call alert at the specified destination address and returns a
handle for the picked-up call.

If invoked with NULL for thelpszDestAddress parameter, a group pickup is performed. If required b
the device capabilities,lpszGroupIDspecifies the group identifier to which the alerting station belong

Function Details
LONG TSPIAPI TSPI_linePickup(
 DRV_REQUESTID dwRequestID,
 HDRVLINE hdLine,
 DWORD dwAddressID,
 HTAPICALL htCall,
 LPHDRVCALL lphdCall,
 LPCWSTR lpszDestAddress,
 LPCWSTR lpszGroupID
);

Parameters

• dwRequestID—The identifier of the asynchronous request.
37
TAPI Developer Guide

Appendix A

ifier
system

l

l.
rns.

call

alls

ible

r

p.

an
• hdLine—The handle to the line on which a call is to be picked up.

• dwAddressID—The address on hdLine at which the pickup is to be originated. An address ident
is permanently associated with an address; the identifier remains constant across operating
upgrades.

• htCall—The TAPI handle to the new call. The service provider must save this and use it in al
subsequent calls to the LINEEVENT procedure reporting events on the call.

• lphdCall—A pointer to an HDRVCALL representing the service provider's identifier for the cal
The service provider must fill this location with its handle for the call before this procedure retu
This handle is ignored by TAPI if the function results in an error.

• lpszDestAddress—A pointer to a null-terminated Unicode string that contains the address whose
is to be picked up. The address is standard link format.

• lpszGroupID—A pointer to a null-terminated Unicode string containing the group identifier to
which the alerting station belongs. This parameter is required on some switches to pick up c
outside of the current pickup group.

lpszGroupID can be specified by itself with a NULL pointer forlpszDestAddress.

Alternatively, lpszGroupID can be specified in addition tolpszDestAddress, if required by the
device. It can also be NULL itself.

Return Values

ReturnsdwRequestID, or an error number if an error occurs. ThelResultparameter of the corresponding
ASYNC_COMPLETION is zero if the function succeeds, or an error number if an error occurs. Poss
return values are as follows:

• LINEERR_INVALLINEHANDLE

• LINEERR_NOMEM

• LINEERR_INVALADDRESSID

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALADDRESS

• LINEERR_OPERATIONFAILED

• LINEERR_INVALGROUPID

• LINEERR_RESOURCEUNAVAIL

Usage Notes

By calling TSPI_lineGetCallInfo when a call has been picked up successfully, the service provide
notifies TAPI with the LINE_CALLSTATE message about call state changes. The LINECALLINFO
structure supplies information about the call that was picked up and lists the reason for the picku

TSPI_linePrepareAddToConference

TheTSPI_linePrepareAddToConference function creates a consultation call that can be added to
existing conference call.

Function Details
LONG TSPIAPI TSPI_linePrepareAddToConference(
 DRV_REQUESTID dwRequestID,
 HDRVCALL hdConfCall,
 HTAPICALL htConsultCall,
38
TAPI Developer Guide

Appendix A

.

this
call.

e
all

eters

ible
 LPHDRVCALL lphdConsultCall,
 LPLINECALLPARAMS const lpCallParams
);

Parameters

• dwRequestID—The identifier of the asynchronous request.

• hdConfCall—The handle to a conference call. The call state of hdConfCall can be connected

• htConsultCall—The TAPI handle to the new consultation call. The service provider must save
and use it in all subsequent calls to the LINEEVENT procedure reporting events on the new
The call state of hdAddCall is not applicable.

• lphdConsultCall—A pointer to an HDRVCALL representing the service provider's identifier for th
new consultation call. The service provider must fill this location with its handle for the new c
before this procedure returns. This handle is invalid if the function results in an error.

• lpCallParams—A pointer to a LINECALLPARAMS containing call parameters to use when
establishing the consultation call. This parameter is set to NULL if no special call setup param
are desired.

Return Values

ReturnsdwRequestID, or an error number if an error occurs. ThelResultparameter of the corresponding
ASYNC_COMPLETION is zero if the function succeeds, or an error number if an error occurs. Poss
return values are as follows:

• LINEERR_BEARERMODEUNAVAIL

• LINEERR_INVALLINESTATE

• LINEERR_CALLUNAVAIL

• LINEERR_INVALMEDIAMODE

• LINEERR_CONFERENCEFULL

• LINEERR_INVALRATE

• LINEERR_INUSE

• LINEERR_NOMEM

• LINEERR_INVALADDRESSMODE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALBEARERMODE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALCALLPARAMS

• LINEERR_RATEUNAVAIL

• LINEERR_INVALCALLSTATE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALCONFCALLHANDLE

• LINEERR_USERUSERINFOTOOBIG
39
TAPI Developer Guide

Appendix A

s a

state

this

I
.

f

rror
Usage Notes

This function places an existing conference call on hold (onHoldPendingConference) and create
consultation call that can be added later to the existing conference call with
TSPI_lineAddToConference.

TSPI_lineSetCallParams

TheTSPI_lineSetCallParams function sets certain parameters for an existing call.

Function Detail
LONG TSPIAPI TSPI_lineSetCallParams(
 DRV_REQUESTID dwRequestID,
 HDRVCALL hdCall,
 DWORD dwBearerMode,
 DWORD dwMinRate,
 DWORD dwMaxRate,
 LPLINEDIALPARAMS const lpDialParams
);

Parameters

• dwRequestID—The identifier of the asynchronous request.

• hdCall—The handle to the call whose parameters are to be changed. The call state can be any
exceptidle anddisconnected.

• dwBearerMode—The new bearer mode for the call. ThedwBearerMode parameter can have only
one of the LINEBEARERMODE_ constants.

• dwMinRate—A lower bound for the call's new data rate. TAPI can accept a new rate as low as
one. TAPI does not validate this parameter when this function is called.

• dwMaxRate—An upper bound for the call's new data rate. This is the maximum data rate TAP
would like. Equal values fordwMinRateanddwMaxRateindicate that an exact data rate is required
TAPI does not validate this parameter when this function is called.

• lpDialParams—A pointer to the new dial parameters for the call, of type LINEDIALPARAMS. I
this parameter is NULL, it indicates that the call's current dialing parameters are to be used.

Return Values

ReturnsdwRequestID, or an error number if an error occurs. ThelResult actual parameter of the
corresponding ASYNC_COMPLETION is zero if the function succeeds, or an error number if an e
occurs. Possible return values are as follows:

• LINEERR_INVALCALLHANDLE

• LINEERR_RATEUNAVAIL

• LINEERR_INVALCALLSTATE

• LINEERR_NOMEM

• LINEERR_INVALBEARERMODE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALPOINTER

• LINEERR_OPERATIONFAILED

• LINEERR_INVALRATE
40
TAPI Developer Guide

Appendix A

e

and
call.

w

n
eters

nding
ible
• LINEERR_RESOURCEUNAVAIL

• LINEERR_BEARERMODEUNAVAIL

Usage Notes

This operation is used to change the parameters of an existing call. Examples of its usage includ
changing the bearer mode or the data rate of an existing call.

TSPI_lineSetupTransfer

TheTSPI_lineSetupTransfer function initiates a transfer of a call specified byhdCall.

Function Details
LONG TSPIAPI TSPI_lineSetupTransfer(
 DRV_REQUESTID dwRequestID,
 HDRVCALL hdCall,
 HTAPICALL htConsultCall,
 LPHDRVCALL lphdConsultCall,
 LPLINECALLPARAMS const lpCallParams
);

Parameters

dwRequestID—The identifier of the asynchronous request.

hdCall—The handle to the call to be transferred. The call state of hdCall can be connected.

htConsultCall—The TAPI handle to the new consultation call. The service provider must save this
use it in all subsequent calls to the LINEEVENT procedure reporting events on the new consultation

lphdConsultCall—A pointer to an HDRVCALL representing the service provider's identifier for the ne
consultation call.

lpCallParams—A pointer to a LINECALLPARAMS structure containing call parameters to use whe
establishing the consultation call. This parameter can be set to NULL if no special call setup param
are desired (the service provider uses defaults).

Return Values

Returns dwRequestID, or an error number if an error occurs. The lResult parameter of the correspo
ASYNC_COMPLETION is zero if the function succeeds, or an error number if an error occurs. Poss
return values are as follows:

• LINEERR_INVALCALLHANDLE

• LINEERR_INVALBEARERMODE

• LINEERR_INVALCALLSTATE

• LINEERR_INVALRATE

• LINEERR_CALLUNAVAIL

• LINEERR_INVALCALLPARAMS

• LINEERR_NOMEM

• LINEERR_INVALLINESTATE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALMEDIAMODE

• LINEERR_OPERATIONFAILED
41
TAPI Developer Guide

Appendix A

l to be

,

s
that

es are
• LINEERR_INUSE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_BEARERMODEUNAVAIL

• LINEERR_RATEUNAVAIL

• LINEERR_INVALADDRESSMODE

• LINEERR_USERUSERINFOTOOBIG

Usage Notes

This operation sets up the transfer of the call specified byhdCall. The setup phase of the transfer
establishes a new call that sends the address of the destination party to the switch, while the cal
transferred is kept on hold.

This new call is referred to as a consultation call (hdConsultCall) and can be manipulated (for example
dropped) independently of the original call.

TSPI_lineSetDefaultMediaDetection

TheTSPI_lineSetDefaultMediaDetectionfunction tells the service provider the new set of media type
to detect for the indicated line (replacing any previous set). It also sets the initial set of media types
should be monitored for on subsequent calls (inbound or outbound) on this line.

Function Detail
LONG TSPIAPI TSPI_lineSetDefaultMediaDetection(
 HDRVLINE hdLine,
 DWORD dwMediaModes
);

Parameters

• hdLine—The handle to the line to have media monitoring set.

• dwMediaModes—The media type(s) of interest to TAPI. This parameter uses one of the
LINEMEDIAMODE_ constants:

Return Values

Returns zero if the function succeeds, or an error number if an error occurs. Possible return valu
as follows:

• LINEERR_INVALLINEHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALMEDIAMODE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_NODRIVER

• LINEERR_OPERATIONUNAVAIL
42
TAPI Developer Guide

Appendix A

ion
TAPI

t the

e all

the
ith

e
y of its

sent

 be

es are
Usage Notes

• TAPI typically calls this function to update the set of detected media types for the line to the un
of all modes selected by all outstanding lineOpens whenever a line is Opened or Closed at the
level. A lineOpen call attempt is rejected if media detection is rejected. A single call to this
procedure is typically the result of a lineOpen call that does not specify the device identifier
LINEMAPPER. The device identifier LINEMAPPER is never used at the TSPI level.

• TAPI must compute the union of media types desired by all clients and pass the result to this
function. The service provider uses the set passed to this function by TAPI. TAPI ensures tha
dwMediaModes parameter has at least one bit set and that no reserved bits are set.

• The union of all media types can be the value 0 if the applications that have the line open ar
either monitors or not interested in handling incoming calls.

• There is no directly corresponding function at the TAPI level. This procedure corresponds to
"request media types" implied for the specific line by the lineOpen procedure when it is called w
the specific device identifier (other than LINEMAPPER).

TSPI_lineSetStatusMessages

TheTSPI_lineSetStatusMessages function enables TAPI to specify which notification messages th
service provider should generate for events related to status changes for the specified line or an
addresses.

Function Detail
LONG TSPIAPI TSPI_lineSetStatusMessages(
 HDRVLINE hdLine,
 DWORD dwLineStates,
 DWORD dwAddressStates
);

Parameters

• hdLine—The handle to the line device for which the new filter is to be set.

• dwLineStates—A bit array that identifies for which line device status changes a message is to be
to TAPI. This parameter uses one of the LINEDEVSTATE_ constants.

• dwAddressStates—A bit array that identifies for which address status changes a message is to
sent to TAPI. This parameter uses one of the LINEADDRESSSTATE_ constants.

Return Values

Returns zero if the function succeeds, or an error number if an error occurs. Possible return valu
as follows:

• LINEERR_INVALADDRESSSTATE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALLINEHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALLINESTATE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM
43
TAPI Developer Guide

Appendix A

s and
uch

vider
ports,

e
ault,

s
set is
TSPI
t the

here is

ld.

tate
Usage Notes

• The service provider returns LINEERR_INVALLINESTATE if thedwLineStatesparameter contains
one or more bits that are not LINEDEVSTATE_ constants.

• Telephony defines a number of messages that notify applications about events occurring on line
addresses. The sets of all change messages in which all applications are interested can be m
smaller than the set of possible messages. This procedure allows TAPI to tell the service pro
the reduced set of messages to deliver. The service provider delivers all of the messages it sup
within the specified set. It is permitted to deliver more (they are filtered out by TAPI), but is
discouraged from doing so for performance reasons.

If TAPI requests delivery of a particular message type that is not produced by the provider, th
provider nevertheless accepts the request but simply does not produce the message. By def
address and line status reporting is initially disabled for a line.

• This function differs from the corresponding TAPI function as follows: (1) The set of message
requested is the union of all sets requested by applications at the TAPI level. (2) The message
neither reduced nor augmented by ownership (because there is no concept of ownership at the
level) (3) The set is advisory in the sense that the service provider is required to forward at leas
indicated set of messages but is permitted to forward a larger set.

• Device state changes regarding Open and Close are not reported, because at the TSPI level t
only one outstanding Open at a time.

TSPI_lineSwapHold

TheTSPI_lineSwapHoldfunction swaps the active call with the consultation call that is placed on ho

Function Details
LONG TSPIAPI TSPI_lineSwapHold(
DRV_REQUESTID dwRequestID,
HDRVCALL hdActiveCall,
HDRVCALL hdHeldCall);

Parameters

• dwRequestID—The identifier of the asynchronous request.

• hdActiveCall—The handle to the call to be swapped with the call on consultation hold. The call s
of hdActiveCall can be connected.

• hdHeldCall—The handle to the consultation call. The call state ofhdHeldCall can be
onHoldPendingTransfer, onHoldPendingConference, or onHold.

Return Values

ReturnsdwRequestID, or an error number if an error occurs. ThelResultparameter of the corresponding
ASYNC_COMPLETION is zero if the function succeeds, or an error number if an error occurs.

Possible return values are as follows:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALCALLSTATE

• LINEERR_OPERATIONFAILED

• LINEERR_NOMEM

• LINEERR_RESOURCEUNAVAIL
44
TAPI Developer Guide

Appendix A

rror

ied
Usage Notes

The service provider sends LINE_CALLSTATE messages for all call transitions.

TSPI_lineUnhold

TheTSPI_lineUnhold function retrieves the call on hold.

Function Detail
LONG TSPIAPI TSPI_lineUnhold(
 DRV_REQUESTID dwRequestID,
 HDRVCALL hdCall
);

Parameters

• dwRequestID—The identifier of the asynchronous request.

• hdCall—The handle to the call to be retrieved. The call state ofhdCall can beonHold.

Return Values

ReturnsdwRequestID, or an error number if an error occurs. ThelResult actual parameter of the
corresponding ASYNC_COMPLETION is zero if the function succeeds, or an error number if an e
occurs. Possible return values are as follows:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALCALLSTATE

• LINEERR_OPERATIONFAILED

• LINEERR_NOMEM

• LINEERR_RESOURCEUNAVAIL

Usage Notes

• The service provider returns LINEERR_INVALCALLSTATE if the call is not currently on hold.

• This operation works for calls on hard hold (calls placed on hold usingTSPI_lineHold) and on soft
hold. The service provider should check that the call is currently in theonHold,
onHoldPendingTransfer, or onHoldPendingConference state, change the state toconnected, and
send a LINECALLSTATE message for the new call state.

TSPI_lineUncompleteCall

TheTSPI_lineUncompleteCallfunction is used to cancel the call completion request on the specif
line.

Function Details
LONG TSPIAPI TSPI_lineUncompleteCall(
 DRV_REQUESTID dwRequestID,
 HDRVLINE hdLine,
 DWORD dwCompletionID
);
45
TAPI Developer Guide

Appendix A

ing
ible

ll

se it

w
is

the
Parameters

• dwRequestID—The identifier of the asynchronous request.

• hdLine—The handle to the line on which a call completion is to be canceled.

• dwCompletionID—The completion identifier for the request that is to be canceled.

Return Values

ReturnsdwRequestID, or an error number if an error occurs. The lResult parameter of the correspond
ASYNC_COMPLETION is zero if the function succeeds, or an error number if an error occurs. Poss
return values are as follows:

• LINEERR_INVALLINEHANDLE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALCOMPLETIONID

• LINEERR_OPERATIONFAILED

• LINEERR_NOMEM

• LINEERR_RESOURCEUNAVAIL

TSPI_lineUnpark

TheTSPI_lineUnpark function retrieves the call parked at a specified address and returns the ca
handle for it.

Function Details
LONG TSPIAPI TSPI_lineUnpark(
 DRV_REQUESTID dwRequestID,
 HDRVLINE hdLine,
 DWORD dwAddressID,
 HTAPICALL htCall,
 LPHDRVCALL lphdCall,
 LPCWSTR lpszDestAddress
);

Parameters

• dwRequestID—The identifier of the asynchronous request.

• hdLine—The handle to the line on which a call is to be unparked.

• dwAddressID—The address onhdLine at whichTSPI_lineUnpark originates.

• htCall—The TAPI handle to the new unparked call. The service provider must save this and u
in all subsequent calls to the LINEEVENT procedure reporting events on the call.

• lphdCall—A pointer to an HDRVCALL representing the service provider's identifier for the ne
unparked call. The service provider must fill this location with its handle for the call before th
procedure returns. This handle is invalid if the function results in an error.

• lpszDestAddress—A pointer to a null-terminated Unicode string that contains the address where
call is parked. The address is in dialable address format.
46
TAPI Developer Guide

Appendix A

ing
ible

s for

ndle

e

Return Values

ReturnsdwRequestID, or an error number if an error occurs. The lResult parameter of the correspond
ASYNC_COMPLETION is zero if the function succeeds, or an error number if an error occurs. Poss
return values are as follows:

• LINEERR_INVALLINEHANDLE

• LINEERR_NOMEM

• LINEERR_INVALPOINTER

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALADDRESSID

• LINEERR_OPERATIONFAILED

• LINEERR_INVALADDRESS

• LINEERR_RESOURCEUNAVAIL

Usage Notes

• This function follows the TSPI model for beginning the lifetime of a call. TAPI and the service
provider exchange opaque handles representing the call with one another.

• The service provider is permitted to do callbacks for the new call before it returns from this
procedure.

• The service provider must also treat the handle it returned as invalid until the matching
SYNC_COMPLETION message reports success. It must not issue any LINEEVENT message
the new call or include it in call counts in messages or status data structures for the line.

• The call handle created by this function is a new, distinct, call handle even if an original call ha
for the call is still in existence.

TSPI Line Messages
This section provides an alphabetical listing of supported TAPI Line Messages.

Table 4 TAPI Line Messages at a Glance

Function Description

LINE_ADDRESSSTATE Sent to the LINEEVENT callback function when the
status of an address changes on a line that is currently
open.

LINE_CALLINFO Sent to the LINEEVENT callback function when the call
information about the specified call has changed.

LINE_CALLSTATE Sent to the LINEEVENT callback function whenever the
status of the specified call has changed.

LINE_CLOSE Sent to the LINEEVENT callback function by the service
provider to request that TAPI close the specified line
device.

LINE_CREATEDIALOGINSTANCE Causes TAPI to create an association between the servic
provider and an instance of the
TUISPI_providerGenericDialog function
47
TAPI Developer Guide

Appendix A

as

d.

 a
anner
LINE_ADDRESSSTATE

The TSPI LINE_ADDRESSSTATE message is sent to the LINEEVENT callback function when the
status of an address changes on a line that is currently open by TAPI. TAPI can invoke
TSPI_lineGetAddressStatus to determine the current status of the address.

Message Detail
LINE_ADDRESSSTATE
htLine = (HTAPILINE) hLineDevice;
htCall = (HTAPICALL) 0;
dwMsg = (DWORD) LINE_ADDRESSSTATE;
dwParam1 = (DWORD) idAddress;
dwParam2 = (DWORD) AddressState;
dwParam3 = (DWORD) 0;

Parameters

• htLine—The TAPI opaque object handle to the line device.

• htCall—Unused.

• dwMsg—The value LINE_ADDRESSSTATE.

• dwParam1—The address identifier of the address that changed status.

• dwParam2—The address state that changed. This parameter can be a combination of the
LINEADDRESSSTATE_ constants.

• dwParam3—Unused.

Usage Notes

• This message is sent whenever the line is open by TAPI and an event occurs in which TAPI h
expressed an interest. TAPI uses theTSPI_lineSetStatusMessages function to specify the set of
status-change events in which it is interested. By default, address status reporting is disable

• For backward compatibility, older service providers are not expected to generate this value in
LINE_ADDRESSSTATE message. If they do, the message should be handled in the same m
as for newer service providers (as described earlier).

LINE_LINEDEVSTATE Sent to the LINEEVENT callback function when the
state of a line device has changed.

LINE_NEWCALL Sent to the LINEEVENT callback function whenever a
new call that TAPI has not originated arrives on a line
that TAPI has open.

LINE_SENDDIALOGINSTANCEDATA Causes TAPI to call the
TUISPI_providerGenericDialogData function in the UI
DLL associated with htDlgInst

Table 4 TAPI Line Messages at a Glance

Function Description
48
TAPI Developer Guide

Appendix A

no

e
ime of
LINE_CALLINFO

The TSPILINE_CALLINFO message is sent to the LINEEVENT callback function when the call
information about the specified call has changed. TAPI can invokelineGetCallInfo to determine the
current call information.

Message Detail
LINE_CALLINFO
htLine = (HTAPILINE) hLineDevice;
htCall = (HTAPICALL) hCallDevice;
dwMsg = (DWORD) LINE_CALLINFO;
dwParam1 = (DWORD) CallInfoState;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

• htLine—The TAPI opaque object handle to the line device.

• htCall—The TAPI opaque object handle to the call device.

• dwMsg—The value LINE_CALLINFO.

• dwParam1—Specifies the call information item that has changed. This parameter can be a
combination of the LINECALLINFOSTATE_ constants.

• dwParam2—Unused.

• dwParam3—Unused.

Usage Notes

This message is sent to TAPI whenever the event occurs and TAPI has the line open. However,
LINE_CALLINFO messages are sent for a call after the call has entered theidle state.

LINE_CALLSTATE

The TSPILINE_CALLSTATE message is sent to the LINEEVENT callback function whenever th
status of the specified call has changed. Several such messages are typically sent during the lifet
a call. The first such message for an incoming call indicates the offering state. TAPI can use
TSPI_lineGetCallStatus to find out more detailed information about the current status of the call.

Message Detail
LINE_CALLSTATE
htLine = (HTAPILINE) hLineDevice;
htCall = (HTAPICALL) hCallDevice;
dwMsg = (DWORD) LINE_CALLSTATE;
dwParam1 = (DWORD) LineCallState;
dwParam2 = (DWORD) StateData;
dwParam3 = (DWORD) MediaMode;

Parameters

• htLine—The TAPI opaque object handle to the line device.

• htCall—The TAPI opaque object handle to the call device.

• dwMsg—The value LINE_CALLSTATE.

• dwParam1—The new call state. This parameter is one of the LINECALLSTATE_ constants.
49
TAPI Developer Guide

Appendix A

out

ils

he

 in
sage
ikely

ore
ld

xt

calls

ched
ring.
to be

alls.
ing

el it

API
all,
ll
er

er
all
onous

t

• dwParam2—Specifies call-state-dependent information.

– If dwParam1 is LINECALLSTATE_BUSY, the dwParam2 parameter contains the details ab
the busy mode, and uses the LINEBUSYMODE_ constants.

– If dwParam1 is LINECALLSTATE_DIALTONE, the dwParam2 parameter contains the deta
about the dial tone mode, and uses the LINEDIALTONEMODE_ constants.

– If dwParam1 is LINECALLSTATE_SPECIALINFO, the dwParam2 parameter contains the
details about the special info mode and uses the LINESPECIALINFO_ constants.

– If dwParam1 is LINECALLSTATE_DISCONNECTED, the dwParam2 parameter contains t
details about the disconnect mode, and uses the LINEDISCONNECTMODE_ constants.

– If dwParam1 is LINECALLSTATE_CONFERENCED, dwParam2 contains the htCall of the
parent call of the conference of which the subject htCall is a member. If the call specified
dwParam2 was not previously considered by TAPI to be a parent conference call, this mes
causes it to be so treated. The call specified in dwParam2 must already exist; it was most l
previously created by a LINE_NEWCALL message and set to
LINECALLSTATE_ONHOLDPENDCONF.

• dwParam3—The media type of the call, as far as it is known. This is a combination of one or m
LINEMEDIAMODE_ constants. If the service provider does not know the media type, it shou
include the "UNKNOWN" bit with all media types currently being monitored for.

Usage Notes

• The LINE_CALLSTATE message (with LINECALLSTATE_OFFERING) should be sent as the ne
message for an incoming call after LINE_NEWCALL. Other call state changes are reported
whenever they occur; the message cannot be disabled.

• The LINE_CALLSTATE message also notifies TAPI about the existence and state of outbound
established as a side effect of other calls (for example, when an active call is put on hold and
replaced by a new call in the dialtone state) or manually by the user (for example, on an atta
phone device). The call state of such calls reflects the actual state of the call, which is not offe
By examining the call state, TAPI can determine whether the call is an inbound call that needs
answered.

• The corresponding message at the TAPI level is used to inform applications of new incoming c
This is not the case at the TSPI level; the LINE_NEWCALL message informs TAPI of new incom
calls. The LINE_NEWCALL message must precede this message.

• The dwParam3 parameter is used at the TAPI level to inform the recipient of the privilege lev
has over the call.

• For backward compatibility, older service providers do not pass a valid htCall in dwParam2. T
must check the value passed, and ignore it if it is not a valid htCall. If the value is a valid htC
TAPI also checks the API version in use on the line device, and establishes a conference ca
internally only if the API version is 1.4 or later (for example, if the API version on the line is lat
than 1.4, this parameter should be ignored).

LINE_CLOSE

The TSPILINE_CLOSE message is sent to the LINEEVENT callback function by the service provid
to request that TAPI close the specified line device. Once closed, the line device handle or any c
handles for calls on the line are no longer valid. The service provider guarantees that all asynchr
requests on the line and all calls on the line have been reported complete by calling
ASYNC_COMPLETION for each outstanding request before this message is sent. TAPI must no
request any future operations using this line handle or its associated call handles.
50
TAPI Developer Guide

Appendix A

the
nd
ider.
vider.

he
ive
urrent
 line

uting

y

Message Detail
LINE_CLOSE
htLine = (HTAPILINE) hLineDevice;
htCall = (HTAPICALL) 0;
dwMsg = (DWORD) LINE_CLOSE;
dwParam1 = (DWORD) 0;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

• htLine—The TAPI opaque object handle to the line device.

• htCall—Unused.

• dwMsg—The value LINE_CLOSE.

• dwParam1—Unused.

• dwParam2—Unused.

• dwParam3—Unused.

Usage Notes

• The LINE_CLOSE message is arequest from the service provider to TAPI to close the line. The
service provider must not actually close the line until TAPI acknowledges the request by calling
TSPI_lineClosefunction to direct the service provider to close the line. A service provider can se
this message, for example, when taking the line out of service or reconfiguring the service prov
Whether or not the line can be reopened immediately after it is closed is up to the service pro

• A service provider can also request that a line device be closed after the user has modified t
configuration of that line or its driver. If the user wants the configuration changes to be effect
immediately (as opposed to after the next system restart), and they affect the application's c
view of the device (such as a change in device capabilities), a service provider can close the
device.

LINE_CREATEDIALOGINSTANCE

The TSPILINE_CREATEDIALOGINSTANCE message causes TAPI to create an association
between the service provider and an instance of the TUISPI_providerGenericDialog function exec
in the context of the application that invoked the asynchronous TSPI function identified by the
dwRequestIDparameter of the TUISPICREATEDIALOGINSTANCEPARAMS structure pointed to b
lpTUISPICreateDialogInstanceParams.

Message Detail
LINE_CREATEDIALOGINSTANCE
htLine = (DWORD) hProvider;
htCall = (DWORD) 0;
dwMsg = LINE_CREATEDIALOGINSTANCE;
dwParam1 = (DWORD) lpTUISPICreateDialogInstanceParams;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

• hProvider—The ProviderHandle supplied to the service provider as a parameter to
TSPI_providerEnumDevices.
51
TAPI Developer Guide

Appendix A

more

am1
ts

am1

ected
 try to
led.

 and

lues.
later
• lpTUISPICreateDialogInstanceParams—Pointer to a
TUISPICREATEDIALOGINSTANCEPARAMS structure.

LINE_LINEDEVSTATE

The TSPILINE_LINEDEVSTATE message is sent to the LINEEVENT callback function when the
state of a line device has changed. TAPI can invokeTSPI_lineGetLineDevStatusto determine the new
status of the line.

Message Detail
LINE_LINEDEVSTATE
htLine = (HTAPILINE) hLineDevice;
htCall = (HTAPICALL) 0;
dwMsg = (DWORD) LINE_LINEDEVSTATE;
dwParam1 = (DWORD) LineDevState;
dwParam2 = (DWORD) DevStateData1;
dwParam3 = (DWORD) DevStateData2;

Parameters

• htLine—The TAPI opaque object handle to the line device.

• htCall—Unused.

• dwMsg—The value LINE_LINEDEVSTATE. Specifies the callback instance supplied when
opening the line.

• dwParam1—Specifies the line device status item that has changed. This parameter uses one or
of the LINEDEVSTATE_ constants.

• dwParam2—The interpretation of this parameter depends on the value of dwParam1. If dwPar
is LINEDEVSTATE_RINGING, dwParam2 contains the ring mode with which the switch instruc
the line to ring. Valid ring modes are numbers in the range one todwNumRingModes, where
dwNumRingModes is a line device capability.

• dwParam3—The interpretation of this parameter depends on the value of dwParam1. If dwPar
is LINEDEVSTATE_RINGING, dwParam3 contains the ring count for this ring event. The ring
count starts at zero.

Usage Notes

• The sending of this message can be controlled throughTSPI_lineSetStatusMessages. The service
provider must send LINE_LINEDEVSTATE messages for at least the set of status changes sel
through that procedure. The service provider can send more than this set, however, it should
limit its messages to this set for performance reasons. By default all status reporting is disab

• At the TSPI level, the service provider does not report state changes when the line is opened
closed, since there is only ever one Open outstanding for the device.

• For backward compatibility, older service providers would not be expected to generate these va
If they do, TAPI treats them the same as if the service provider were using API version 1.4 or
(as described earlier).
52
TAPI Developer Guide

Appendix A

w
e sent
er

es
rate

e and
his

call.
ider.

nged
quently
rily

ne, it
s

ring

lls. It
d
he
ate
LINE_NEWCALL

The TSPILINE_NEWCALL message is sent to the LINEEVENT callback function whenever a ne
call that TAPI has not originated arrives on a line that TAPI has open. This must be the first messag
regarding that call. TAPI writes thehtCall opaque handle to the location passed by the service provid
asdwParam2. This gives the service provider thehtCall value to be used in subsequent messages.

Message Detail
LINE_NEWCALL
htLine = (HTAPILINE) hLineDevice;
htCall = (HTAPICALL) 0;
dwMsg = (DWORD) LINE_NEWCALL;
dwParam1 = (DWORD)(HDRVCALL) hdCall;
dwParam2 = (DWORD)(LPHTAPICALL) &htCall;
dwParam3 = (DWORD) 0;

Parameters

• htLine—The TAPI opaque object handle to the line device.

• htCall—Unused.

• dwMsg—The value LINE_NEWCALL.

• dwParam1—The service provider's opaque handle for the call, of type HDRVCALL. TAPI pass
this value as thehdCallparameter to identify the call in subsequent procedures it invokes to ope
on the call.

• dwParam2—A pointer of type LPHTAPICALL pointing to a HTAPICALL. TAPI writes the TAPI
opaque handle for the call to the indicated location. The service provider must save this valu
pass it as thehtCall parameter to identify the call in subsequent events it reports for the call. T
parameter can also acquire a value of NULL (see the following Remarks section).

• dwParam3—Unused.

Usage Notes

• The service provider should send the LINE_CALLSTATE message as the next message for this
The LINE_NEWCALL event is unusual in that it also passes a value back to the service prov

• This function reports any new calls that originate in the service provider (inbound, outbound,
initiated at the phone, and so on) for which TAPI and the service provider have not yet excha
opaque handles. The handles are exchanged so that TAPI and the service provider can subse
make requests and report events involving the call. Because these new calls are not necessa
inbound, the calls can initially be inany state, not necessarily theoffering state.

If the service provider starts and discovers that one or more calls are already active on the li
informs TAPI of them with LINE_NEWCALL messages followed by LINE_CALLSTATE message
indicating the current state. A new outgoing call, initiated on the phone by the user, would be
reported with a LINE_NEWCALL message, and the initial LINE_CALLSTATE message would
indicate that the call was in DIALTONE state (and then continuing on from there).

• If the service provider passes a large number of calls to TAPI in a very short amount of time (du
the same interrupt cycle), TAPI can become backlogged in processing those calls. When this
happens, TAPI signals to the service provider to wait a short time before sending any more ca
signals this by writing a value of NULL, instead of a valid HTAPICALL, into the location pointe
to by thedwParam2parameter of LINE_NEWCALL. This indicates that the attempt to process t
newly offered call handle was not successful, most likely due to a temporary inability to alloc
memory.
53
TAPI Developer Guide

Appendix A

essor
e new
o by

I level
que
The service provider can respond by dropping the call or by resending the LINE_NEWCALL
message after a scheduling delay (during which time the service provider should yield the proc
to allow TAPI to process other pending actions). In any case, no further messages regarding th
call can be passed to TAPI until the handle exchange succeeds. When the location pointed t
dwParam2 acquires a non-NULL value, the service provider knows that this value is a valid
HTAPICALL handle to the call.

• There is no directly corresponding message at the TAPI level. This message is used at the TSP
to uniquely and unambiguously introduce a new incoming call to TAPI and retrieve the TAPI opa
identifier for the call.
54
TAPI Developer Guide

Glossary

he

e UI

ing
LINE_SENDDIALOGINSTANCEDATA

The TSPILINE_SENDDIALOGINSTANCEDATA message causes TAPI to call the
TUISPI_providerGenericDialogData function in the UI DLL associated with htDlgInst, passing it t
parameter block pointed to bylpParams, of length dwSize.

Message Detail
LINE_SENDDIALOGINSTANCEDATA
htLine = (DWORD) htDlgInst;
htCall = (DWORD) 0;
dwMsg = LINE_SENDDIALOGINSTANCEDATA;
dwParam1 = (DWORD) lpParams;
dwParam2 = (DWORD) dwSize;
dwParam3 = (DWORD) 0;

Parameters

• htDlgInst—The HTAPIDIALOGINSTANCE that was returned to the service provider when the
dialog box instance was created using LINE_CREATEDIALOGINSTANCE.

• lpParams—Pointer to a provider-specific parameter block that is conveyed to the UI DLL
TUISPI_providerGenericDialogData function, the size of which is specified by dwSize. If this
parameter is set to NULL, this is a request to close the dialog box immediately and clean up (th
DLL should not invoke TUISPIDLLCALLBACK during this cleanup).

• dwSize—The size in bytes of the parameter block to be conveyed to the UI DLL.

Glossary
API—Application Programming Interface

CME—Cisco CallManager Express.

SRST—Survivable Remote Site Telephony.

TAPI —Telephony Application Programmer’s Interface

TSP—TAPI Service Provider

TSPI—Telephony Service Provider Interface

Note For a list of other internetworking terms, seeInternetworking Terms and Acronyms document that is
available on the Documentation CD-ROM and on the Cisco Connection Online (CCO) at the follow
URL: http://www.cisco.com/univercd/cc/td/doc/cisintwk/ita/index.htm.
55
TAPI Developer Guide

Glossary
56
TAPI Developer Guide

	TAPI Developer Guide for Cisco CME/SRST
	General Information
	Introduction
	Purpose
	Audience
	Related Documentation
	Conventions
	Cisco Connection Online
	Documentation CD-ROM

	Architecture
	Restrictions
	TAPI/TSPI Implementation
	Call Control Functions
	Flow Diagrams
	Initialization
	Application to Skinny IP Phone
	Hold Call
	Call Transfer

	Appendix A
	TSPI Line Functions
	TSPI_lineAddToConference
	TSPI_lineAnswer
	TSPI_lineBlindTransfer
	TSPI_lineCloseCall
	TSPI_lineCompleteCall
	TSPI_lineCompleteTransfer
	TSPI_lineDial
	TSPI_lineDrop
	TSPI_lineGetAddressID
	TSPI_lineGetCallAddressID
	TSPI_lineGetCallInfo
	TSPI_lineGetCallStatus
	TSPI_lineGetDevConfig
	TSPI_lineGetExtensionID
	TSPI_lineGetID
	TSPI_lineGetNumAddressIDs
	TSPI_lineHold
	TSPI_lineMakeCall
	TSPI_lineNegotiateExtVersion
	TSPI_lineNegotiateTSPIVersion
	TSPI_lineOpen
	TSPI_linePark
	TSPI_linePickup
	TSPI_linePrepareAddToConference
	TSPI_lineSetCallParams
	TSPI_lineSetupTransfer
	TSPI_lineSetDefaultMediaDetection
	TSPI_lineSetStatusMessages
	TSPI_lineSwapHold
	TSPI_lineUnhold
	TSPI_lineUncompleteCall
	TSPI_lineUnpark

	TSPI Line Messages
	LINE_ADDRESSSTATE
	LINE_CALLINFO
	LINE_CALLSTATE
	LINE_CLOSE
	LINE_CREATEDIALOGINSTANCE
	LINE_LINEDEVSTATE
	LINE_NEWCALL
	LINE_SENDDIALOGINSTANCEDATA

	Glossary

