
C H A P T E R

Debug Command Listing 2-1

Debug Command Listing

2

This chapter contains an alphabetical listing of thedebug commands. Documentation for each
command includes a brief description of its use, command syntax, usage guidelines, sample output,
and a description of that output.

Output formats of the variousdebug commands vary. Some generate a single line of output per
packet, whereas others generate multiple lines of output per packet. Some generate large amounts of
output; others generate only occasional output. Some generate lines of text, and others generate
information in field format. Thus, the way thedebug commands are documented also varies. For
example, fordebug commands that generate lines of text, the output is described line by line. For
debug commands that generate output in field format, tables are used to describe the fields.

By default, the network server sends the output from thedebug commands to the console terminal.
Sending output to a terminal (virtual console) produces less overhead than sending it to the console,
Use the privileged EXEC commandterminal monitor  to send it to a terminal. For more information
about redirecting output, see the chapter, “Using Debug Commands.”



2-2 Debug Command Reference

debug apple arp

debug apple arp
Use thedebug apple arp EXEC command to enable debugging of the AppleTalk address resolution
protocol (AARP). Theno form of this command disables debugging output.

debug apple arp[interface unit]
no debug apple arp[interface unit]

Syntax Description

Command Mode
EXEC

Usage Guidelines
This command is helpful when you experience problems communicating with a node on the network
you control (a neighbor). If thedebug apple arp display indicates that the router is receiving AARP
probes, you can assume that the problem does not reside at the physical layer.

Sample Display
Figure 1-1 shows sampledebug apple arp output.

Figure 1-1 Sample Debug Apple ARP Output

Explanations for representative lines of output in Figure 1-1 follow.

[interface unit] interface andunit are optional arguments to specify that
information for a particular interface be displayed. For
example, Ethernet0 specifies the first Ethernet interface;
Ethernet1 specifies the second Ethernet interface. If you
include this parameter, you must specifiy both the interface
type and unit number.

router# debug apple arp

Ether0: AARP: Sent resolve for 4160.26
Ether0: AARP: Reply from 4160.26(0000.0c00.0453) for 4160.154(0000.0c00.8ea9)
Ether0: AARP: Resolved waiting request for 4160.26(0000.0c00.0453)
Ether0: AARP: Reply from 4160.19(0000.0c00.0082) for 4160.154(0000.0c00.8ea9)
Ether0: AARP: Resolved waiting request for 4160.19(0000.0c00.0082)
Ether0: AARP: Reply from 4160.19(0000.0c00.0082) for 4160.154(0000.0c00.8ea9) S

27
23



Debug Command Listing 2-3

debug apple arp

The following line of output indicates that the router has requested the hardware MAC address of
the host at network address 4160.26.

Ether0: AARP: Sent resolve for 4160.26

The following line of output indicates that the host at network address 4160.26 has replied, giving
its MAC address (0000.0c00.0453). For completeness, the message also shows the network address
to which the reply was sent and its hardware MAC address (also in parentheses).

Ether0: AARP: Reply from 4160.26(0000.0c00.0453) for 4160.154(0000.0c00.8ea9)

The following line of output indicates that the MAC address request is complete.

Ether0: AARP: Resolved waiting request for 4160.26(0000.0c00.0453)



2-4 Debug Command Reference

debug apple errors

debug apple errors
Use thedebug apple errors EXEC command to display errors occurring in the AppleTalk network.
Theno form of this command disables debugging output.

debug apple errors[interface unit]
no debug apple errors[interface unit]

Syntax Description

Command Mode
EXEC

Usage Guidelines
In a stable AppleTalk network, thedebug apple errors command produce little output.

To solve encapsulation problems, enabledebug apple errors anddebug apple packet together.

Sample Display
Figure 1-2 shows sampledebug apple errors output when a router is brought up with a zone that
does not agree with the zone list of other routers on the network.

Figure 1-2 Sample Debug Apple Errors Output

As Figure 1-2 suggests, a single error message indicates zone list incompatibility; this message is
sent out periodically until the condition is corrected ordebug apple errors is turned off.

Most of the other messages thatdebug apple errors can generate are obscure or indicate a serious
problem with the AppleTalk network. Some of these other messages follow.

interface unit interface andunit are optional arguments to specify that
information for a particular interface be displayed. For
example, Ethernet0 specifies the first Ethernet interface;
Ethernet1 specifies the second Ethernet interface. If you
include this parameter, you must specifiy both the interface
type and unit number.

router# debug apple errors

%AT-3-ZONEDISAGREES: Ethernet0: AppleTalk port disabled; zone list incompatible with 4160.19
%AT-3-ZONEDISAGREES: Ethernet0: AppleTalk port disabled; zone list incompatible with 4160.19
%AT-3-ZONEDISAGREES: Ethernet0: AppleTalk port disabled; zone list incompatible with 4160.19 S

26
51



Debug Command Listing 2-5

debug apple errors

In the following message, RTMPRsp, RTMPReq, ATP, AEP, ZIP, ADSP, or SNMP could replace
NBP, and “llap dest not for us” could replace “wrong encapsulation.”

Packet discarded, src 4160.12-254,dst 4160.19-254,NBP,wrong encapsulation

In the following message, in addition to invalid echo packet, other possible errors are unsolicited
AEP echo reply, unknown echo function, invalid ping packet, unknown ping function, and bad
responder packet type.

Ethernet0: AppleTalk packet error; no source address available
AT: pak_reply: dubious reply creation, dst 4160.19
AT: Unable to get a buffer for reply to 4160.19

Processing error, src 4160.12-254,dst 4160.19-254,AEP, invalid echo packet

Thedebug apple errors command can print out additional messages when other debugging
commands are also turned on. When you turn on bothdebug apple errors anddebug apple events,
the following message can be generated:

Proc err, src 4160.12-254,dst 4160.19-254,ZIP,NetInfo Reply format is invalid

In the previous message, in addition to NetInfo Reply format is invalid, other possible errors are
NetInfoReply not for me, NetInfoReply ignored, NetInfoReply for operational net ignored,
NetInfoReply from invalid port, unexpected NetInfoReply ignored, cannot establish primary zone,
no primary has been set up, primary zone invalid, net information mismatch, multicast mismatch,
and zones disagree.

When you turn on bothdebug apple errors anddebug apple nbp, the following message can be
generated:

Processing error, ...,NBP,NBP name invalid

In the previous message, in addition to NBP name invalid, other possible errors are NBP type invalid,
NBP zone invalid, not operational, error handling brrq, error handling proxy, NBP fwdreq
unexpected, No route to srcnet, Proxy to “*” zone, Zone “*” from extended net, No zone info for
“*”, and NBP zone unknown.

When you turn on bothdebug apple errors anddebug apple routing, the following message can
be generated:

Processing error, ...,RTMPReq, unknown RTMP request

In the previous message, in addition to unknown RTMP request, other possible errors are RTMP
packet header bad, RTMP cable mismatch, routed RTMP data, RTMP bad tuple, and Not Req or Rsp.



2-6 Debug Command Reference

debug apple events

debug apple events
Use thedebug apple events EXEC command to display information about AppleTalk special
events, neighbors becoming reachable/unreachable, and interfaces going up/down. Only significant
events (for example, neighbor and route changes) are logged. Theno form of this command disables
debugging output.

debug apple events[interface unit]
no debug apple events[interface unit]

Syntax Description

Command Mode
EXEC

Usage Guidelines
Thedebug apple events command is useful for solving AppleTalk network problems, because it
provides an overall picture of the stability of the network. In a stable network, thedebug apple
events command does not return any information. If, however, the command generates numerous
messages, they can indicate where the problems might lie.

When configuring or making changes to a router or interface for AppleTalk, enabledebug apple
events. Doing so will alert you to the progress of the changes or to any errors that might result. Also
use this command periodically when you suspect network problems.

Thedebug apple events command is also useful to determine whether network flapping (nodes
toggling on- and off-line) is occurring. If flapping is excessive, look for routers that only support 254
networks.

When you enabledebug apple events, you also will see any messages that the configuration
commandapple event-logging normally displays. Turning ondebug apple events, however, will
not causeapple event-logging to be maintained in nonvolatile memory. Only turning onapple
event-logging explicitly will store it in nonvolatile memory. Furthermore, ifapple event-logging is
already enabled, turning on or offdebug apple events will not affectapple event-logging.

Sample Display
Figure 1-3 shows sampledebug apple events output that describes a nonseed router coming up in
discovery mode.

interface unit (Optional.) Information for a particular interface is to be
displayed. For example, Ethernet0 specifies the first
Ethernet interface; Ethernet1 specifies the second Ethernet
interface. If you include this parameter, you must specifiy
both the interface type and unit number.



Debug Command Listing 2-7

debug apple events

Figure 1-3 Sample Debug Apple Events Output with Discovery Mode State Changes

As Figure 1-3 shows, thedebug apple events command can be useful in tracking the discovery
mode state changes through which an interface progresses. When no problems are encountered, the
state changes progress as follows:

1 Line down

2 Restarting

3 Probing (for its own address (node ID) using AARP)

4 Acquiring (sending out GetNetInfo requests)

5 Requesting zones (the list of zones for its cable)

6 Verifying (that the router’s configuration is correct. If not, a port configuration mismatch is
declared.)

7 Checking zones (to make sure its list of zones is correct)

8 Operational (participating in routing)

Explanations for individual lines of output in Figure 1-3 follow.

The following message indicates that a port is set. In this case, the zone multicast address is being
reset:

Ether0: AT: Resetting interface address filters

The following messages indicate that the router is changing to restarting mode:

%AT-5-INTRESTART: Ether0: AppleTalk port restarting; protocol restarted
Ether0: AppleTalk state changed; unknown -> restarting

router# debug apple events

Ether0: AT: Resetting interface address filters
%AT-5-INTRESTART: Ether0: AppleTalk port restarting; protocol restarted
Ether0: AppleTalk state changed; unknown -> restarting
Ether0: AppleTalk state changed; restarting -> probing
%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 65401.148
Ether0: AppleTalk state changed; probing -> acquiring
%AT-6-ACQUIREMODE: Ether0: AT port initializing; acquiring net configuration
Ether0: AppleTalk state changed; acquiring -> restarting
Ether0: AppleTalk state changed; restarting -> line down
Ether0: AppleTalk state changed; line down -> restarting
Ether0: AppleTalk state changed; restarting -> probing
%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 4160.148
Ether0: AppleTalk state changed; probing -> acquiring
%AT-6-ACQUIREMODE: Ether0: AT port initializing; acquiring net configuration
Ether0: AppleTalk state changed; acquiring -> requesting zones
Ether0: AT: Resetting interface address filters
%AT-5-INTRESTART: Ether0: AppleTalk port restarting; protocol restarted
Ether0: AppleTalk state changed; requesting zones -> verifying
AT: Sent GetNetInfo request broadcast on Ethernet0
Ether0: AppleTalk state changed; verifying -> checking zones
Ether0: AppleTalk state changed; checking zones -> operational

Discovery 
mode state 
changes

S
25

42



2-8 Debug Command Reference

debug apple events

The following message indicates that the router is probing in the startup range of network numbers
(65280-65534) to discover its network number:

Ether0: AppleTalk state changed; restarting -> probing

The following message indicates that the router is enabled as a nonrouting node using a provisional
network number within its startup range of network numbers. This type of message only appears if
the network address the router will use differs from its configured address. This is always the case
for a discovery-enabled router; it is rarely the case for a nondiscovery-enabled router.

%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 65401.148

The following messages indicate that the router is sending out GetNetInfo requests to discover the
default zone name and the actual network number range in which its network number can be chosen.

Ether0: AppleTalk state changed; probing -> acquiring
%AT-6-ACQUIREMODE: Ether0: AT port initializing; acquiring net configuration

Now that the router has acquired the cable configuration information, the following message
indicates that it restarts using that information:

Ether0: AppleTalk state changed; acquiring -> restarting

The following messages indicate that the router is probing for its actual network address:

Ether0: AppleTalk state changed; restarting -> line down
Ether0: AppleTalk state changed; line down -> restarting
Ether0: AppleTalk state changed; restarting -> probing

The following message indicates that the router has found an actual network address to use:

%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 4160.148

The following messages indicate that the router is sending out GetNetInfo requests to verify the
default zone name and the actual network number range from which its network number can be
chosen:

Ether0: AppleTalk state changed; probing -> acquiring
%AT-6-ACQUIREMODE: Ether0: AT port initializing; acquiring net configuration

The following message indicates that the router is requesting the list of zones for its cable:

Ether0: AppleTalk state changed; acquiring -> requesting zones

The following messages indicate that the router is sending out GetNetInfo requests to make sure its
understanding of the configuration is correct:

Ether0: AppleTalk state changed; requesting zones -> verifying
AT: Sent GetNetInfo request broadcast on Ethernet0

The following message indicates that the router is rechecking its list of zones for its cable:

Ether0: AppleTalk state changed; verifying -> checking zones

The following message indicates that the router is now fully operational as a routing node and can
begin routing:

Ether0: AppleTalk state changed; checking zones -> operational

Figure 1-4 shows sampledebug apple events output that describes a nondiscovery-enabled router
coming up when no other router is on the wire.



Debug Command Listing 2-9

debug apple events

Figure 1-4 Sample Debug Apple Events Output Showing Seed Coming Up by Itself

As Figure 1-4 shows, a nondiscovery-enabled router can come up when no other router is on the
wire; however, it must assume that its configuration (if accurate syntactically) is correct, because no
other router can verify it. Notice that the last line in Figure 1-4 indicates this situation.

Figure 1-5 shows sampledebug apple events output that describes a discovery-enabled router
coming up when there is no seed router on the wire.

Figure 1-5 Sample Debug Apple Events Output Showing Nonseed with No Seed

As Figure 1-5 shows, when you attempt to bring up a nonseed router without a seed router on the
wire, it never becomes operational; instead, it hangs in the acquiring mode and continues to send out
periodic GetNetInfo requests.

Figure 1-6 shows sampledebug apple events output when a nondiscovery-enabled router is brought
up on an AppleTalk internetwork that is in compatibility mode (set up to accommodate extended as
well as nonextended AppleTalk) and the router has violated internetwork compatibility.

router# debug apple events

Ethernet1: AT: Resetting interface address filters
%AT-5-INTRESTART: Ethernet1: AppleTalk port restarting; protocol restarted
Ethernet1: AppleTalk state changed; unknown -> restarting
Ethernet1: AppleTalk state changed; restarting -> probing
%AT-6-ADDRUSED: Ethernet1: AppleTalk node up; using address 4165.204
Ethernet1: AppleTalk state changed; probing -> verifying
AT: Sent GetNetInfo request broadcast on Ethernet1
Ethernet1: AppleTalk state changed; verifying -> operational
%AT-6-ONLYROUTER: Ethernet1: AppleTalk port enabled; no neighbors found

S
2
5
4
3

Indicates a nondiscovery-
enabled router with no 
other router on the wire

router# debug apple events

Ether0: AT: Resetting interface address filters
%AT-5-INTRESTART: Ether0: AppleTalk port restarting; protocol restarted
Ether0: AppleTalk state changed; unknown -> restarting
Ether0: AppleTalk state changed; restarting -> probing
%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 65401.148
Ether0: AppleTalk state changed; probing -> acquiring
AT: Sent GetNetInfo request broadcast on Ether0
AT: Sent GetNetInfo request broadcast on Ether0
AT: Sent GetNetInfo request broadcast on Ether0
AT: Sent GetNetInfo request broadcast on Ether0
AT: Sent GetNetInfo request broadcast on Ether0 S

25
44



2-10 Debug Command Reference

debug apple events

Figure 1-6 Sample Debug Apple Events Output Showing Compatibility Conflict

The three configuration command lines that follow indicate the part of the router’s configuration that
caused the configuration mismatch shown in Figure 1-6.

lestat(config)#int e 0
lestat(config-if)#apple cab 41-41
lestat(config-if)#apple zone Marketign

The router shown in Figure 1-6 had been configured with a cable range of 41-41 instead of 40-40,
which would have been accurate. Additionally, the zone name was configured incorrectly; it should
have been Marketing, rather than being misspelled as Marketign.

router# debug apple events

E0: AT: Resetting interface address filters
%AT-5-INTRESTART: E0: AppleTalk port restarting; protocol restarted
E0: AppleTalk state changed; restarting -> probing
%AT-6-ADDRUSED: E0: AppleTalk node up; using address 41.19
E0: AppleTalk state changed; probing -> verifying
AT: Sent GetNetInfo request broadcast on Ethernet0
%AT-3-ZONEDISAGREES: E0: AT port disabled; zone list incompatible with 41.19
AT: Config error for E0, primary zone invalid
E0: AppleTalk state changed; verifying -> config mismatch S

25
45

Indicates 
configuration 
mismatch



Debug Command Listing 2-11

debug apple nbp

debug apple nbp
Use thedebug apple nbp EXEC command to display debugging output from the Name Binding
Protocol (NBP) routines. Theno form of this command disables debugging output.

debug apple nbp[interface unit]
no debug apple nbp[interface unit]

Syntax Description

Command Mode
EXEC

Usage Guidelines
To determine whether the router is receiving NBP lookups from a node on the AppleTalk network,
enabledebug apple nbp at each node between the router and the node in question to determine
where the problem lies.

Note Because thedebug apple nbp command can generate many messages, use it only when the
router’s CPU utilization is less than 50 percent.

Sample Display
Figure 1-7 shows sampledebug apple nbp output.

interface unit (Optional.) Information for a particular interface is to be
displayed. For example, Ethernet0 specifies the first
Ethernet interface; Ethernet1 specifies the second Ethernet
interface. If you include this parameter, you must specifiy
both the interface type and unit number.



2-12 Debug Command Reference

debug apple nbp

Figure 1-7 Sample Debug Apple NBP Output

The first three lines in Figure 1-7 describe an NBP lookup request.

AT: NBP ctrl = LkUp, ntuples = 1, id = 77
AT: 4160.19, skt 2, enum 0, name: =:ciscoRouter@Low End SW Lab
AT: LkUp =:ciscoRouter@Low End SW Lab

Table 1-1 describes the fields in the first line of output shown in Figure 1-7.

Table 1-1 Debug Apple NBP Field Descriptions—Part 1

Table 1-2 describes the fields in the second line of output shown in Figure 1-7.

Field Description

AT: NBP Indicates that this message describes an AppleTalk NBP packet.

ctrl = LkUp Identifies the type of NBP packet. Possible values include:

LkUp—NBP lookup request.

LkUp-Reply—NBP lookup reply.

ntuples = 1 Indicates the number of name-address pairs in the lookup request packet.
Range: 1-31 tuples.

id = 77 Value that identifies the NBP lookup request.

router# debug apple nbp

AT: NBP ctrl = LkUp, ntuples = 1, id = 77
AT: 4160.19, skt 2, enum 0, name: =:ciscoRouter@Low End SW Lab
AT: LkUp =:ciscoRouter@Low End SW Lab

AT: NBP ctrl = LkUp-Reply, ntuples = 1, id = 77
AT: 4160.154, skt 254, enum 1, name: lestat.Ether0:ciscoRouter@Low End SW Lab

AT: NBP ctrl = LkUp, ntuples = 1, id = 78
AT: 4160.19, skt 2, enum 0, name: =:IPADDRESS@Low End SW Lab
AT: NBP ctrl = LkUp, ntuples = 1, id = 79
AT: 4160.19, skt 2, enum 0, name: =:IPGATEWAY@Low End SW Lab
AT: NBP ctrl = LkUp, ntuples = 1, id = 83
AT: 4160.19, skt 2, enum 0, name: =:ciscoRouter@Low End SW Lab
AT: LkUp =:ciscoRouter@Low End SW Lab

AT: NBP ctrl = LkUp, ntuples = 1, id = 84
AT: 4160.19, skt 2, enum 0, name: =:IPADDRESS@Low End SW Lab

AT: NBP ctrl = LkUp, ntuples = 1, id = 85
AT: 4160.19, skt 2, enum 0, name: =:IPGATEWAY@Low End SW Lab
AT: NBP ctrl = LkUp, ntuples = 1, id = 85
AT: 4160.19, skt 2, enum 0, name: =:IPGATEWAY@Low End SW Lab S

26
52



Debug Command Listing 2-13

debug apple nbp

Table 1-2 Debug Apple NBP Field Descriptions—Part 2

The third line in Figure 1-7 essentially reiterates the information in the two lines above it, indicating
that a lookup request has been made regarding name-address pairs for all objects of the ciscoRouter
type in the Low End SW Lab zone.

Since the router is defined as an object of type ciscoRouter in zone Low End SW Lab, it sends an
NBP lookup reply in response to this NBP lookup request. The following two lines of output from
Figure 1-7 show the router’s response.

AT: NBP ctrl = LkUp-Reply, ntuples = 1, id = 77
AT: 4160.154, skt 254, enum 1, name: lestat.Ether0:ciscoRouter@Low End SW Lab

In the first line, ctrl = LkUp-Reply identifies this NBP packet as an NBP lookup request. The same
value in the id field (id = 77) associates this lookup reply with the previous lookup request. The
second line indicates that the network address associated with the router’s entity name
(lestat.Ether0:ciscoRouter@Low End SW Lab) is 4160.154. The fact that no other entity
name/network address is listed indicates that the responder only knows about itself as an object of
type ciscoRouter in zone Low End SW Lab.

Field Description

AT: Indicates that this message describes an AppleTalk packet.

4160.19 Network address of the requester.

skt 2 Internet socket address of the requester. The responder will send the
NBP lookup reply to this socket address.

enum 0 Enumerator field. Used to identify multiple names registered on a single
socket. Each tuple is assigned its own enumerator, incrementing from 0
for the first tuple.

name: =:ciscoRouter@Low End
SW Lab

Entity name for which a network address has been requested. The
AppleTalk entity name includes three components:

Object (in this case, a wildcard character (=), indicating that the
requester is requesting name-address pairs for all objects of the specified
type in the specified zone)

Type (in this case, ciscoRouter)

Zone (in this case, Low End SW Lab)



2-14 Debug Command Reference

debug apple packet

debug apple packet
Use thedebug apple packet EXEC command to display per-packet debugging output. The output
reports information online when a packet is received or a transmit is attempted. Theno form of this
command disables debugging output.

debug apple packet[interface unit]
no debug apple packet[interface unit]

Syntax Description

Command Mode
EXEC

Usage Guidelines
This command allows you to monitor the types of packets being slow switched. It will display at
least one line of debugging output per AppleTalk packet processed.

When invoked in conjunction with thedebug apple routing, debug apple zip, anddebug apple
nbp commands, the debug apple packet command adds protocol processing information in
addition to generic packet details. It also reports successful completion or failure information.

When invoked in conjunction with thedebug apple errors command, thedebug apple packet
command reports packet-level problems, such as those concerning encapsulation.

Note Because thedebug apple packet command can generate many messages, use it only when
the router’s CPU utilization is less than 50 percent.

Sample Display
Figure 1-8 shows sampledebug apple packet output.

Figure 1-8 Sample Debug Apple Packet Output

interface unit (Optional.) Information for a particular interface is to be
displayed. For example, Ethernet0 specifies the first
Ethernet interface; Ethernet1 specifies the second Ethernet
interface. If you include this parameter, you must specifiy
both the interface type and unit number.

router# debug apple packet

Ether0: AppleTalk packet: enctype SNAP, size 60, encaps000000000000000000000000
AT: src=Ethernet0:4160.47, dst=4160-4160, size=10, 2 rtes, RTMP pkt sent
AT: ZIP Extended reply rcvd from 4160.19
AT: ZIP Extended reply rcvd from 4160.19
AT: src=Ethernet0:4160.47, dst=4160-4160, size=10, 2 rtes, RTMP pkt sent
Ether0: AppleTalk packet: enctype SNAP, size 60, encaps000000000000000000000000
Ether0: AppleTalk packet: enctype SNAP, size 60, encaps000000000000000000000000 S

26
53



Debug Command Listing 2-15

debug apple packet

Table 1-3 describes the fields in the first line of output shown in Figure 1-8.

Table 1-3 Debug Apple Packet Field Descriptions—Part 1

Table 1-4 describes the fields in the second line of output shown in Figure 1-8.

Table 1-4 Debug Apple Packet Field Descriptions—Part 2

The third line in Figure 1-8 indicates the type of packet received and its source AppleTalk address.
This message is repeated in the fourth line because AppleTalk hosts can send multiple replies to a
given GetNetInfo request.

Field Description

Ether0: Name of the interface through which the router received the
packet.

AppleTalk packet Indicates that this is an AppleTalk packet.

enctype SNAP Encapsulation type for the packet.

size 60 Size of the packet (in bytes).

encaps000000000000000000000000 Encapsulation.

Field Description

AT: Indicates that this is an AppleTalk packet.

src = Ethernet0:4160.47 Name of the interface sending the packet, as well as its AppleTalk address.

dst = 4160-4160 Cable range of the packet’s destination.

size = 10 Size of the packet (in bytes).

2 rtes Indicates that there are two routes in the routing table that link these two
addresses.

RTMP pkt sent Indicates the type of packet sent.



2-16 Debug Command Reference

debug apple routing

debug apple routing
Use thedebug apple routing EXEC command to enable debugging output from the Routing Table
Maintenance Protocol (RTMP) routines. Theno form of this command disables debugging output.

debug apple routing[interface unit]
no debug apple routing[interface unit]

Syntax Description

Command Mode
EXEC

Usage Guidelines
This command can be used to monitor acquisition of routes, aging of routing table entries, and
advertisement of known routes. It also reports conflicting network numbers on the same network if
the network is misconfigured.

Note Because thedebug apple routing command can generate many messages, use it only when
the router’s CPU utilization is less than 50 percent.

Sample Display
Figure 1-9 shows sampledebug apple routing output.

Figure 1-9 Sample Debug Apple Routing Output

Explanations for representative lines of thedebug apple routing output in Figure 1-9 follow.

Table 1-5 describes the fields in the first line of sampledebug apple routing output.

[interface unit] interface andunit are optional arguments to specify that
information for a particular interface be displayed. For
example, Ethernet0 specifies the first Ethernet interface;
Ethernet1 specifies the second Ethernet interface. If you
include this parameter, you must specifiy both the interface
type and unit number.

router# debug apple routing

AT: src=Ethernet0:4160.41, dst=4160-4160, size=19, 2 rtes, RTMP pkt sent
AT: src=Ethernet1:41069.25, dst=41069, size=427, 96 rtes, RTMP pkt sent
AT: src=Ethernet2:4161.23, dst=4161-4161, size=427, 96 rtes, RTMP pkt sent
AT: Route ager starting (97 routes)
AT: Route ager finished (97 routes)
AT: RTMP from 4160.19 (new 0,old 94,bad 0,ign 0, dwn 0)
AT: RTMP from 4160.250 (new 0,old 0,bad 0,ign 2, dwn 0)
AT: RTMP from 4161.236 (new 0,old 94,bad 0,ign 1, dwn 0)
AT: src=Ethernet0:4160.41, dst=4160-4160, size=19, 2 rtes, RTMP pkt sent S

26
54



Debug Command Listing 2-17

debug apple routing

Table 1-5 Debug Apple Routing Field Descriptions—Part 1

The following two messages indicate that the ager has started and finished the aging process for the
routing table and that this table contains 97 entries.

AT: Route ager starting (97 routes)
AT: Route ager finished (97 routes)

Table 1-5 describes the fields in the following line ofdebug apple routing output.

AT: RTMP from 4160.19 (new 0,old 94,bad 0,ign 0, dwn 0)

Table 1-6 Debug Apple Routing Field Descriptions—Part 2

Field Description

AT: Indicates that this is AppleTalk debugging output.

src = Ethernet0:4160.41 Indicates the source router interface and network address for the RTMP
update packet.

dst = 4160-4160 Indicates the destination network address for the RTMP update packet.

size = 19 Size of this RTMP packet (in bytes).

2 rtes This RTMP update packet includes information on two routes.

RTMP pkt sent Indicates that this type of message describes an RTMP update packet
that the router has sent (rather than one that it has received).

Field Description

AT: Indicates that this is AppleTalk debugging output.

RTMP from 4160.19 Indicates the source address of the RTMP update the router received.

new 0 Indicates the number of routes in this RTMP update packet that the router did
not already know about.

old 94 Indicates the number of routes in this RTMP update packet that the router
already knew about.

bad 0 Number of routes the other router indicates have gone bad.

ign 0 Number of routes the other router indicates it does not care about.

dwn 0 Number of poisoned tuples included in this packet.



2-18 Debug Command Reference

debug apple zip

debug apple zip
Use thedebug apple zip EXEC command to display debugging output from the Zone Information
Protocol (ZIP) routines. Theno form of this command disables debugging output.

debug apple zip[interface unit]
no debug apple zip[interface unit]

Syntax Description

Command Mode
EXEC

Usage Guidelines
This command reports significant events such as discovery of new zones and zone list queries. It
generates information similar to that generated bydebug apple routing, but generates it for ZIP
packets instead of RTMP packets.

Thedebug apple zip command can be used to determine whether a ZIP storm is taking place in the
AppleTalk network. You can detect the existence of a ZIP storm when you see that no router on a
cable has the zone name corresponding to a network number that all the routers have in their routing
tables.

Sample Display
Figure 1-10 shows sampledebug apple zip output.

Figure 1-10 Sample Debug Apple ZIP Output

Explanations of the lines of output shown in Figure 1-10 follow.

interface unit (Optional.) Information for a particular interface is to be
displayed. For example, Ethernet0 specifies the first
Ethernet interface; Ethernet1 specifies the second Ethernet
interface. If you include this parameter, you must specifiy
both the interface type and unit number.

router# debug apple zip

AT: Sent GetNetInfo request broadcast on Ether0
AT: Recvd ZIP cmd 6 from 4160.19-6
AT: 3 query packets sent to neighbor 4160.19
AT: 1 zones for 31902, ZIP XReply, src 4160.19
AT: net 31902, zonelen 10, name US-Orlando S

26
55



Debug Command Listing 2-19

debug apple zip

The first line indicates that the router has received an RTMP update that includes a new network
number and is now requesting zone information.

AT: Sent GetNetInfo request broadcast on Ether0

The second line indicates that the neighbor at address 4160.19 replies to the zone request with a
default zone.

AT: Recvd ZIP cmd 6 from 4160.19-6

The third line indicates that the router responds with three queries to the neighbor at network address
4160.19 for other zones on the network.

AT: 3 query packets sent to neighbor 4160.19

The fourth line indicates that the neighbor at network address 4160.19 responds with a ZIP extended
reply, indicating that one zone has been assigned to network 31902.

AT: 1 zones for 31902, ZIP XReply, src 4160.19

The fifth line indicates that the router responds that the zone name of network 31902 is US-Orlando,
and the zone length of that zone name is 10.

AT: net 31902, zonelen 10, name US-Orlando



2-20 Debug Command Reference

debug arp

debug arp
Use thedebug arp EXEC command to display information on Address Resolution Protocol (ARP)
protocol transactions. Theno form of this command disables debugging output.

debug arp
no debug arp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Use this command when some nodes on a TCP/IP network are responding, but others are not. It
shows whether or not the router is sending or receiving ARPs.

Sample Display
Figure 1-11 shows sampledebug arp output.

Figure 1-11 Sample Debug ARP Output

In Figure 1-11, each line of output represents an ARP packet that the router sent or received.
Explanations for the individual lines of output follow.

The first line indicates that the router at IP address 131.108.22.7 and MAC address 0000.0c01.e117
sent an ARP request for the MAC address of the host at 131.108.22.96. The series of zeros
(0000.0000.0000) following this address indicate that the router is currently unaware of the MAC
address.

IP ARP: sent req src 131.108.22.7 0000.0c01.e117, dst 131.108.22.96 \
0000.0000.0000

The second line indicates that the router at IP address 131.108.22.7 receives a reply from the host at
131.108.22.96 indicating that its MAC address is 0800.2010.b908.

IP ARP: rcvd rep src 131.108.22.96 0800.2010.b908, dst 131.108.22.7

The third line indicates that the router receives an ARP request from the host at 131.108.6.10
requesting the MAC address for the host at 131.108.6.62.

IP ARP: rcvd req src 131.108.6.10 0000.0c00.6fa2, dst 131.108.6.62

router# debug arp

IP ARP: sent req src 131.108.22.7 0000.0c01.e117, dst 131.108.22.96 0000.0000.0000
IP ARP: rcvd rep src 131.108.22.96 0800.2010.b908, dst 131.108.22.7
IP ARP: rcvd req src 131.108.6.10 0000.0c00.6fa2, dst 131.108.6.62
IP ARP: rep filtered src 131.108.22.7 aa92.1b36.a456, dst 255.255.255.255 ffff.ffff.ffff
IP ARP: rep filtered src 131.108.9.7 0000.0c00.6b31, dst 131.108.22.7 0800.2010.b908 S

26
56



Debug Command Listing 2-21

debug arp

The fourth line indicates that another host on the network attempted to send the router an ARP reply
for the router’s own address. The router ignores such bogus replies. Usually, this can happen if
someone is running a bridge in parallel with the router and is allowing ARP to be bridged. It
indicates a network misconfiguration.

IP ARP: rep filtered src 131.108.22.7 aa92.1b36.a456, dst 255.255.255.255 \
ffff.ffff.ffff

The fifth line indicates that another host on the network attempted to inform the router that it is on
network 131.108.9.7, but the router does not know that that network is attached to a different router
interface. The remote host (probably a PC or an X terminal) is misconfigured. If the router were to
install this entry, it would deny service to the real machine on the proper cable.

IP ARP: rep filtered src 131.108.9.7 0000.0c00.6b31, dst 131.108.22.7 \
0800.2010.b908



2-22 Debug Command Reference

debug broadcast

debug broadcast
Use thedebug broadcast EXEC command to display information on MAC broadcast packets. The
no form of this command disables debugging output.

debug broadcast
no debug broadcast

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Depending on the type of interface and the type of encapsulation used on that interface, thedebug
broadcast command can produce a wide range of messages.

Sample Display
Figure 1-12 shows sampledebug broadcast output. Notice how similar it is to thedebug packet
output.

Figure 1-12 Sample Debug Broadcast Output

Table 1-7 describes significant fields shown in Figure 1-12.

router# debug broadcast

Ethernet0: Broadcast ARPA, src 0000.0c00.6fa4, dst ffff.ffff.ffff, type 0x0800,
data 4500002800000000FF11EA7B, len 60
Serial3: Broadcast HDLC, size 64, type 0x800, flags 0x8F00
Serial2: Broadcast PPP, size 128
Serial7: Broadcast FRAME-RELAY, size 174, type 0x800, DLCI 7a S

26
57



Debug Command Listing 2-23

debug broadcast

Table 1-7 Debug Broadcast Field Descriptions

Field Description

Ethernet0 Name of Ethernet interface that received the packet.

Broadcast States that this packet was a broadcast packet.

ARPA States that this packet uses ARPA-style encapsulation. Possible
encapsulation styles vary depending on the media command mode
(MCM) and encapsulation style, as follows:

Ethernet (MCM)

Encapsulation Style
APOLLO
ARP
ETHERTALK
ISO1
ISO3
LLC2
NOVELL-ETHER
SNAP

FDDI (MCM)

Encapsulation Style
APOLLO
ISO1
ISO3
LLC2
SNAP

Serial (MCM)

Encapsulation Style
BFEX25
BRIDGE
DDN-X25
DDNX25-DCE
ETHERTALK
FRAME-RELAY
HDLC
HDH
LAPB
LAPBDCE
MULTI-LAPB
PPP
SDLC-PRIMARY
SDLC-SECONDARY
SLIP
SMDS
STUN
X25
X25-DCE



2-24 Debug Command Reference

debug broadcast

Token Ring (MCM)

Encapsulation Style
3COM-TR
ISO1
ISO3
MAC
LLC2
NOVELL-TR
SNAP
VINES-TR

src 0000.0c00.6fa4 MAC address of the node generating the packet.

dst ffff.ffff.ffff. ffff MAC address of the destination node for the packet. This address is
always the MAC broadcast address.

type 0x0800 Packet type (IP in this case).

data ... First 12 bytes of the datagram following the MAC header.

len 60 Length of the message that the interface received from the wire (in
bytes).

size 128 Length of the message that the interface received from the wire (in
bytes).

flags 0x8F00 HDLC or PPP flags field.

DLCI 7a The DLCI number on Frame Relay.

Field Description



Debug Command Listing 2-25

debug clns esis events

debug clns esis events
Use thedebug clns esis events EXEC command to displays uncommon ES-IS events, including
previously unknown neighbors, neighbors that have aged out, and neighbors that have changed roles
(ES to IS, for example). Theno form of this command disables debugging output.

debug clns esis events
no debug clns esis events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-13 shows sampledebug clns esis events output.

Figure 1-13 Sample Debug CLNS ESIS Events Output

Explanations for individual lines of output from Figure 1-13 follow.

The following line of output indicates that the router received a hello packet (ISH) from the IS at
MAC address aa00.0400.2c05 on the Ethernet1 interface. The hold time for this entry is 30.

ES-IS: ISH from aa00.0400.2c05 (Ethernet1), HT 30

The following line of output indicates that the router received a hello packet (ESH) from the ES at
MAC address aa00.0400.9105 on the Ethernet1 interface. The hold time (or number of seconds to
consider this entry valid before deleting it) is 150.

ES-IS: ESH from aa00.0400.9105 (Ethernet1), HT 150

The following line of output indicates that the router sent an IS hello packet on the Ethernet0
interface to all ESs on the network. The router’s NET address is 49.0001.AA00.6904.00, the hold
time for this packet is 299 seconds, and the header length of this packet is 20 bytes.

ES-IS: ISH sent to All ESs (Ethernet1): NET 49.0001.AA00.0400.6904.00, HT 299, HLEN 20

router# debug clns esis events

ES-IS: ISH from aa00.0400.2c05 (Ethernet1), HT 30
ES-IS: ESH from aa00.0400.9105 (Ethernet1), HT 150
ES-IS: ISH sent to All ESs (Ethernet1): NET 49.0001.AA00.0400.6904.00, HT 299, HLEN 20 S

26
58



2-26 Debug Command Reference

debug clns esis packets

debug clns esis packets
Use thedebug clns esis packets EXEC command to enable display information on ES-IS packets
that the router has received and sent. Theno form of this command disables debugging output.

debug clns esis packets
no debug clns esis packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-14 shows sampledebug clns esis packets output.

Figure 1-14 Sample Debug CLNS ESIS Packets Output

Explanations for individual lines of output from Figure 1-14 follow.

The following line of output indicates that the router has sent an IS hello packet on Ethernet0 to all
ESs on the network. This hello packet indicates that the router’s NET is
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00. The hold time for this information is 299
seconds. The packet header is 33 bytes in length.

ES-IS: ISH sent to All ESs (Ethernet0): NET
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 33

The following line of output indicates that the router has sent an IS hello packet on Ethernet1 to all
ESs on the network. This hello packet indicates that the router’s NET is
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00. The hold time for this information is 299
seconds. The packet header is 33 bytes in length.

ES-IS: ISH sent to All ESs (Ethernet1): NET
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 34

The following line of output indicates that the router received a hello packet on Ethernet0 from an
intermediate system aa00.0400.6408. The hold time for this information is 299 seconds.

ES-IS: ISH from aa00.0400.6408 (Ethernet0), HT 299

router# debug clns esis packets  

ES-IS: ISH sent to All ESs (Ethernet0): NET 
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 33
ES-IS: ISH sent to All ESs (Ethernet1): NET 
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 34
ES-IS: ISH from aa00.0400.6408 (Ethernet0), HT 299
ES-IS: ISH sent to All ESs (Tunnel0): NET 
47.0005.80ff.ef00.0000.0001.5940.1600.O906.4023.00, HT 299, HLEN 34
IS-IS: ESH from 0000.0c00.bda8 (Ethernet0), HT 300 S

26
59



Debug Command Listing 2-27

debug clns esis packets

The following line of output indicates that the router has sent an IS hello packet on Tunnel0 to all
ESs on the network. This hello packet indicates that the router’s NET is
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00. The hold time for this information is 299
seconds. The packet header is 33 bytes in length.

ES-IS: ISH sent to All ESs (Tunnel0): NET
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 34

The following line of output indicates that on Ethernet0, the router received a hello packet from an
end system with an SNPA of 0000.0c00.bda8. The hold time for this information is 300 seconds.

IS-IS: ESH from 0000.0c00.bda8 (Ethernet0), HT 300



2-28 Debug Command Reference

debug clns events

debug clns events
Use thedebug clns events EXEC command to display CLNS events that are occuring at the router.
Theno form of this command disables debugging output.

debug clns events
no debug clns events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-15 shows sampledebug clns events output.

Figure 1-15 Sample Debug CLNS Events Output

Explanations for individual lines of output from Figure 1-15 follow.

The following line of output indicates that the router received an echo PDU on Ethernet3 from
source NSAP 39.0001.2222.2222.2222.00. The exclamation point at the end of the line has no
significance.

CLNS: Echo PDU received on Ethernet3 from 39.0001.2222.2222.2222.00!

The following lines of output indicate that the router at source NSAP 39.0001.3333.3333.3333.00 is
sending a CLNS echo packet to destination NSAP 39.0001.2222.2222.2222.00 via an IS with
System ID 2222.2222.2222. The packet is being sent on the Ethernet3 interface, with a MAC address
of 0000.0c00.3a18.

CLNS: Sending from 39.0001.3333.3333.3333.00 to 39.0001.2222.2222.2222.00
         via 2222.2222.2222 (Ethernet3 0000.0c00.3a18)

router# debug clns events

CLNS: Echo PDU received on Ethernet3 from 39.0001.2222.2222.2222.00!
CLNS: Sending from 39.0001.3333.3333.3333.00 to 39.0001.2222.2222.2222.00
         via 2222.2222.2222 (Ethernet3 0000.0c00.3a18)
CLNS: Forwarding packet size 117
      from 39.0001.2222.2222.2222.00
      to 49.0002.0001.AAAA.AAAA.AAAA.00
      via 49.0002 (Ethernet3 0000.0c00.b5a3)
CLNS: RD Sent on Ethernet3 to 39.0001.2222.2222.2222.00 @ 0000.0c00.3a18,
      redirecting 49.0002.0001.AAAA.AAAA.AAAA.00 to 0000.0c00.b5a3 S

26
60



Debug Command Listing 2-29

debug clns events

The following lines of output indicate that a CLNS echo packet 117 bytes in size is being sent from
source NSAP 39.0001.2222.2222.2222.00 to destination NSAP
49.0002.0001.AAAA.AAAA.AAAA.00 via the router at NSAP 49.0002. The packet is being
forwarded on the Ethernet3 interface, with a MAC address of 0000.0c00.b5a3.

CLNS: Forwarding packet size 117
      from 39.0001.2222.2222.2222.00
      to 49.0002.0001.AAAA.AAAA.AAAA.00
      via 49.0002 (Ethernet3 0000.0c00.b5a3)

The following lines of output indicate that the router sent a redirect packet on the Ethernet3 interface
to the NSAP 39.0001.2222.2222.2222.00 at MAC address 0000.0c00.3a18 to indicate that NSAP
49.0002.0001.AAAA.AAAA.AAAA.00 can be reached at MAC address 0000.0c00.b5a3.

CLNS: RD Sent on Ethernet3 to 39.0001.2222.2222.2222.00 @ 0000.0c00.3a18,
      redirecting 49.0002.0001.AAAA.AAAA.AAAA.00 to 0000.0c00.b5a3



2-30 Debug Command Reference

debug clns igrp packets

debug clns igrp packets
Use thedebug clns igrp packets EXEC command to display debugging information on all
ISO-IGRP routing activity. Theno form of this command disables debugging output.

debug clns igrp packets
no debug clns igrp packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-16 shows sampledebug clns igrp packets output.

Figure 1-16 Sample Debug CLNS IGRP Packets Output

Explanations for individual lines of output from Figure 1-16 follow.

The following line of output indicates that the router is sending a hello packet to advertise its
existence in the DOMAIN_green1 domain.

ISO-IGRP: Hello sent on Ethernet3 for DOMAIN_green1

The following line of output indicates that the router received a hello packet from a certain NSAP
on the Ethernet3 interface. The hold time for this information is 51 seconds.

ISO-IGRP: Received hello from 39.0001.3333.3333.3333.00, (Ethernet3), ht 51

The following lines of output indicate that the router is generating a Level 1 update to advertise
reachability to destination NSAP 2222.2222.2222 and that it is sending that update to all systems
that can be reached through the Ethernet3 interface.

ISO-IGRP: Originating level 1 periodic update
ISO-IGRP: Advertise dest: 2222.2222.2222
ISO-IGRP: Sending update on interface: Ethernet3

router# debug clns igrp packets

ISO-IGRP: Hello sent on Ethernet3 for DOMAIN_green1
ISO-IGRP: Received hello from 39.0001.3333.3333.3333.00, (Ethernet3), ht 51
ISO-IGRP: Originating level 1 periodic update
ISO-IGRP: Advertise dest: 2222.2222.2222
ISO-IGRP: Sending update on interface: Ethernet3
ISO-IGRP: Originating level 2 periodic update
ISO-IGRP: Advertise dest: 0001
ISO-IGRP: Sending update on interface: Ethernet3
ISO-IGRP: Received update from 3333.3333.3333 (Ethernet3)
ISO-IGRP: Opcode: area
ISO-IGRP: Received level 2 adv for 0001 metric 1100
ISO-IGRP: Opcode: station
ISO-IGRP: Received level 1 adv for 3333.3333.3333 metric 1100 S

26
61



Debug Command Listing 2-31

debug clns igrp packets

The following lines of output indicate that the router is generating a Level 2 update to advertise
reachability to destination area 1 and that it is sending that update to all systems that can be reached
through the Ethernet3 interface.

ISO-IGRP: Originating level 2 periodic update
ISO-IGRP: Advertise dest: 0001
ISO-IGRP: Sending update on interface: Ethernet3

The following lines of output indicate that the router received an update from NSAP 3333.3333.3333
on Ethernet3. This update indicated the area the router at this NSAP could reach.

ISO-IGRP: Received update from 3333.3333.3333 (Ethernet3)
ISO-IGRP: Opcode: area

The following lines of output indicate that the router received an update advertising that the source
of that update can reach area 1 with a metric of 1100. A station opcode indicates that the update
included system addresses.

ISO-IGRP: Received level 2 adv for 0001 metric 1100
ISO-IGRP: Opcode: station



2-32 Debug Command Reference

debug clns packet

debug clns packet
Use thedebug clns packet EXEC command to display information about packet receipt and
forwarding to the next interface. Theno form of this command disables debugging output.

debug clns packet
no debug clns packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-17 shows sampledebug clns packet output.

Figure 1-17 Sample Debug CLNS Packet Output

Explanations for individual lines of output from Figure 1-17 follow.

In the following lines of output, the first line indicates that a CLNS packet of size 157 bytes is being
forwarded. The second line indicates the NSAP and system name of the source of the packet. The
third line indicates the destination NSAP for this packet. The fourth line indicates the next-hop
system ID, interface, and SNPA of the router interface used to forward this packet.

CLNS: Forwarding packet size 157
      from 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.00 STUPI-RBS
      to 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00
      via 1600.8906.4017 (Ethernet0 0000.0c00.bda8)

In the following lines of output, the first line indicates that the router received an Echo PDU on the
specified interface from the source NSAP. The second line indicates which source NSAP is used to
send a CLNS packet to the destination NSAP, as shown on the third line. The fourth line indicates
the next-hop system ID, interface, and SNPA of the router interface used to forward this packet.

CLNS: Echo PDU received on Ethernet0 from
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00!
CLNS: Sending from 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00 to
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00
via 1600.8906.4017 (Ethernet0 0000.0c00.bda8)

router# debug clns packet

CLNS: Forwarding packet size 157
      from 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.00 STUPI-RBS
      to 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00
      via 1600.8906.4017 (Ethernet0 0000.0c00.bda8)
CLNS: Echo PDU received on Ethernet0 from 4
7.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00!
CLNS: Sending from 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00 to 
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00
      via 1600.8906.4017 (Ethernet0 0000.0c00.bda8) S

26
62



Debug Command Listing 2-33

debug clns routing

debug clns routing
Use thedebug clns routing EXEC command to display debugging information of all CLNS routing
cache updates and activities involving the CLNS routing table. Theno form of this command
disables debugging output.

debug clns routing
no debug clns routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-18 shows sampledebug clns routing output.

Figure 1-18 Sample Debug CLNS Routing Output

Explanations for individual lines of output from Figure 1-18 follow.

The following line of output indicates that a change to the routing table has resulted in an addition
to the fast-switching cache.

CLNS-RT: cache increment:17

The following line of output indicates that a specific prefix route was added to the routing table, and
indicates the next-hop system ID to that prefix route. In other words, when the router receives a
packet with the prefix 47.0023.0001.0000.0000.0003.0001 in that packet’s destination address, it
forwards that packet to the router with the MAC address 1920.3614.3002.

CLNS-RT: Add 47.0023.0001.0000.0000.0003.0001 to prefix table, next hop 1920.3614.3002

The following lines of output indicate that the fast-switching cache entry for a certain NSAP has
been invalidated and then deleted.

CLNS-RT: Aging cache entry for: 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.06
CLNS-RT: Deleting cache entry for: 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.06

router# debug clns routing

CLNS-RT: cache increment:17
CLNS-RT: Add 47.0023.0001.0000.0000.0003.0001 to prefix table, next hop 1920.3614.3002
CLNS-RT: Aging cache entry for: 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.06
CLNS-RT: Deleting cache entry for: 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.06 S

26
63



2-34 Debug Command Reference

debug decnet connects

debug decnet connects
Use thedebug decnet connects EXEC command to display debugging information of all connect
packets that are filtered (permitted or denied) by DECnet access lists. Theno form of this command
disables debugging output.

debug decnet connects
no debug decnet connects

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
When using connect packet filtering, it may be helpful to use thedecnet access-group configuration
command to apply the following basic access list:

access-list 300 permit 0.0 63.1023
access-list 300 permit 0.0 63.1023 eq any

You then can log all connect packets transmitted on interfaces to which you applied this list, in order
to determine those elements on which your connect packets must be filtered.

Sample Display
Figure 1-19 shows sampledebug decnet connects output.

Figure 1-19 Sample Debug DECnet Connects Output

Table 1-8 describes significant fields shown in Figure 1-19.

router# debug decnet connects

DNET-CON: list 300 item #2 matched src=19.403 dst=19.309 on Ethernet0: permitted

      srcname="RICK" srcuic=[0,017]
  dstobj=42 id="USER" S

26
64



Debug Command Listing 2-35

debug decnet connects

Table 1-8 Debug DECnet Connects Field Descriptions

Note Packet password and account information is not logged in thedebug decnet connects
message, nor is it displayed by theshow access EXEC command. If you specifypassword or
account information in your access list, they can be viewed by anyone with access to your router’s
configuration.

Field Description

DNET-CON: Indicates that this is adebug decnet connects packet.

list 300 item #2 matched Indicates that a packet matched the second item in access list 300.

src = 19.403 Indicates the source DECnet address for the packet.

dst = 19.309 Indicates the destination DECnet address for the packet.

on Ethernet0: Indicates the router interface on which the access list filtering the
packet was applied.

permitted Indicates that the access list permitted the packet.

srcname = “RICK” Indicates the originator user of the packet.

srcuic = [0,017] Indicates the source UIC of the packet.

dstobj = 42 Indicates that DECnet object 42 is the destination.

id=“USER” Indicates the access user.



2-36 Debug Command Reference

debug decnet packet

debug decnet packet
Use thedebug decnet packet EXEC command to display debugging information on DECnet packet
events. Theno form of this command disables debugging output.

debug decnet packet
no debug decnet packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-20 shows sampledebug decnet packet output.

Figure 1-20 Sample Debug DECnet Packet Output

Explanations for individual lines of output from Figure 1-20 follow.

The following line of output indicates that the router is sending a converted packet addressed to node
1.10 to Phase V.

DNET-PKT: src 1.3 dst 1.10 sending to PHASEV

The following line of output indicates that the router forwarded a packet from node 1.3 to node 1.23.

DNET-PKT: Packet forwarde from 1.3 to 1.23

router# debug decnet packet
DNET-PKT: src 1.3 dst 1.10 sending to PHASEV
DNET-PKT: Packet forwarded from 1.3 to 1.23 S

26
65



Debug Command Listing 2-37

debug decnet routing

debug decnet routing
Use thedebug decnet routing EXEC command to display all DECnet routing-related events
occurring at the router. Theno form of this command disables debugging output.

debug decnet routing
no debug decnet routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-21 shows sampledebug decnet routing output.

Figure 1-21 Sample Debug DECnet Routing Output

Explanations for individual lines of output from Figure 1-21 follow.

The following line of output indicates that the router is sending level 1 updates on interface
Ethernet 0:

DNET-RT: Received level 1 routing from 1.3 on Ethernet0 at 1:16:34

The following line of output indicates that the router is sending its scheduled updates on interface
Ethernet 0:

DNET-RT: Sending normal routing updates on Ethernet0

The following line of output indicates that the route will send an unscheduled update on this interface
as a result of some event. In this case, the unscheduled update is a result of a new entry created in
the interface’s routing table.

DNET-RT: route update triggered by after split route pointers in dn_rt_input

router# debug decnet routing

DNET-RT: Received level 1 routing from 1.3 on Ethernet0 at 1:16:34
DNET-RT: Sending routes
DNET-RT: Sending normal routing updates on Ethernet0
DNET-RT: Sending level 1 routing updates on interface Ethernet0
DNET-RT: Level1 routes from 1.5 on Ethernet0: entry for node 5 created
DNET-RT: route update triggered by after split route pointers in dn_rt_input
DNET-RT: Received level 1 routing from 1.5 on Ethernet 0 at 1:18:35
DNET-RT: Sending L1 triggered routes
DNET-RT: Sending L1 triggered routing updates on Ethernet0
DNET-RT: removing route to node 5 S

26
66



2-38 Debug Command Reference

debug decnet routing

The following line of output indicates that the router sent the unscheduled update on Ethernet 0.

DNET-RT: Sending L1 triggered routes
DNET-RT: Sending L1 triggered routing updates on Ethernet0

The following line of output indicates that the router removed the entry for node 1.5 because the
adjacency with node 1.5 timed out, or the route to node 1.5 through a next-hop router went away.

DNET-RT: removing route to node 5



Debug Command Listing 2-39

debug frame-relay

debug frame-relay
Use thedebug frame-relay EXEC command to display debugging information about the packets
that have been received on a Frame Relay interface. Theno form of this command disables
debugging output.

debug frame-relay
no debug frame-relay

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command helps you to analyze the packets that have been received. However, because the
debug frame-relay command generates a lot of output, only use it when traffic on the Frame Relay
network is less than 25 packets per second.

To analyze the packets that have beensent on a Frame Relay interface, use thedebug frame-relay
packets command.

Sample Display
Figure 1-22 shows sampledebug frame-relay output.

Figure 1-22 Sample Debug Frame-Relay Output

Table 1-9 describes significant fields shown in Figure 1-22.

Table 1-9 Debug Frame-Relay Field Descriptions

Field Description

Serial0(i): Indicates that the Serial0 interface has received this Frame Relay
datagram as input.

dlci 500(0x7C41) Value of the DLCI for this packet in decimal (and q922). In this case,
500 has been configured as the multicast DLCI.

router# debug frame-relay

Serial0(i): dlci 500(0x7C41), pkt type 0x809B, datagramsize 24
Serial1(i): dlci 1023(0xFCF1), pkt type 0x309, datagramsize 13
Serial0(i): dlci 500(0x7C41), pkt type 0x809B, datagramsize 24
Serial1(i): dlci 1023(0xFCF1), pkt type 0x309, datagramsize 13
Serial0(i): dlci 500(0x7C41), pkt type 0x809B, datagramsize 24 S

26
67



2-40 Debug Command Reference

debug frame-relay

pkt type 0x809B Indicates the packet type code.

Possible supported signaling message codes follow:

0x308—Signaling message; Valid only with a DLCI of 0.

0x309—LMI message; Valid only with a DLCI of 1023

Possible supported Ethernet type codes follow:

0x0201—IP on 3MB net

0x0201—Xerox ARP on 10MB nets

0xCC—RFC 1294 (only for IP)

0x0600—XNS

0x0800—IP on 10MB net

0x0806—IP ARP

0x0808—Frame Relay ARP

Indicates the packet type code.

Possible supported signaling message codes follow:

0x308—Signaling message; valid only with a DLCI of 0.

0x309—LMI message; valid only with a DLCI of 1023.

Possible supported Ethernet type codes follow:

0x0201—IP on 3MB net

0x0201—Xerox ARP on 10MB nets

0xCC—RFC 1294 (only for IP)

0x0600—XNS

0x0800—IP on 10MB net

0x0806—IP ARP

0x0808—Frame Relay ARP

0x0BAD—VINES IP

0x0BAE—VINES loopback protocol

0x0BAF—VINES Echo

0x6001—DEC MOP booting protocol

0x6002—DEC MOP console protocol

0x6003—DECnet Phase IV on Ethernet

0x6004—DEC LAT on Ethernet

0x8005—HP Probe

0x8035—RARP

0x8038—DEC spanning tree

0x809b—Apple EtherTalk

0x80f3—AppleTalk ARP

0x8019—Apollo domain

0x80C4—VINES IP

0x80C5— VINES ECHO

0x8137—IPX

0x9000—Ethernet loopback packet IP

Field Description



Debug Command Listing 2-41

debug frame-relay

pkt type 0x809B (continued) Possible HDLC type codes follow:

0x1A58— IPX, standard form

0xFEFE—CLNS

0xEFEF—ES-IS

0x1998—Uncompressed TCP

0x1999—Compressed TCP

0x6558—Serial line bridging

datagramsize 24 Size of this datagram (in bytes)

Field Description



2-42 Debug Command Reference

debug frame-relay events

debug frame-relay events
Use thedebug frame-relay events EXEC command to display debugging information about Frame
Relay ARP replies on networks that support a multicast channel and use dynamic addressing. The
no form of this command disables debugging output.

debug frame-relay events
no debug frame-relay events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is useful for identifying the cause of end-to-end connection problems during the
installation of a Frame Relay network or node.

Note Because thedebug frame-relay events command does not generate much output, you can use
it at any time, even during periods of heavy traffic, without adversely affecting other users on the
system.

Sample Display
Figure 1-23 shows sampledebug frame-relay events output.

Figure 1-23 Sample Debug Frame-Relay Events Output

As Figure 1-23 shows,debug frame-relay events returns one specific message type. The first line,
for example, indicates that IP address 131.108.170.26 sent a frame relay ARP reply; this packet was
received as input on the Serial2 interface. The last field (126) is the DLCI to use when
communicating with the responding router.

router# debug frame-relay events

Serial2(i): reply rcvd 131.108.170.26 126
Serial2(i): reply rcvd 131.108.170.28 128
Serial2(i): reply rcvd 131.108.170.34 134
Serial2(i): reply rcvd 131.108.170.38 144
Serial2(i): reply rcvd 131.108.170.41 228
Serial2(i): reply rcvd 131.108.170.65 325 S

26
68



Debug Command Listing 2-43

debug frame-relay lmi

debug frame-relay lmi
Use thedebug frame-relay lmi EXEC command to display information on the local management
interface (LMI) packets exchanged by the router and the Frame Relay service provider. Theno form
of this command disables debugging output.

debug frame-relay lmi
no debug frame-relay lmi

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
You can use this command to determine whether the router and the Frame Relay switch are sending
and receiving LMI packets properly.

Note Because thedebug frame-relay lmi command does not generate much output, you can use it
at any time, even during periods of heavy traffic, without adversely affecting other users on the
system.

Sample Display
Figure 1-24 shows sampledebug frame-relay lmi output.

Figure 1-24 Sample Debug Frame-Relay LMI Output

router# debug frame-relay lmi

Serial1(out): StEnq, clock 20212760, myseq 206, mineseen 205, yourseen 136, DTE up
Serial1(in): Status, clock 20212764, myseq 206
RT IE 1, length 1, type 1
KA IE 3, length 2, yourseq 138, myseq 206
Serial1(out): StEnq, clock 20222760, myseq 207, mineseen 206, yourseen 138, DTE up
Serial1(in): Status, clock 20222764, myseq 207
RT IE 1, length 1, type 1
KA IE 3, length 2, yourseq 140, myseq 207
Serial1(out): clock 20232760, myseq 208, mineseen 207, yourseen 140, line up
RT IE 1, length 1, type 1
KA IE 3, length 2, yourseq 142, myseq 208
Serial1(out): StEnq, clock 20252760, myseq 210, mineseen 209, yourseen 144, DTE up
Serial1(in): Status, clock 20252764, 
RT IE 1, length 1, type 0
KA IE 3, length 2, yourseq 146, myseq 210
PVC IE 0x7, length 0x6, dlci 400, status 0, bw 56000
PVC IE 0x7, length 0x6, dlci 401, status 0, bw 56000

S
25

46

LMI
exchange

Full LMI
status
message



2-44 Debug Command Reference

debug frame-relay lmi

In Figure 1-24, the first four lines describe an LMI exchange. The first line describes the LMI request
the router has sent to the switch. The second line describes the LMI reply the router has received
from the switch. The third and fourth lines describe the response to this request from the switch. This
LMI exchange is followed by two similar LMI exchanges. The last six lines in Figure 1-24 comprise
a full LMI status message that includes a description of the router’s two Permanent Virtual Circuits
(PVCs).

Table 1-10 describes significant fields in the first line of thedebug frame-relay lmi output shown
in Figure 1-24.

Table 1-10 Debug Frame-Relay LMI Field Descriptions—Part 1

Table 1-11 describes significant fields in the second and third lines ofdebug frame-relay lmi output
shown in Figure 1-24.

Table 1-11 Debug Frame-Relay LMI Field Descriptions—Part 2

Field Description

Serial1(out) Indicates that the LMI request was sent out on the Serial1 interface.

StEnq Command Mode of message:

StEnq—Status Enquiry

Status—Status reply

clock 20212760 System clock (in milliseconds). Useful for determining whether an appropriate
amount of time has transpired between events.

myseq 206 The myseq counter maps to the router’s CURRENT SEQ counter, as described in the
Frame Relay Specification with Extensions.

yourseen 136 The yourseen counter maps to the LAST RCVD SEQ counter of the switch, as
described in the Frame Relay Specification with Extensions.

DTE up Indicates the line protocol up/down state for the DTE (user) port.

Field Description

RT IE 1 Value of the report type information element.

length 1 Length of the report type information element (in bytes).

type 1 Report type in RT IE.

KA IE 3 Value of the keepalive information element.

length 2 Length of the keepalive information element (in bytes).

yourseq 138 The yourseq counter maps to the CURRENT SEQ counter of the switch, as described in
the Frame Relay Specification with Extensions.

myseq 206 The myseq counter maps to the router’s CURRENT SEQ counter, as described in the
Frame Relay Specification with Extensions.



Debug Command Listing 2-45

debug frame-relay lmi

Table 1-12 describes significant fields in the last line ofdebug frame-relay lmi output shown in
Figure 1-24.

Table 1-12 Debug Frame-Relay LMI Field Descriptions—Part 3

Field Description

PVC IE 0x7 Value of the permanent virtual circuit information element type.

length 0x6 Length of the PVC IE (in bytes).

dlci 401 DLCI decimal value for this PVC.

status 0 Status value. Possible values include the following:

0x00—Added/inactive

0x02—Added/active

0x04—Deleted

0x08—New/inactive

0x0a—New/active

bw 56000 CIR (committed information rate), in decimal, for the DLCI.



2-46 Debug Command Reference

debug frame-relay packets

debug frame-relay packets
Use thedebug frame-relay packets EXEC command to display information on packets that have
been sent on a Frame Relay interface. Theno form of this command disables debugging output.

debug frame-relay packets
no debug frame-relay packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command helps you to analyze the packets that have been sent on a Frame Relay interface.
Because thedebug frame-relay packets command generates large amount of output, only use it
when traffic on the Frame Relay network is less than 25 packets per second.

To analyze the packets that have beenreceived on a Frame Relay interface, use thedebug frame-
relay command.

Sample Display
Figure 1-25 shows sampledebug frame-relay packets output.

Figure 1-25 Sample Debug Frame-Relay Packets Output

As Figure 1-25 shows,debug frame-relay packets output comprises groups of output lines; each
group describes a Frame Relay packet that has been sent. The number of lines in the group can vary,
depending on the number of DLCIs on which the packet was sent. For example, the first two pairs
of output lines describe two different packets, both of which were sent out on a single DLCI. The
last three lines in Figure 1-25 describe a single Frame Relay packet that was sent out on two DLCIs.

router# debug frame-relay packets

Serial0: broadcast = 1, link  809B, addr 65535.255
Serial0(o):DLCI 500 type 809B size 24
Serial0: broadcast - 0, link 809B, addr 10.2
Serial0(o):DLCI 100 type 809B size 104
Serial0: broadcast search
Serial0(o):DLCI 300 type 809B size 24
Serial0(o):DLCI 400 type 809B size 24 S

25
47

Groups of
output lines



Debug Command Listing 2-47

debug frame-relay packets

Table 1-13 describes significant fields shown in the first pair of output lines in Figure 1-25.

Table 1-13 Debug Frame-Relay Packets Field Descriptions

The discussion that follows describes the other lines ofdebug frame-relay packet output shown in
Figure 1-25.

The following lines of output describe a Frame Relay packet sent to a particular address; in this case
AppleTalk address 10.2:

Serial0: broadcast - 0, link 809B, addr 10.2
Serial0(o):DLCI 100 type 809B size 104

The following lines of output describe a Frame Relay packet sent to a true broadcast address:

Serial1: broadcast search
Serial1(o):DLCI 400 type 800 size 288

The following lines of output describe a Frame Relay packet that went out on two different DLCIs,
because two Frame Relay map entries were found:

Serial0: broadcast search
Serial0(o):DLCI 300 type 809B size 24
Serial0(o):DLCI 400 type 809B size 24

Field Description

Serial0: Indicates the interface that has sent the Frame Relay packet.

broadcast = 1 Indicates the destination of the packet. Possible values include the following:

broadcast = 1—Broadcast address

broadcast = 0—Particular destination

broadcast search—Searches all Frame Relay map entries for this particular protocol
that include the keywordbroadcast.

link  809B Indicates the packet type, as documented under “debug frame relay.”

addr 65535.255 Indicates the destination protocol address for this packet. In this case, it is an
AppleTalk address.

Serial0(o): (o) indicates that this is an output event.

DLCI 500 Decimal value of the DLCI.

type 809B Indicates the packet type, as documented under “debug frame-relay.”

size 24 Size of this packet (in bytes).



2-48 Debug Command Reference

debug ip icmp

debug ip icmp
Use thedebug ip icmp EXEC command to display information on ICMP transactions. Theno form
of this command disables debugging output.

debug ip icmp
no debug ip icmp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is useful for determining whether the router is sending and/or receiving ICMP
messages; for example, when troubleshooting an end-to-end connection problem.

Sample Display
Figure 1-26 shows sampledebug ip icmp output.

Figure 1-26 Sample Debug IP ICMP Output

Table 1-14 describes significant fields shown in the first line ofdebug ip icmp output shown in
Figure 1-26.

router# debug ip icmp

ICMP: rcvd type 3, code 1, from 128.95.192.4
ICMP: src 36.56.0.202, dst 131.108.16.1, echo reply
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15
ICMP: src 131.108.12.35, dst 131.108.20.7, echo reply
ICMP: dst (255.255.255.255) protocol unreachable rcv from 192.31.7.21
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15
ICMP: dst (255.255.255.255) protocol unreachable rcv from 192.31.7.21
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15
ICMP: src 36.56.0.202, dst 131.108.16.1, echo reply
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15
ICMP: dst (255.255.255.255) protocol unreachable rcv from 192.31.7.21
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15 S

26
69



Debug Command Listing 2-49

debug ip icmp

Table 1-14 Debug IP ICMP Field Descriptions—Part 1

Field Description

ICMP: Indicates that this message describes an ICMP packet.

rcvd type 3 The type field can be one of the following:

0—Echo Reply

3—Destination Unreachable

4—Source Quench

5—Redirect

8—Echo

9—Router Discovery Protocol Advertisement

10—Router Discovery Protocol Solicitations

11—Time Exceeded

12—Parameter Problem

13—Timestamp

14—Timestamp Reply

15—Information Request

16—Information Reply

17—Mask Request

18—Mask Reply

code 1 This field is a code.  The meaning of the code depends upon the type
field value:

Echo and Echo Reply—The code field is always zero.

Destination Unreachable—The code field can have the following values:

0—Network unreachable

1—Host unreachable

2—Protocol unreachable

3—Port unreachable

4—Fragmentation needed and DF bit set

5—Source route failed

Source Quench—The code field is always 0.

Redirect—The code field can have the following values:

0—Redirect datagrams for the Network

1—Redirect datagrams for the Host

2—Redirect datagrams for the Command Mode of Service and Network

3—Redirect datagrams for the Command Mode of Service and Host

Router Discovery Protocol Advertisements and Solicitations—The code
field is always zero.



2-50 Debug Command Reference

debug ip icmp

Table 1-15 describes significant fields shown in the second line ofdebug ip icmp output in Figure
1-26.

Table 1-15 Debug IP ICMP Field Descriptions—Part 2

Other messages that thedebug ip icmp command can generate follow.

When an IP router or host sends out an ICMP mask request, the following message is generated
when the router sends a mask reply:

ICMP: sending mask reply (255.255.255.0) to 160.89.80.23 via Ethernet0

The following two lines are examples of the two forms of this message. The first form is generated
when a mask reply comes in after the router sends out a mask request.  The second form occurs when
the router receives a mask reply with a nonmatching sequence and ID. See Appendix I of RFC 950,
“Internet Standard Subnetting Procedures,” for details.

ICMP: mask reply 255.255.255.0 from 160.89.80.31
ICMP: unexpected mask reply 255.255.255.0 from 160.89.80.32

The following output indicates that the router sent a redirect packet to the host at address
160.89.80.31, instructing that host to use the gateway at address 160.89.80.23 in order to reach the
host at destination address 131.108.1.111:

ICMP: redirect sent to 160.89.80.31 for dest 131.108.1.111 use gw 160.89.80.23

The following message indicates that the router received a redirect packet from the host at address
160.89.80.23, instructing the router to use the gateway at address 160.89.80.28 in order to reach the
host at destination address 160.89.81.34:

ICMP: redirect rcvd from 160.89.80.23 -- for 160.89.81.34 use gw 160.89.80.28

code 1 (continued) Time Exceeded—The code field can have the following values:

0—Time to live exceeded in transit

1—Fragment reassembly time exceeded

Parameter Problem—The code field can have the following values:

0—General problem

1—Option is missing

2—Option missing, no room to add

Timestamp and Timestamp Reply—The code field is always zero.

Information Request and Information Reply—The code field is always
zero.

Mask Request and Mask Reply—The code field is always zero.

from 128.95.192.4 Indicates the source address of the ICMP packet.

Field Description

ICMP: Indicates that this messages describes an ICMP packet.

src 36.56.0.202 The address of the sender of the echo.

dst 131.108.16.1 The address of the receiving router.

echo reply Indicates the router received an echo reply.

Field Description



Debug Command Listing 2-51

debug ip icmp

The following message is displayed when the router sends an ICMP packet to the source address
(160.89.94.31 in this case) indicating that the destination address (131.108.13.33 in this case) is
unreachable.:

ICMP: dst (131.108.13.33) host unreachable sent to 160.89.94.31

The following message is displayed when the router receives an ICMP packet from an intermediate
address (160.89.98.32 in this case) indicating that the destination address (131.108.13.33 in this
case) is unreachable:

ICMP: dst (131.108.13.33) host unreachable rcv from 160.89.98.32

Depending on the code received (as Table 1-14 describes), any of the unreachable messages can have
any of the following instead of the “host” string in the message:

net
protocol
port
frag. needed and DF set
source route failed
prohibited

The following message is displayed when the TTL in the IP header reaches zero and a time exceed
ICMP message is sent.  The fields are self-explanatory.

ICMP: time exceeded (time to live) send to 128.95.1.4 (dest was 131.108.1.111)

The following message is generated when parameters in the IP header are corrupted in some way
and the parameter problem ICMP message is sent. The fields are self-explanatory.

ICMP: parameter problem sent to 128.121.1.50 (dest was 131.108.1.111)

Based on the preceding information, the remaining output can be easily understood.

ICMP: parameter problem rcvd 160.89.80.32
ICMP: source quench rcvd 160.89.80.32
ICMP: source quench sent to 128.121.1.50 (dest was 131.108.1.111)
ICMP: sending time stamp reply to 160.89.80.45
ICMP: sending info reply to 160.89.80.12
ICMP: rdp advert rcvd type 9, code 0, from 160.89.80.23
ICMP: rdp solicit rcvd type 10, code 0, from 160.89.80.43

Note For more information about the fields indebug ip icmp output, see RFC-792, “Internet
Control Message Protocol;” Appendix I of RFC-950, “Internet Standard Subnetting Procedure;” and
RFC-1256, “ICMP Router Discovery Messages.”



2-52 Debug Command Reference

debug ip igrp events

debug ip igrp events
Use thedebug ip igrp events EXEC command to display information of IGRP routing messages
that indicate the source and destination of each update, as well as the number of routes in each
update. Messages are not generated for each route. Theno form of this command disables debugging
output.

debug ip igrp events[ip-address]
no debug ip igrp events[ip-address]

Syntax Description

Command Mode
EXEC

Usage Guidelines
If the IP address of an IGRP neighbor is specified, the resultingdebug ip igrp events output will
include messages describing updates from that neighbor and updates that the router broadcasts
toward that neighbor.

This command is particularly useful when there are many networks in your routing table. In this
case, usingdebug ip igrp transaction could flood the console and make the router unusable. Use
debug ip igrp events instead to display summary routing information.

Sample Display
Figure 1-27 shows sampledebug ip igrp events output.

Figure 1-27 Sample Debug IP IGRP Events Output

Figure 1-27 shows that the router has sent two updates to the broadcast address 255.255.255.255.
The router also received two updates. Three lines of output describe each of these updates.
Explanations for representative lines of output from Figure 1-27 follow.

ip-address (Optional.) IP address of an IGRP neighbor.

router# debug ip igrp events

IGRP: sending update to 255.255.255.255 via Ethernet1 (160.89.33.8)
IGRP: Update contains 26 interior, 40 system, and 3 exterior routes.
IGRP: Total routes in update: 69
IGRP: sending update to 255.255.255.255 via Ethernet0 (160.89.32.8)
IGRP: Update contains 1 interior, 0 system, and 0 exterior routes.
IGRP: Total routes in update: 1
IGRP: received update from 160.89.32.24 on Ethernet0
IGRP: Update contains 17 interior, 1 system, and 0 exterior routes.
IGRP: Total routes in update: 18
IGRP: received update from 160.89.32.7 on Ethernet0
IGRP: Update contains 5 interior, 1 system, and 0 exterior routes.
IGRP: Total routes in update: 6

Updates sent 
to these two 
destination 
addresses

Updates 
received from 
these source 
addresses

S
25

48



Debug Command Listing 2-53

debug ip igrp events

The first line of output indicates whether the router sent or received the update packet, the source or
destination address, and the interface through which the update was sent or received. If the update
was sent, the IP address assigned to this interface is shown (in parentheses).

IGRP: sending update to 255.255.255.255 via Ethernet1 (160.89.33.8)

The second line of output summarizes the number and types of routes described in the update.

IGRP: Update contains 26 interior, 40 system, and 3 exterior routes.

The third line of output indicates the total number of routes described in the update.

IGRP: Total routes in update: 69



2-54 Debug Command Reference

debug ip igrp transaction

debug ip igrp transaction
Use thedebug ip igrp transaction EXEC command to display information on IGRP routing
transactions. Theno form of this command disables debugging output.

debug ip igrp transaction [ip-address]
no debug ip igrp transaction[ip-address]

Syntax Description

Command Mode
EXEC

Usage Guidelines
If the IP address of an IGRP neighbor is specified, the resultingdebug ip igrp transaction output
will include messages describing updates from that neighbor and updates that the router broadcasts
toward that neighbor.

When there are many networks in your routing table,debug ip igrp transaction can flood the
console and make the router unusable. In this case, usedebug ip igrp events instead to display
summary routing information.

Sample Display
Figure 1-28 shows sampledebug ip igrp transaction output.

[ip-address] IP address of an IGRP neighbor.

Router# debug ip igrp transactions

IGRP: received update from 160.89.80.240 on Ethernet
 subnet 160.89.66.0, metric 1300 (neighbor 1200)
 subnet 160.89.56.0, metric 8676 (neighbor 8576)
 subnet 160.89.48.0, metric 1200 (neighbor 1100)
 subnet 160.89.50.0, metric 1300 (neighbor 1200)
 subnet 160.89.40.0, metric 8676 (neighbor 8576)
 network 192.82.152.0, metric 158550 (neighbor 158450)
 network 192.68.151.0, metric 1115511 (neighbor 1115411)
 network 150.136.0.0, metric 16777215 (inaccessible)
 exterior network 129.140.0.0, metric 9676 (neighbor 9576)
 exterior network 140.222.0.0, metric 9676 (neighbor 9576)
IGRP: received update from 160.89.80.28 on Ethernet
 subnet 160.89.95.0, metric 180671 (neighbor 180571)
 subnet 160.89.81.0, metric 1200 (neighbor 1100)
 subnet 160.89.15.0, metric 16777215 (inaccessible)
IGRP: sending update to 255.255.255.255 via Ethernet0 (160.89.64.31)
 subnet 160.89.94.0, metric=847
IGRP: sending update to 255.255.255.255 via Serial1 (160.89.94.31)
 subnet 160.89.80.0, metric=16777215
 subnet 160.89.64.0, metric=1100

Updates sent 
o these two 
ource 

addresses

Updates 
eceived from 
hese two
destination 
addresses S

25
49



Debug Command Listing 2-55

debug ip igrp transaction

Figure 1-28 Sample Debug IP IGRP Transaction Output

Figure 1-28 shows that the router being debugged has received updates from two other routers on
the network.  The router at source address 160.89.80.240 sent information about ten destinations in
the update; the router at source address 160.89.80.28 sent information about three destinations in its
update. The router being debugged also sent updates—in both cases to the broadcast address
255.255.255.255 as the destination address.

The first line in Figure 1-28 is self explanatory.

On the second line in Figure 1-28, the first field refers to the type of destination information:
“subnet” (interior), “network” (system), or “exterior” (exterior).  The second field is the Internet
address of the destination network.  The third field is the metric stored in the routing table and the
metric advertised by the neighbor sending the information.  “Metric ... inaccessible” usually means
that the neighbor router has put the destination in holddown.

The entries in Figure 1-28 showing that the router is sending updates that are similar, except that the
numbers in parentheses are the source addresses used in the IP header.  A metric of 16777215 is
inaccessible.

Other examples of output that thedebug ip igrp transaction command can produce follow.

The following entry indicates that the routing table was updated and shows the new edition number
(97 in this case) to be used in the next IGRP update:

IGRP: edition is now 97

Entries such as the following occur on startup or when some event occurs such as an interface
transitioning or a user manually clearing the routing table:

IGRP: broadcasting request on Ethernet0
IGRP: broadcasting request on Ethernet1

The following type of entry can result when routing updates become corrupted between sending and
receiving routers:

IGRP: bad checksum from 160.89.64.43

An entry such as the following should never appear. If it does, the receiving router has a bug in the
software or a problem with the hardware. In either case, contact your technical support
representative.

IGRP: system 45 from 160.89.64.234, should be system 109



2-56 Debug Command Reference

debug ip ospf events

debug ip ospf events
Use thedebug ip ospf events EXEC command to display information on OSPF-related events, such
as adjacencies, flooding information, designated router selection, and SPF calculation. Theno form
of this command disables debugging output.

debug ip ospf events
no debug ip ospf events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-29 shows sampledebug ip ospf events output.

Figure 1-29 Sample Debug IP OSPF Events Output

Thedebug ip ospf events output shown in Figure 1-29 might appear if any of the following occurs:

• The IP subnet masks for routers on the same network do not match.

• The OSPF hello interval for the router does not match that configured for a neighbor.

• The OSPF dead interval for the router does not match that configured for a neighbor.

If a router configured for OSPF routing is not seeing an OSPF neighbor on an attached network, do
the following:

• Make sure that both routers have been configured with the same IP mask, OSPF hello interval,
and OSPF dead interval.

• Make sure that the both neighbors are part of the same area type.

In the following example line, the neighbor and this router are not part of a stub area (that is, one is
a part of transit area and the other is a part of a stub area, as explained in RFC 1247).

OSPF: hello packet with mismatched E bit

router# debug ip ospf-events

OSPF:hello with invalid timers on interface Ethernet0
hello interval received 10  configured 10
net mask received 255.255.255.0  configured 255.255.255.0
dead interval received 40  configured 30

S
26

70



Debug Command Listing 2-57

debug ip packet

debug ip packet
Use thedebug ip packet EXEC command to display general IP debugging information and IPSO
security transactions. Theno form of this command disables debugging output.

debug ip packet [list]
no debug ip packet [list]

Syntax Description

Command Mode
EXEC

Usage Guidelines
If a communication session is closing when it should not be, an end-to-end connection problem can
be the cause. Thedebug ip packet command is useful for analyzing the messages traveling between
the local and remote hosts.

IP debugging information includes packets received, generated, and forwarded. Fast-switched
packets do not generate messages.

IPSO security transactions include messages that describe the cause of failure each time a datagram
fails a security test in the system. This information also is sent to the sending host when the router
configuration allows it.

Note Because thedebug ip packet command generates a significant amount output, use it only
when traffic on the IP network is low so other users on the system will not be adversely affected.

[list] Optional IP accesslist that you can specify. If the datagram
is not permitted by that access list, the related debugging
output is suppressed.



2-58 Debug Command Reference

debug ip packet

Sample Display
Figure 1-30 shows sampledebug ip packet output.

Figure 1-30 Sample Debug IP Packet Output

Figure 1-30 shows two types of messages that thedebug ip packet command can produce; the first
line of output describes an IP packet that the router forwards, and the third line of output describes
a packet that is destined for the router. In the third line of output, “rcvd 2” indicates that the router
decided to receive the packet.

Table 1-16 describes the fields shown in the first line of Figure 1-30.

Table 1-16 Debug IP Packet Field Descriptions

The calculation on whether to send a security error message can be somewhat confusing. It depends
upon both the security label in the datagram and the label of the incoming interface. First, the label
contained in the datagram is examined for anything obviously wrong. If nothing is wrong, assume
it to be correct. If there is something wrong, the datagram is treated asunclassified genser. Then the
label is compared with the interface range, and the appropriate action is taken as Table 1-17
describes.

Field Description

IP: Indicates that this is an IP packet.

s = 131.108.13.44 (Fddi0) Indicates the source address of the packet and the name of the interface
that received the packet.

d = 157.125.254.1 (Serial2) Indicates the destination address of the packet and the name of the
interface (in this case, S2) through which the packet is being sent out on
the network.

g = 131.108.16.2 Indicates the address of the next hop gateway.

forward Indicates that the router is forwarding the packet. If a filter denies a
packet, “access denied” replaces “forward,” as shown in the last line of
output in Figure 1-30.

router# debug ip packet

IP: s=131.108.13.44 (Fddi0), d=157.125.254.1 (Serial2), g=131.108.16.2, forward
IP: s=131.108.1.57 (Ethernet4), d=192.36.125.2 (Serial2), g=131.108.16.2, forward
IP: s=131.108.1.6 (Ethernet4), d=255.255.255.255, rcvd 2
IP: s=131.108.1.55 (Ethernet4), d=131.108.2.42 (Fddi0), g=131.108.13.6, forward
IP: s=131.108.89.33 (Ethernet2), d=131.130.2.156 (Serial2), g=131.108.16.2, forward
IP: s=131.108.1.27 (Ethernet4), d=131.108.43.126 (Fddi1), g=131.108.23.5, forward
IP: s=131.108.1.27 (Ethernet4), d=131.108.43.126 (Fddi0), g=131.108.13.6, forward
IP: s=131.108.20.32 (Ethernet2), d=255.255.255.255, rcvd 2
IP: s=131.108.1.57 (Ethernet4), d=192.36.125.2 (Serial2), g=131.108.16.2, access denied S

26
71



Debug Command Listing 2-59

debug ip packet

Table 1-17 Security Actions

The security code can only generate a few types of ICMP error messages. The only possible error
messages and their meanings follow:

• “ICMP Parameter problem, code 0”—Error at pointer

• “ICMP Parameter problem, code 1”—Missing option

• “ICMP Parameter problem, code 2”—See Note that follows

• “ICMP Unreachable, code 10”—Administratively prohibited

Note The message “ICMP Parameter problem, code 2” identifies a specific error that occurs in the
processing of a datagram. This message indicates that the router received a datagram containing a
maximum length IP header but no security option. After being processed and routed to another
interface, it is discovered that the outgoing interface is marked with “add a security label.” Since the
IP header is already full, the system cannot add a label and must drop the datagram and return an
error message.

Classification Authorities Action Taken

Too low Too low

Good

Too high

No Response

No Response

No Response

In range Too low

Good

Too high

No Response

Accept

Send Error

Too high Too low

In range

Too high

No Response

Send Error

Send Error



2-60 Debug Command Reference

debug ip rip

debug ip rip
Use thedebug ip rip EXEC command to display information on RIP routing transactions. Theno
form of this command disables debugging output.

debug ip rip
no debug ip rip

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-31 shows sampledebug ip rip output.

Figure 1-31 Sample Debug IP RIP Output

Figure 1-31 shows that the router being debugged has received updates from one router at source
address 160.89.80.28. That router sent information about five destinations in the routing table
update. Notice that the fourth destination address in the update—131.108.0.0—is inaccessible
because it is more than 15 hops away from the router sending the update. The router being debugged
also sent updates, in both cases to broadcast address 255.255.255.255 as the destination.

The first line in Figure 1-31 is self-explanatory.

The second line in Figure 1-31 is an example of a routing table update. It shows how many hops a
given Internet address is from the router.

The entries in Figure 1-31 showing that the router is sending updates are similar, except that the
number in parentheses is the source address encapsulated into the IP header.

Examples of additional output that thedebug ip rip command can generate follow.

router# debug ip rip

RIP: received update from 160.89.80.28 on Ethernet0
 160.89.95.0 in 1 hops
 160.89.81.0 in 1 hops
 160.89.66.0 in 2 hops
 131.108.0.0 in 16 hops (inaccessible)
 0.0.0.0 in 7 hop
RIP: sending update to 255.255.255.255 via Ethernet0 (160.89.64.31)
 subnet 160.89.94.0, metric 1
 131.108.0.0 in 16 hops (inaccessible)
RIP: sending update to 255.255.255.255 via Serial1 (160.89.94.31)
 subnet 160.89.64.0, metric 1
 subnet 160.89.66.0, metric 3
 131.108.0.0 in 16 hops (inaccessible)
 default 0.0.0.0, metric 8

Updates
received 
from this 
source 
address

Updates 
sent  to 
these two
destination 
addresses

S
25

50



Debug Command Listing 2-61

debug ip rip

Entries such as the following appear at startup or when some event occurs such as an interface
transitioning or the user manually clearing the routing table:

RIP: broadcasting general request on Ethernet0
RIP: broadcasting general request on Ethernet1

The following line is self-explanatory:

RIP: received request from 160.89.80.207 on Ethernet0

An entry such as the following is most likely caused by a malformed packet from the transmitter:

RIP: bad version 128 from 160.89.80.43



2-62 Debug Command Reference

debug ip tcp driver

debug ip tcp driver
Use thedebug ip tcp driver EXEC command to display information on TCP driver events; for
example, connections opening or closing, or packets being dropped because of full queues. Theno
form of this command disables debugging output.

debug ip tcp driver
no debug ip tcp driver

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The TCP driver is the process that the router software uses to send packet data over a TCP
connection. Remote source-route bridging, STUN, and X.25 switching currently use the TCP driver.

Using thedebug ip tcp driver command together with thedebug ip tcp driver pak command
provides the most verbose debugging output concerning TCP driver activity.

Sample Display
Figure 1-32 shows sampledebug ip tcp driver output.

Figure 1-32 Sample Debug IP TCP Driver Output

Explanations for individual lines of output from Figure 1-32 follow.

Table 1-18 describes the fields in the following line of output.

TCPDRV359CD8: Active open 160.89.80.26:0 --> 160.89.80.25:1996 OK, lport 36628

router# debug ip tcp driver

TCPDRV359CD8: Active open 160.89.80.26:0 --> 160.89.80.25:1996 OK, lport 36628
TCPDRV359CD8: enable tcp timeouts
TCPDRV359CD8: 160.89.80.26:36628 --> 160.89.80.25:1996 Abort
TCPDRV359CD8: 160.89.80.26:36628 --> 160.89.80.25:1996 DoClose tcp abort S

26
72



Debug Command Listing 2-63

debug ip tcp driver

Table 1-18 Debug IP TCP Driver Field Descriptions

The following line of output indicates that the TCP driver user (remote source-route bridging, in this
case) will allow TCP to drop the connection if excessive retransmissions occur:

TCPDRV359CD8: enable tcp timeouts

The following line of output indicates that the TCP driver user (in this case, remote source-route
bridging) at IP address 160.89.80.26 (and using TCP port number 36628) is requesting that the
connection to IP address 160.89.80.25 using TCP port number 1996 be aborted:

TCPDRV359CD8: 160.89.80.26:36628 --> 160.89.80.25:1996 Abort

The following line of output indicates that this connection was in fact closed due to an abort:

TCPDRV359CD8: 160.89.80.26:36628 --> 160.89.80.25:1996 DoClose tcp abort

Field Description

TCPDRV359CD8: Unique identifier for this instance of TCP driver activity.

Active open 160.89.80.26 Indicates that the router at IP address 160.89.80.26 has initiated a
connection to another router.

:0 TCP port number the initiator of the connection uses to indicate that any
port number can be used to set up a connection.

--> 160.89.80.25 Indicates the IP address of the remote router to which the connection has
been initiated.

:1996 Indicates the TCP port number that the initiator of the connection is
requesting that the remote router use for the connection. (1996 is a
private TCP port number reserved in this implementation for remote
source-route bridging.)

OK, Indicates that the connection has been established. If the connection has
not been established, this field and the following field do not appear in
this line of output.

lport 36628 Indicates that the TCP port number that has actually been assigned for
the initiator to use for this connection.



2-64 Debug Command Reference

debug ip tcp driver-pak

debug ip tcp driver-pak
Use thedebug ip tcp driver-pak EXEC command to display information on every operation that
the TCP driver performs. Theno form of this command disables debugging output.

debug ip tcp driver-pak
no debug ip tcp driver-pak

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command turns on a verbose debugging by logging at least one debugging message for every
packet sent or received on the TCP driver connection.

The TCP driver is the process that the router software uses to send packet data over a TCP
connection. Remote source-route bridging, STUN, and X.25 switching currently use the TCP driver.

To observe the context within which certaindebug ip tcp driver-pak messages occur, turn this
command on in conjunction with thedebug ip tcp driver command.

Note Because thedebug ip tcp driver-pak command generates so many messages, use it only on
lightly loaded systems. Using this command not only places a significant load on the system
processor, but it may even change the behavior of any bugs that could occur.

Sample Display
Figure 1-33 shows sampledebug ip tcp driver-pak output.

Figure 1-33 Sample Debug IP TCP Driver-Pak Output

router# debug ip tcp driver-pak

TCPDRV359CD8: send 2E8CD8 (len 26) queued
TCPDRV359CD8: output pak 2E8CD8 (len 26) (26)
TCPDRV359CD8: readf 42 bytes (Thresh 16)
TCPDRV359CD8: readf 26 bytes (Thresh 16)
TCPDRV359CD8: readf 10 bytes (Thresh 10)
TCPDRV359CD8: send 327E40 (len 4502) queued
TCPDRV359CD8: output pak 327E40 (len 4502) (4502) S

26
73



Debug Command Listing 2-65

debug ip tcp driver-pak

Explanations for individual lines of output from Figure 1-33 follow.

Table 1-19 describes the fields shown in the following line of output:

TCPDRV359CD8: send 2E8CD8 (len 26) queued

Table 1-19 Debug TCP Driver-Pak Field Descriptions

The following line of output indicates that the TCP driver has sent the data that it had received from
the TCP driver user, as shown in the previous line of output. The last field in the line (26) indicates
that the 26 bytes of data were sent out as a single unit.

TCPDRV359CD8: output pak 2E8CD8 (len 26) (26)

The following line of output indicates that the TCP driver has received 42 bytes of data from the
remote IP address. The TCP driver user (in this case, remote source-route bridging) has established
an input threshold of 16 bytes for this connection. (The input threshold instructs the TCP driver to
transfer data to the TCP driver user only when at least 16 bytes are present.)

TCPDRV359CD8: readf 42 bytes (Thresh 16)

Field Description

TCPDRV359CD8 Unique identifier for this instance of TCP driver activity.

send Indicates that this event involves the TCP driver sending data.

2E8CD8 Address in memory of the data the TCP driver is sending.

(len 26) Length of the data (in bytes).

queued Indicates that the TCP driver user process (in this case, remote source-
route bridging) has transferred the data to the TCP driver to send.



2-66 Debug Command Reference

debug ip tcp transactions

debug ip tcp transactions
Use thedebug ip tcp transactionsEXEC command to display information on significant TCP
transactions such as state changes, retransmissions, and duplicate packets. Theno form of this
command disables debugging output.

debug ip tcp transactions
no debug ip tcp transactions

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is particularly useful for debugging a performance problem on a TCP/IP network that
you have isolated above the data link layer.

Thedebug ip tcp command displays output for packets the router sends and receives, but does not
display output for packets it forwards.

Sample Display
Figure 1-34 shows sampledebug ip tcp transactions output.

Figure 1-34 Sample Debug IP TCP Output

Table 1-20 describes significant fields shown in Figure 1-34.

Table 1-20 Debug IP TCP Field Descriptions

Field Description

TCP: Indicates that this is a TCP transaction.

sending SYN Indicates that a synchronize packet is being sent.

seq 168108 Indicates the sequence number of the data being sent.

router# debug ip tcp transactions

TCP: sending SYN, seq 168108, ack 88655553
TCP0: Connection to 26.9.0.13:22530, advertising MSS 966
TCP0: state was LISTEN -> SYNRCVD [23 -> 26.9.0.13(22530)]
TCP0: state was SYNSENT -> SYNRCVD [23 -> 26.9.0.13(22530)]
TCP0: Connection to 26.9.0.13:22530, received MSS 956
TCP0: restart retransmission in 5996
TCP0: state was SYNRCVD -> ESTAB [23 -> 26.9.0.13(22530)]
TCP2: restart retransmission in 10689
TCP2: restart retransmission in 10641
TCP2: restart retransmission in 10633
TCP2: restart retransmission in 13384 -> 26.0.0.13(16151)]
TCP0: restart retransmission in 5996 [23 -> 26.0.0.13(16151)] S

26
74



Debug Command Listing 2-67

debug ip tcp transactions

ack 88655553 Indicates the sequence number of the data being
acknowledged.

TCP0: Indicates the TTY number (0, in this case) with which this
TCP connection is associated.

Connection to 26.9.0.13:22530 Indicates the remote address with which a connection has
been established.

advertising MSS 966 Indicates the maximum segment size this side of the TCP
connection is offering to the other side.

state was LISTEN -> SYNSENT Indicates that the TCP state machine changed state from
LISTEN to SYNSENT. Possible TCP states follow.

CLOSED—Connection closed.

CLOSEWAIT—Received a FIN segment.

CLOSING—Received a FIN/ACK segment.

ESTAB—Connection established.

FINWAIT 1—Sent a FIN segment to start closing the
connection.

FINWAIT 2—Waiting for a FIN segment.

LASTACK—Sent a FIN segmnet in response to a received
FIN segment.

LISTEN—Listening for a connection request.

SYNRCVD—Received a SYN psegmnet, and responded.

SYNSENT—Sent a SYN segment to start connection
negotiation.

TIMEWAIT—Waiting for network to clear segments for this
connection before the network no longer recognizes the
connection as valid. This must occur before a new connection
can be set up.

[23 -> 26.9.0.13(22530)] Within these brackets:

The first field (23) indicates local TCP port.

The second field (26.9.0.13) indicates the destination IP
address.

The third field (22530) indicates the destination TCP port.

restart retransmission in 5996 Indicates the number of milliseconds until the next
retransmission takes place.

Field Description



2-68 Debug Command Reference

debug ipx packet

debug ipx packet
Use thedebug ipx packet EXEC command to display information about packets received,
transmitted, and forwarded. Theno form of this command disables debugging output.

debug ipx packet
no debug ipx packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is useful for learning whether IPX packets are traveling over a router.

Note In order to generatedebug ipx packet information on all IPX traffic traveling over the router,
you must first configure the router so that fast switching is disabled. Use theno ipx route-cache
command on all interfaces on which you want to observe traffic. If the router is configured for IPX
fast switching, only IPX broadcast packets (SAP, RIP, and Novell NetBIOS) will be displayed.

Sample Display
Figure 1-35 shows sampledebug ipx packet output.

Figure 1-35 Sample Debug IPX Packet Output

In Figure 1-35, the first line indicates that the router receives a packet from an Novell station (address
160.0260.8c4c.4f22); this trace does not indicate the address of the immediate router sending the
packet to this router. In the second line, the router forwards the packet toward the Novell server
(address 1.0000.0000.0001) through an immediate router (183.0000.0c01.5d85).

Table 1-21 describes significant fields shown in Figure 1-35.

router# debug ipx packet

Novell: src=160.0260.8c4c.4f22, dst=1.0000.0000.0001, packet received
Novell: src=160.0260.8c4c.4f22, dst=1.0000.0000.0001,gw=183.0000.0c01.5d85, 
sending packet S

26
75



Debug Command Listing 2-69

debug ipx packet

Table 1-21 Debug IPX Packet Field Descriptions

Field Description

IPX Shows that this is a IPX packet.

src = 160.0260.8c4c.4f22 Source address of the IPX packet. The Novell network number is 160.
Its MAC address is 0260.8c4c.4f22.

dst = 1.0000.0000.0001 Destination address for the IPX packet. The address 0000.0000.0001 is
an internal MAC address, and the network number 1 is the internal
network number of a Novell 3.11 server.

packet received The router received this packet from a Novell station, possibly through
an intermediate router.

gw = 183.0000.0c01.5d85 The router is sending the packet over to the next hop router; its address
of 183.0000.0c01.5d85 was learned from the IPX routing table.

sending packet The router is attempting to send this packet.



2-70 Debug Command Reference

debug ipx routing

debug ipx routing
Use thedebug ipx routing EXEC command todisplay information on IPX routing packets that the
router sends and receives. Theno form of this command disables debugging output.

debug ipx routing
no debug ipx routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Normally, a router or server sends out one routing update per minute. Each routing update packet
can include up to 50 entries. If many networks exist on the internetwork, the router sends out
multiple packets per update. For example, if a router has 120 entries in the routing table, it would
send three routing update packets per update. The first routing update packet would include the first
50 entries, the second packet would include the next 50 entries, and the last routing update packet
would include the last 20 entries.

Sample Display
Figure 1-36 shows sampledebug ipx routing output.

Figure 1-36 Sample Debug IPX Routing Output

Table 1-22 describes significant fields shown in Figure 1-36.

Table 1-22 Debug IPX Routing Field Descriptions

Field Description

IPXRIP Shows that this is a IPX  RIP packet.

update from
9999.0260.8c6a.1733

Indicates that this packet is a routing update from a Novell server at
address 9999.0260.8c6a.1733.

110801 in 1 hops Indicates that network 110801 is one hop away from the router at
address 9999.0260.8c6a.1733.

delay 2 A time measurement (1/18th second) that the NetWare shell uses to
estimate how long to wait for a response from a file server. Also known
as ticks.

router# debug ipx routing

NovellRIP: update from 9999.0260.8c6a.1733
           110801 in 1 hops, delay 2
NovellRIP: sending update to 12FF02:ffff.ffff.ffff via Ethernet 1
           network 555, metric 2, delay 3
           network 1234, metric 3, delay 4 S

26
76



Debug Command Listing 2-71

debug ipx routing

sending update to
12FF02:ffff.ffff.ffff via
Ethernet 1

The router is sending this IPX  routing update packet to address
12FF02:ffff.ffff.ffff through its Ethernet 1 interface.

network 555 Indicates that the packet includes routing update information for network
555.

metric 2 Indicates that network 555 is two metrics (or hops) away from the router.

delay 3 Indicates that network 555 is a delay of 3 away from the router. Delay is
a measurement that the NetWare shell uses to estimate how long to wait
for a response from a file server. Also known as ticks.

Field Description



2-72 Debug Command Reference

debug ipx sap

debug ipx sap
Use thedebug ipx sap EXEC command to display information about IPX  Service Advertisement
Protocol (SAP) packets. Theno form of this command disables debugging output.

debug ipx sap
no debug ipx sap

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Normally, a router or server sends out one SAP update per minute. Each SAP packet can include up
to seven entries. If many servers are advertising on the network, the router sends out multiple packets
per update. For example, if a router has 20 entries in the SAP table, it would send three SAP packets
per update. The first SAP would include the first seven entries, the second SAP would include the
next seven entries, and the last update would include the last six entries.

Sample Display
Figure 1-37 shows sampledebug ipx sap output.

Figure 1-37 Sample Debug IPX SAP Output

As Figure 1-37 shows, thedebug ipx sap command generates multiple lines of output for each SAP
packet—a packet summary message and a service detail message.

Explanations for representative lines of output from Figure 1-37 follow.

The first line of output displays the internal router memory address of the packet. The technical
support staff uses this information in problem debugging.

NovellSAP: at 0023F778:

router# debug ipx sap

NovellSAP: at 0023F778:
I SAP Response type 0x2 len 160 src:160.0000.0c00.070d dest:160.ffff.ffff.ffff(452)
 type 0x4, “HELLO2”, 199.0002.0004.0006 (451), 2 hops
 type 0x4, “HELLO1”, 199.0002.0004.0008 (451), 2 hops
NovellSAP: sending update to 160
NovellSAP: at 00169080:
 O SAP Update type 0x2 len 96 ssoc:0x452 dest:160.ffff.ffff.ffff(452)
Novell: type 0x4, “Magnolia”, 42.0000.0000.0001 (451), 2 hops

Describes a
single SAP
packet

S
25

51



Debug Command Listing 2-73

debug ipx sap

Table 1-23 describes the fields shown in the second line of output in Figure 1-37.

Table 1-23 Debug IPX SAP Field Descriptions—Part 1

Table 1-24 describes the fields shown in the thirdand fourth lines of output in Figure 1-37.

Table 1-24 Debug IPX SAP Field Descriptions—Part 2

Field Description

I Indicates whether the router received the SAP packet as input (I) or is
sending an update as output (O).

SAP Response type 0x2 Indicates the packet type. Format is 0xn; possible values forn include:

1—General query

2—General response

3—Get nearest server request

4—Get nearest server response

len 160 Length of this packet (in bytes).

src: 160.000.0c00.070d Indicates the source address of the packet.

dest:160.ffff.ffff.ffff Indicates the IPX  network number and broadcast address of the
destination IPX  network for which the message is intended.

(452) IPX socket number of the process sending the packet at the source
address. This number is always 452, which is the socket number for the
SAP process.

Field Description

type 0x4 Indicates the type of service the server sending the packet provides.
Format is 0xn. Some of the values forn are proprietary to Novell. Those
values forn that have been published include:

0—Unknown

1—User

2—User group

3—Print queue

4—File server

5—Job server

6—Gateway

7—Print server

8—Archive queue

9—Archive server

A—Job queue

B—Administration

24—Remote bridge server

47—Advertising print server

Contact Novell for more information.



2-74 Debug Command Reference

debug ipx sap

The fifth line of output indicates that the router sent a SAP update to network 160:

NovellSAP: sending update to 160

As Figure 1-37 shows, the format fordebug ipx sap output describing a SAP update the router sends
is similar to that describing a SAP update the router receives, except that the ssoc: field replaces the
src: field, as the following line of output indicates:

O SAP Update type 0x2 len 96 ssoc:0x452 dest:160.ffff.ffff.ffff(452)

Table 1-25\ describes possible values for the ssoc: field.

Table 1-25 Debug IPX SAP Field Descriptions—Part 3

Related Command
debug ipx routing

“HELLO2” Name of the server being advertised.

199.0002.0004.0006 (451) Indicates the network number and address (and socket) of the server
generating the SAP packet.

2 hops Number of hops to the server from the router.

Field Description

ssoc:0x452 Indicates the IPX socket number of the process sending the packet at the
source address. Possible values include:

451—Network Core Protocol

452—Service Advertising Protocol

453—Routing Information Protocol

455—NetBIOS

456—Diagnostics

4000 to 6000—Ephemeral sockets used for interaction with file servers
and other network communications

Field Description



Debug Command Listing 2-75

debug isdn-event

debug isdn-event
Use thedebug isdn-event EXEC command to display ISDN events occurring on the user side (on
the router) of the ISDN interface. The ISDN events that may display are Q.931 events (call setup and
teardown of ISDN network connections). Theno form of this command disables debugging output.

debug isdn-event
no debug isdn-event

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Although the debug information provided through thedebug isdn-event command is similar to the
information provided in thedebug isdn-q931 command, the information is displayed in a different
format. If you want to see the information displayed in the both formats, you can enable both of these
commands at the same time. The displays will be intermingled.

Use theshow dialer command to retrieve information about the status and configuration of the
ISDN interface on the router.

Sample Display
Figure 1-38 shows sampledebug isdn-event output of call setup events for an outgoing call.

Figure 1-38 Sample Debug ISDN-Event Output—Call Setup Outgoing Call

router# debug isdn-event

ISDN Event: Call to 415555121202
received HOST_PROCEEDING
 Channel ID i = 0x0101
 -------------------
 Channel ID i = 0x89
received HOST_CONNECT
 Channel ID i = 0x0101
ISDN Event: Connected to 415555121202 on B1 at 64 Kb/s S

26
77



2-76 Debug Command Reference

debug isdn-event

Figure 1-39 shows sampledebug isdn-event output of call setup events for an incoming call. The
values used for internal puposes are unpacked information elements. The values that follow the
ISDN specification are an interpretation of the unpacked information elements. Refer to Appendix B
for information about these values.

Figure 1-39 Sample Debug ISDN-Event Output—Call Setup Incoming Call

Figure 1-40shows sampledebug isdn-event output of call teardown events for a call that has been
hung up by the other side of the connection.

Figure 1-40 Sample Debug ISDN-Event Output—Call Teardown by Destination

Figure 1-41 shows sampledebug isdn- event output of a call teardown event for an outgoing or
incoming call that has been hung up by the ISDN interface on the router side.

Figure 1-41 Sample Debug ISDN-Event Output—Call Teardown Incoming Call

router# debug isdn-event

received HOST_INCOMING_CALL
 Bearer Capability i = 0x080010
 -------------------
 Channel ID i = 0x0101
 Calling Party Number i = 0x0000, ‘415555121202’
 IE out of order or end of ‘private’ IEs --
 Bearer Capability i = 0x8890
 Channel ID i = 0x89
 Calling Party Number i = 0x0083, ‘415555121202’
ISDN Event: Received a call from 415555121202 on B1 at 64 Kb/s
ISDN Event: Accepting the call
received HOST_CONNECT
 Channel ID i = 0x0101
ISDN Event: Connected to 415555121202 on B1 at 64 Kb/s

Used for
internal
purposes

S
25

52

Follows 
ISDN
specifications

router# debug isdn-event

received HOST_DISCONNECT
ISDN Event: Call to 415555121202 was hung up S

25
53

router# debug isdn-event

ISDN Event: Hangup call to call id 0x8008 S
25

54



Debug Command Listing 2-77

debug isdn-event

Table 1-26 describes significant fields shown in Figure 1-38 through Figure 1-41.

Table 1-26 Debug ISDN-Event Field Descriptions

Field Description

Bearer Capability Indicates the requested bearer service to be provided by the
network.

i= Indicates the Information Element Identifier. The value depends
on the field it is associated with. Refer to the CCITT Q.931
specification for details about the possible values associated with
each field for which this identifier is relevant.

Channel ID Indicates the Channel Identifier. The value 83 indicates any
channel, 0101 indicates the B1 channel, and 89 indicates the B1
channel.

Call to Identifies the called party. This field is only present in outgoing
calls. Note that it may be replaced by the Keypad facility field.
This field uses the IA5 character set.

IE out of order or end of private’ IEs Indicates that an information element identifier is out of order or
there are no more private network information element
identifiers to interpret.

Received a call from 415555121202on
B1 at 64Kb/s

Identifies the origin of the call. This field is present only in
incoming calls. Note that the information about the incoming call
includes the channel and speed. Whether this number is
displayed depends on the network delivering the calling party
number.



2-78 Debug Command Reference

debug isdn-q921

debug isdn-q921
Use thedebug isdn-q921 EXEC command to display data link layer (Layer 2) access procedures
that are taking place at the router on the D-channel (LAPD) of its Integrated Services Digital
Network (ISDN) interface. Theno form of this command disables debugging output.

debug isdn-q921
no debug isdn-q921

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The ISDN data link layer interface provided by the router conforms to the user interface specification
defined by CCITT recommendation Q.921. The display information provided when you enter the
debug isdn-q921 command is limited to commands and responses exchanged during peer-to-peer
communication carried over the D-channel. This debug information does not include data
transmitted over the B-channels that are also part of the router’s ISDN interface. The peers (data link
layer entities and layer management entities on the routers) communicate with each other via an
ISDN switch over the D-channel.

Note The ISDN switch provides the network interface defined by Q.921. This debug command
does not display data link layer access procedures taking place within the ISDN network (that is,
procedures taking place on the network side of the ISDN connection). See Appendix B, “ISDN
Switch Types, Codes, and Values” for a list of the supported ISDN switch types.

A router can be the calling or called party of the ISDN Q.921 data link layer access procedures. If
the router is the calling party, the command displays information about an outgoing call. If the router
is the called party, the command displays information about an incoming call and the keepalives
(RRs).

Thedebug isdn-q921 command can be used with the debug isdn-event and thedebug isdn-q931
commands at the same time. The displays will be intermingled. Seedebug isdn-event later in this
chapter for samples of combination displays.



Debug Command Listing 2-79

debug isdn-q921

Sample Display

Figure 1-42 shows sampledebug isdn-q921 output for an outgoing call.

Figure 1-42 Sample Debug ISDN-Q921 Output for Outgoing Call

Figure 1-43 shows sampledebug isdn-q921 output for an outgoing call.

Figure 1-43 Sample Debug ISDN-Q921 Output for Startup Message on a DMS-100 Switch

router# debug isdn-q921

471.348 TX -> RRp sapi = 0 tei = 67 nr = 19
471.372 RX <- RRp sapi = 0 tei = 67 nr = 17
471.376 TX -> RRf sapi = 0 tei = 67 nr =19
471.388 RX <- RRf sapi = 0 tei = 67 nr = 17
471.968 TX -> INFOc sapi = 0 tei = 67 ns = 17 nr = 19 i = 0x0801050504028890180183
700A80353535313231323032
472.068 RX <- RRr sapi = 0 tei = 67 nr = 18
472.088 RX <- INFOc sapi = 0 tei = 67 ns = 19 nr = 18 i = 0x08018502180189
472.096 TX -> RRr sapi = 0 tei = 67 nr = 20 
472.268 RX <- INFOc sapi = 0 tei = 67 ns = 20 nr 18 i = 0x08018507
472.276 TX -> RRr sapi = 0 tei = 67 nr = 21
472.284 TX -> INFOc sapi = 0 tei = 67 ns 18 nr = 21 i = 0x0801050F
472.356 RX <- RRr sapi = 0 tei = 67 nr = 19

S
25

55

Call Setup 
message

Call Proceeding
message

Call Connect
message

Connect Ack
message

router# debug isdn-q921

139.516 TX -> IDREQ ri = 48386 ai = 127
139.520 RX <- IDREM ri = 0 ai = 89
139.544 RX <- IDASSN ri = 48386 ai = 90
139.552 TX -> SABMEp sapi = 0 tei = 90
139.552 RX <- IDCKRQ ri = 0 ai = 127
139.560 TX -> IDCKRP ri = 36131 ai = 90
140.548 RX <- IDCKRQ ri = 0 ai = 127
140.556 TX -> IDCKRP ri = 24404 ai = 90
140.560 TX -> SABMEp sapi = 0 tei = 90
140.584 RX <- UAf sapi = 0 tei = 90
140.592 TX -> INFOc sapi = 0 tei = 90 ns = 0 nr = 0 
 INFORMATION pd = 8 callref = (null)
SPID Information i = 0x343135393033383336363031
140.624 RX <- RRr sapi = 0 tei = 90 nr = 1
140.592 RX <- INFOc sapi = 0 tei = 90 ns = 0 nr = 0 
 INFORMATION pd = 8 callref = (null)
ENDPOINT IDent i = 0xF080
140.768 TX -> RRr sapi = 0 tei = 90 nr = 1 
150.768 TX -> RRp sapi = 0 tei = 90 nr = 1
150.788 RX <- RRf sapi = 0 tei = 90 nr = 1
160.796 TX -> RRp sapi = 0 tei = 90 nr = 1
160.816 RX <- RRf sapi = 0 tei = 90 nr = 1 S
25

56

L2 link
establishment



2-80 Debug Command Reference

debug isdn-q921

Figure 1-44 shows sampledebug isdn-q921 output for an incoming call. It is an incoming SETUP
message that assumes L2 link is already estatblished to the other side.

Figure 1-44 Debug ISDN-Q921 Output for Incoming Call

Table 1-27 describes significant fields in Figure 1-42, Figure 1-43, and Figure 1-44.

Table 1-27 Debug ISDN-Q921 Field Descriptions

Field Description

139.516 Indicates the time at which the frame was transmitted from or received
by the data link layer entity on the router. The time is maintained by an
internal clock. This internal clock is used for the various timers (such as
T200, T202, and T201 that may expire while these access procedures are
being processed) and for timestamping. Time is in seconds.

TX Indicates that this frame is being transmitted from the ISDN interface on
the local router (user side).

RX Indicates that this frame is being received by the ISDN interface on the
local router from the peer (network side).

IDREQ Indicates the IdentityRequest message type sent from the local router to
the network (assignment source point (ASP)) during the automatic
terminal endpoint identifier (TEI) assignment procedure. This message
is sent in a UI command frame. The SAPI value for this message type is
always 63 (indicating that it is layer 2 management procedure) but it is
not displayed. The TEI value for this message type is 127 (indicating
that it is a broadcast operation).

ri = 48386 Indicates the Reference number used to differentiate between user
devices requesting TEI assignment. This value is a randomly generated
number between 0 and 65535. The same ri value sent in the IDREQ
message should be returned in the corresponding IDASSN message.
Note that a Reference number of 0 indicates that the message is sent
from the network side management layer entity and a reference number
has not been generated.

ai = 127 Indicates the Action indicator used to request that the ASP assign any
TEI value. It is always 127 for the broadcast TEI. Note that in some
message types, such as IDREM, a specific TEI value is indicated.

router# debug isdn-q921

234423.764 TX -> RRp sapi = 0 tei = 66 nr = 36 
234423.780 RX <- RRp sapi = 0 tei = 66 nr = 26
234423.784 TX -> RRf sapi = 0 tei = 66 nr = 36
234423.808 RX <- RRf sapi = 0 tei = 66 nr = 26
234425.800 RX <- UAf sapi = 0 tei = 127 i = 
0x0801080504028890018001896C1000833831303132333445363738393032
234425.820 TX -> INFOc sapi = 0 tei = 66 ns = 36 nr = 36 i=0x08018807
234425.904 RX <- RRr sapi = 0 tei = 90 nr = 27
234425.920 RX <- INFOc sapi = 0 tei = 66 ns = 36 nr = 33 i=0x0801080F
234433.936 TX -> RRr sapi = 0 tei = 66 nr = 37 
234435.940 RX <- RRp sapi = 0 tei = 66 nr = 27
234435.980 TX -> RRf sapi = 0 tei = 66 nr = 37
234435.640 RX <- RRf sapi = 0 tei = 66 nr = 27 S

26
78



Debug Command Listing 2-81

debug isdn-q921

IDREM Indicates the Identity Remove message type sent from the ASP to the
user side layer management entity during the TEI removal procedure.
This message is sent in a UI command frame. The ASP sends the
Identity Remove message twice to avoid message loss.

IDASSN Indicates the Identity Assigned message type sent from the ISDN service
provider on the network to the local router during the automatic TEI
assignment procedure. This message is sent in a UI command frame.
The SAPI value for this message type is always 63 (indicating that it is
layer 2 management procedure). The TEI value for this message type is
127 (indicating it is a broadcast operation).

ai = 90 Indicates the TEI value automatically assigned by the ASP. This TEI
value will be used by data link layer entities on the local router in
subsequent communication with the network. The valid values are in the
range 64 through 126.

SABME Indicates the set asynchronous balanced mode extended command. This
command places the recipient into modulo 128 multiple frame
acknowledged operation. This command also indicates that all exception
conditions have been cleared. The SABME command is sent once a
second for N200 times (typically three times) until its acceptance is
confirmed with a UA response. For a list and brief description of other
commands and responses that can be exchanged between the data link
layer entities on the local router and the network, see CCITT
Recommendation Q.921.

sapi = 0 Identifies the service access point at which the data link layer entity
provides services to layer 3 or to the management layer. A SAPI with the
value 0 indicates it is a call control procedure. Note that the layer 2
management procedures such as TEI assignment, TEI removal, and TEI
checking, which are tracked with thedebug isdn-q921command, do not
display the corresponding SAPI value; it is implicit. If the SAPI value
were displayed it would be 63.

tei = 90 Indicates the TEI value automatically assigned by the ASP. This TEI
value will be used by data link layer entities on the local router in
subsequent communication with the network. The valid values are in the
range 64 through 126.

IDCKRQ Indicates the Identity Check Request message type sent from the ISDN
service provider on the network to the local router during the TEI check
procedure. This message is sent in a UI command frame. The ri field is
always 0. The ai field for this message contains either a specific TEI
value for the local router to check or 127, which indicates that the local
router should check all TEI values. For a list and brief description of
other message types that can be exchanged between the local router and
the ISDN service provider on the network, see Appendix B.

IDCKRP Indicates the Identity Check Response message type sent from the local
router to the ISDN service provider on the network during the TEI check
procedure. This message is sent in a UI command frame in response to
the IDCKRQ message. The ri field is a randomly generated number
between 0 and 65535. The ai field for this message contains the specific
TEI value that has been checked.

UAf Confirms that the network side has accepted the SABME command
previously sent by the local router. The final bit is set to 1.

Field Description



2-82 Debug Command Reference

debug isdn-q921

Explanations for individual lines of output from Figure 1-42 follow.

The following lines of output indicate the message exchanges between the data link entity on the
local router (user side) and the assignment source point (ASP) on the network side during the TEI
assignment procedure. This assumes that the link is down and no TEI currently exists.

139.516 TX -> IDREQ ri = 48386 ai = 127
139.544 RX <- IDASSN ri = 48386 ai = 90

At 139.516, the local router data link layer entity sent an Identity Request message to the network
data link layer entity to request a TEI value that can be used in subsequent communication between
the peer data link layer entities. The request includes a randomly generated reference number

INFOc Indicates that this is an Information command. It is used to transfer
sequentially numbered frames containing information fields that are
provided by layer 3. The information is transferred across a data link
connection.

INFORMATION pd = 8 callref =
(null)

Indicates the information fields provided by layer 3. The information is
sent one frame at a time. If multiple frames need to be sent, several
Information commands are sent. The pd value is the protocol
discriminator. The value 8 indicates it is call control information. The
call reference number is always null for SPID information,

SPID information i =
0x343135393033383336363031

Indicates the Service Profile IDentifier (SPID). The local router sends
this information to the ISDN switch to indicate the services to which it
subscribes. SPIDs are assigned by the service provider and are usually
10-digit telephone numbers followed by optional numbers. Currently,
only the DMS-100 switch supports SPIDs, one for each B-channel. If
SPID information is sent to a switch type other than DMS-100, an error
may be displayed in the debug information.

ns = 0 Indicates the send sequence number of transmitted I frames.

nr = 0 Indicates the expected send sequence number of the next received I
frame. At time of transmission, this value should be equal to the value of
ns. The value of nr is used to determine whether frames need to be
retransmitted for recovery.

RRr Indicates the Receive Ready response for unacknowledged information
transfer. The RRr is a response to an INFOc.

RRp Indicates the Receive Ready command with the poll bit set. The data link
layer entity on the user side uses the poll bit in the frame to solicit a
response from the peer on the network side.

RRf Indicates the Receive Ready response with the final bit set. The data link
layer entity on the network side uses the final bit in the frame to indicate
a response to the poll.

sapi Indicates the service access point identifier. The SAPI is the point at
which data link services are provided to a network layer or management
entity. Currently, this field can have the value 0 (for call control
procedure) or 63 (for layer 2 management procedures)

tei Indicates the terminal endpoint identifier (TEI) that has been assigned
automatically by the assignment source point (ASP) (also called the
layer management entity on the network side). The valid range is 64
through 126. The value 127 indicates a broadcast.

Field Description



Debug Command Listing 2-83

debug isdn-q921

(48386) to differentiate between user devices that may be simultaneously requesting automatic TEI
assignment and an action indicator of 127 to indicate that the ASP can assign any TEI value
available. The ISDN user interface on the router uses automatic TEI assignment.

At 139.544, the network data link entity responds to the Identity Request message with an Identity
Assigned message. The response includes the reference number (48386) previously sent in the
request and TEI value (90) assigned by the ASP.

The following line of output indicates a message exchange between the layer management entity on
the network side and the layer management entity on the local router (user side) during the TEI
removal procedure:

139.520 RX <- IDREM ri = 0 ai = 89

At 139.520, the network layer management entity sends an Identity Remove message when it
determines that removal is necessary. The message includes a reference number that is always 0,
because it is not responding to a request from the local router. The message also includes the TEI
value (89) that is being removed because it is an old value that is no longer used.

The following lines of output indicate the message exchanges between the layer management entity
on the network and the layer management entity on the local router (user side) during the TEI check
procedure.

139.552 RX <- IDCKRQ ri = 0 ai = 127
139.560 TX -> IDCKRP ri = 36131 ai = 90

At 139.552, the layer management entity on the network sends the Identity Check Request message
to the layer management entity on the local router to check whether a TEI is in use. The message
includes a reference number that is always 0 and the TEI value to check. In this case, an ai value of
127 indicates that all TEI values should be checked. At 139.560, the layer management entity on the
local router responds with an Identity Check Response message indicating that TEI value 90 is
currently in use.

The following lines of output indicate the messages exchanged between the data link layer entity on
the local router (user side) and the data link layer on the network side to place the network side into
modulo 128 multiple frame acknowledged operation. Note that the data link layer entity on the
network side also can initiate the exchange.

140.560 TX -> SABMEp sapi = 0 tei = 90

140.584 RX <- UAf sapi = 0 tei = 90

At 140.560, the data link layer entity on the local router sends the SABME command with a SAPI
of 0 (call control procedure) for TEI 90. At 140.584, the first opportunity, the data link layer entity
on the network responds with a UA response. This response indicates acceptance of the command.
The data link layer entity sending the SABME command may have to send it more than once before
receiving a UA response.

The following lines of output indicate the status of the data link layer entities. Both are ready to
receive I frames.

150.768 TX -> RRp sapi = 0 tei = 90 nr = 1
150.788 RX <- RRf sapi = 0 tei = 90 nr = 1

These I frames are typically exchanged every 10 seconds (T203 timer).



2-84 Debug Command Reference

debug isdn-q931

debug isdn-q931
Use thedebug isdn-q931 EXEC command to display information about call setup and teardown of
ISDN network connections (layer 3) between the local router (user side) and the network. Theno
form of this command disables debugging output.

debug isdn-q931
no debug isdn-q931

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The ISDN network layer interface provided by the router conforms to the user interface specification
defined by CCITT recommendation Q.931 supplemented by other specifications such as for switch
types VN2 and VN3.The router tracks only activities that are occurring on the user side, not the
network side, of the network connection. The display information provided when you enter the
debug isdn-q931 command is limited to commands and responses exchanged during peer-to-peer
communication carried over the D-channel. This debug information does not include data
transmitted over the B-channels, which are also part of the router’s ISDN interface. The peers
(network layers) communicate with each other via an ISDN switch over the D-channel.

A router can be the calling or called party of the ISDN Q.931 network connection call setup and tear-
down procedures. If the router is the calling party, the command displays information about an
outgoing call. If the router is the called party, the command displays information about an incoming
call.

Thedebug isdn-q931 command can be used with the debug isdn-event and thedebug isdn-q921
commands at the same time. The displays will be intermingled. Seedebug isdn-event earlier in this
chapter for samples of combination displays.

Sample Display
Figure 1-45 shows sampledebug isdn-q931 output of a call setup procedure for an outgoing call.

Figure 1-45 Sample Debug ISDN-Q931 Output—Call Setup Procedure for an Outgoing Call

router# debug isdn-q931

234191.372 TX -> SETUP pd = 8 callref = 0x04
 Bearer Capability i = 0x8890
 Channel ID i = 0x83
 Called Party Number i = 0x80, ‘415555121202’
234191.624 RX <- CALL_PROC pd = 8 callref = 0x84
 Channel ID i = 0x89
234191.692 RX <- CONNECT pd = 8 callref = 0x84
234191.692 TX -> CONNECT_ACK pd = 8 callref = 0x04....
Success rate is 0 percent (0/5) S

26
79



Debug Command Listing 2-85

debug isdn-q931

Figure 1-46 shows sampledebug isdn-q931 output of a call setup procedure for an incoming call.

Figure 1-46 Sample Debug ISDN-Q931 Output—Call Setup Procedure for an Incoming Call

Figure 1-47 shows sampledebug isdn-q931 output of a call teardown procedure from the network.

Figure 1-47 Sample Debug ISDN-Q931 Output—Call Teardown Procedure from the Network

Figure 1-48 shows sampledebug isdn-q931 output of a call teardown procedure from the router.

Figure 1-48 Sample Debug ISDN-Q931 Output—Call Teardown Procedure from the Router

Table 1-28 describes significant fields in Figure 1-45 through Figure 1-48.

router# debug isdn-q931

234223.224 RX <- SETUP pd = 8 callref = 0x06
 Bearer Capability i = 0x8890
 Channel ID i = 0x89
 Calling Party Number i = 0x0083, ‘81012345678902’
234223.244 TX -> CONNECT pd = 8 callref = 0x86
234223.344 RX <- CONNECT_ACK pd = 8 callref = 0x06 S

26
80

router# debug isdn-q931

234207.648 RX <- DISCONNECT pd = 8 callref = 0x84
 Cause i = 0x8790
 Looking Shift to Codeset 6
 Codeset 6 IE 0x1 1 0x82 ‘10’
234207.668 TX -> RELEASE pd = 8 callref = 0x04
 Cause i = 0x8090
234207.764 RX <- RELEASE_COMP pd = 8 callref = 0x84 S

26
81

router# debug isdn-q931

234236.644 TX -> DISCONNECT pd = 8 callref = 0x05
 Cause i = 0x879081
234238.664 RX <- RELEASE pd = 8 callref = 0x85
 Looking Shift to Codeset 6
 Codeset 6 IE 0x1 1 0x82 ‘10’
234238.752 TX <- RELEASE_COMP pd = 8 callref = 0x05 S

26
82



2-86 Debug Command Reference

debug isdn-q931

Table 1-28 Debug ISDN-Q931 Call Setup Procedure Field Descriptions

Field Description

234191.372 Indicates the time, in seconds, at which the message was transmitted
from or received by the network layer on the router. The time is
maintained by an internal clock. This internal clock is used for timeout
purposes and timestamping.

TX Indicates that this message is being transmitted from the local router
(user side) to the network side of the ISDN interface.

RX Indicates that this message is being received by the user side of the ISDN
interface from the network side.

SETUP Indicates that the SETUP message type has been sent to initiate call
establishment between peer network layers. This message can be sent
from either the local router or the network.

pd Indicates the protocol discriminator. The protocol discriminator is used
to distinguish messages for call control over the user-network ISDN
interface from other CCITT-defined messages including other
Q.931messages. The protocol discriminator is always 8 for call control
messages such as SETUP.

callref Indicates the call reference number in hexadecimal. The value of this
field indicates the number of calls made from either the router (outgoing
calls) or the network (incoming calls). Note that the originator of the
SETUP message sets the high-order bit of the call reference number to 0.
The destination of the connection sets the high-order bit to 1 in
subsequent call control messages, such as the CONNECT message. For
example, callref = 0x04 in the request becomes callref = 0x84 in the
response.

Bearer Capability Indicates the requested bearer service to be provided by the network.

i= Indicates the Information Element Identifier. The value depends on the
field it is associated with. Refer to the CCITT Q.931 specification for
details about the possible values associated with each field for which this
identifier is relevant.

Channel ID Indicates the Channel Identifier. The value 83 indicates any channel, 89
indicates the B1 channel, and 8A indicates the B2 channel. For more
information about the Channel Identifier, refer to CCITT
Recommendation Q9.31

Called Party Number Identifies the called party. This field is only present in outgoing SETUP
messages. Note that it can be replaced by the Keypad facility field. This
field uses the IA5 character set.

Calling Party Number Identifies the origin of the call. This field is present only in incoming
SETUP messages. This field uses the IA5 character set.

CALL_PROC Indicates the CALL PROCEEDING message; the requested call setup
has begun and no more call setup information will be accepted.

CONNECT Indicates that the called user has accepted the call.

CONNECT_ACK Indicates that the calling user acknowledges the called user’s acceptance
of the call.

DISCONNECT Indicates either that the user side has requested the network to clear an
end-to-end connection or that the network has cleared the end-to-end
connection.



Debug Command Listing 2-87

debug isdn-q931

Cause Indicates the cause of the disconnect. Refer to CCITT recommendation
Q.931 for detailed information about DISCONNECT cause codes and
RELEASE cause codes.

Locking Shift to Codeset 6 Indicates that the next information elements will be interpreted
according to information element identifiers assigned in codeset 6.
Codeset 6 means that the information elements are specific to the local
network.

Codeset 6 IE 0x1 i = 0x82, ‘10’ Indicates charging information. This information is specific to the NTT
switch type and may not be sent by other switch types.

RELEASE Indicates that the sending equipment will be releasing the channel and
call reference. The recipient of this message should prepare to release
the call reference and channel.

RELEASE_COMP Indicates that the sending equipment has received a RELEASE message
and has now released the call reference and channel.

Field Description



2-88 Debug Command Reference

debug isis adj packets

debug isis adj packets
Use thedebug isis adj packets EXEC command to display information on all adjacency-related
activity such as hello packets sent and received and IS-IS adjacencies going up and down. Theno
form of this command disables debugging output.

debug isis adj packets
no debug isis adj packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-49 shows sampledebug isis adj packets output.

Figure 1-49 Sample Debug ISIS Adj Packets Output

Explanations for individual lines of output from Figure 1-49 follow.

The following line of output indicates that the router received an IS-IS hello packet (IIH) on
Ethernet0 from the Level 1 router (L1) at MAC address 0000.0c00.40af. The circuit type is the
interface type: 1—Level 1 only; 2—Level 2 only; 3—Level 1/2.

The circuit ID is what the neighbor thinks is the designated router for the interface.

ISIS-Adj: Rec L1 IIH from 0000.0c00.40af (Ethernet0), cir type 3, cir id BBBB.BBBB.BBBB.01

The following line of output indicates that the router (configured as a Level 1 router) received on
Ethernet1 an IS-IS hello packet from a Level 1 router in another area, thereby declaring an area
mismatch:

ISIS-Adj: Area mismatch, level 1 IIH on Ethernet1

router# debug isis adj packets

ISIS-Adj: Rec L1 IIH from 0000.0c00.40af (Ethernet0), cir type 3, cir id 
BBBB.BBBB.BBBB.01
ISIS-Adj: Rec L2 IIH from 0000.0c00.40af (Ethernet0), cir type 3, cir id 
BBBB.BBBB.BBBB.01
ISIS-Adj: Rec L1 IIH from 0000.0c00.0c36 (Ethernet1), cir type 3, cir id 
CCCC.CCCC.CCCC.03
ISIS-Adj: Area mismatch, level 1 IIH on Ethernet1
ISIS-Adj: Sending L1 IIH on Ethernet1
ISIS-Adj: Sending L2 IIH on Ethernet1
ISIS-Adj: Rec L2 IIH from 0000.0c00.0c36 (Ethernet1), cir type 3, cir id 
BBBB.BBBB.BBBB.03

S
26

83



Debug Command Listing 2-89

debug isis adj packets

The following lines of output indicates that the router (configured as a Level 1/Level 2 router) sent
on Ethernet1 a Level 1 IS-IS hello packet, and then a Level 2 IS-IS packet:

ISIS-Adj: Sending L1 IIH on Ethernet1
ISIS-Adj: Sending L2 IIH on Ethernet1



2-90 Debug Command Reference

debug isis spf statistics

debug isis spf statistics
Use thedebug isis spf statistics EXEC command to display statistical information about building
routes between intermediate systems (ISs). Theno form of this command disables debugging
output.

debug isis spf statistics
no debug isis spf statistics

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The Intermediate System to Intermediate System Intra-Domain Routing Exchange Protocol (IS-IS)
provides routing between ISs by flooding the network with link-state information. IS-IS provides
routing at two levels, intra-area (level 1) and intra-domain (level 2.) Level 1 routing allows level 1
ISs to communicate with other level 1 ISs in the same area. Level 2 routing allows level 2 ISs to build
an interdomain backbone between level 1 areas by traversing only level 2 ISs. Level 1 ISs only need
to know the path to the nearest level 2 IS in order to take advantage of the interdomain backbone
created by the level 2 ISs.

The IS-IS protocol uses the Shortest Path First (SPF) routing algorithm to build level 1 and level 2
routes.Thedebug isis spf statistics command will provide information for determining the length
of time it takes to place a level 1 IS or level 2 IS on the shortest path tree (SPT) using the IS-IS
protocol.

Note The SPF algorithm is also called the Dijkstra algorithm, after the creator of the algorithm.

Sample Display
Figure 1-50 shows sampledebug isis spf statistics output.

Figure 1-50 Sample Debug ISIS SPf statistics Output

router# debug isis spf packets

ISIS-Stats: Compute L1 SPT, Timestamp 2780.328 seconds
ISIS-Stats: Complete L1 SPT, Compute time 0.004, 1 nodes on SPT
ISIS-Stats: Compute L2 SPT, Timestamp 2780.3336 seconds
ISIS-Stats: Complete L2 SPT, Compute time 0.056, 12 nodes on SPT S

26
84



Debug Command Listing 2-91

debug isis spf statistics

Table 1-29 describes significant fields shown in Figure 1-50.

Table 1-29 Debug ISDN-Event Field Descriptions

Explanations for individual lines of output from Figure 1-50 follow.

The following lines of output show the statistical information available for Level 1 ISs:

ISIS-Stats: Compute L1 SPT, Timestamp 2780.328 seconds
ISIS-Stats: Complete L1 SPT, Compute time 0.004, 1 nodes on SPT

The output indicates that the SPF algorithm was applied 2780.328 seconds after the system was up
and configured. Given the existing intra-area topology, it took 4 milliseconds to place one level 1 IS
on the SPT.

The following lines of output show the statistical information available for Level 2 ISs:

ISIS-Stats: Compute L2 SPT, Timestamp 2780.3336 seconds
ISIS-Stats: Complete L2 SPT, Compute time 0.056, 12 nodes on SPT

This output indicates that the SPF algorithm was applied 2780.3336 seconds after the system was
up and configured. Given the existing intra-domain topology, it took 56 milliseconds to place 12
level 2 ISs on the SPT.

Field Description

Compute L1 SPT Indicates that level 1 ISs are to be added to a level 1 area.

Timestamp Indicates the time at which the SPF algorithm was applied. The
time indicates the number of seconds that have elapsed since the
system has been up and configured.

Complete L1 SPT Indicates that the algorithm has completed for level 1 routing.

Compute time Indicates the time it took to place the ISs on the shortest path tree
(SPT).

nodes on SPT Indicates the number of ISs that have been added.

Compute L2 SPT Indicates that level 2 ISs are to be added to domain.

Complete L2 SPT Indicates that the algorithm has completed for level 2 routing.



2-92 Debug Command Reference

debug isis update-packets

debug isis update-packets
Use thedebug isis update-packets EXEC command to display various sequence number protocol
data units (PDUs) and link state packets that are seen by the router. This router has been configured
for IS-IS routing. Theno form of this command disables debugging output.

debug isis update-packets
no debug isis update-packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-51 shows sampledebug isis update-packets output.

Figure 1-51 Sample Debug ISIS Update-Packets Output

Explanations for individual lines of output from Figure 1-51 follow.

The following lines of output indicate that the router has sent a periodic level 1 and level 2 complete
Sequence Number PDU on Ethernet 0.

ISIS-Update: Sending L1 CSNP on Ethernet0
ISIS-Update: Sending L2 CSNP on Ethernet0

The following lines of output indicate that the network service access point (NSAP) identified as
8888.8800.0181.00 has been deleted from the level 2 LSP 1600.8906.4022.00-00. The sequence
number associated with this LSP is 0xE.

ISIS-Update: Updating L2 LSP
ISIS-Update: Delete link 888.8800.0181.00 from L2 LSP 1600.8906.4022.00-00, seq E

router# debug isis update-packets

ISIS-Update: Sending L1 CSNP on Ethernet0
ISIS-Update: Sending L2 CSNP on Ethernet0
ISIS-Update: Updating L2 LSP
ISIS-Update: Delete link 888.8800.0181.00 from L2 LSP 1600.8906.4022.00-00, seq E
ISIS-Update: Updating L1 LSP
ISIS-Update: Sending L1 CSNP on Ethernet0
ISIS-Update: Sending L2 CSNP on Ethernet0
ISIS-Update: Add link 8888.8800.0181.00 to L2 LSP 1600.8906.4022.00-00, new seq 10,
 len 91
ISIS-Update: Sending L2 LSP 1600.8906.4022.00-00, seq 10, ht 1198 on Tunnel0
ISIS-Update: Sending L2 CSNP on Tunnel0
ISIS-Update: Updating L2 LSP
ISIS-Update: Rate limiting L2 LSP 1600.8906.4022.00-00, seq 11 (Tunnel0)
ISIS-Update: Updating L1 LSP
ISIS-Update: Rec L2 LSP 888.8800.0181.00.00-00 (Tunnel0)
ISIS-Update: PSNP entry 1600.8906.4022.00-00, seq 10, ht 1196 S

26
85



Debug Command Listing 2-93

debug isis update-packets

The following lines of output indicate that the NSAP identified as 8888.8800.0181.00 has been
added to the level 2 LSP 1600.8906.4022.00-00. The new sequence number associated with this LSP
is 0x10.

ISIS-Update: Updating L1 LSP
ISIS-Update: Sending L1 CSNP on Ethernet0
ISIS-Update: Sending L2 CSNP on Ethernet0
ISIS-Update: Add link 8888.8800.0181.00 to L2 LSP 1600.8906.4022.00-00, new seq 10,
 len 91

The following line of output indicates that the router has sent level 2 LSP 1600.8906.4022.00-00
with sequence number 0x10 on Tunnel0:

ISIS-Update: Sending L2 LSP 1600.8906.4022.00-00, seq 10, ht 1198 on Tunnel0

The following lines of output indicates that a level 2 LSP could not be transmitted because it was
recently transmitted:

ISIS-Update: Sending L2 CSNP on Tunnel0
ISIS-Update: Updating L2 LSP
ISIS-Update: Rate limiting L2 LSP 1600.8906.4022.00-00, seq 11 (Tunnel0)

The following lines of output indicate that a level 2 Partial Sequence Number (PSNP) PDU has been
received on Tunnel0:

ISIS-Update: Updating L1 LSP
ISIS-Update: Rec L2 PSNP from 8888.8800.0181.00 (Tunnel0)

The following line of output indicates that a level 2 PSNP PDU with an entry for level 2 LSP
1600.8906.4022.00-00 has been received. This output is an acknowledgment that a previously sent
LSP was received without an error.

ISIS-Update: PSNP entry 1600.8906.4022.00-00, seq 10, ht 1196



2-94 Debug Command Reference

debug lapb

debug lapb
Use thedebug lapb EXEC command to display all traffic for interfaces using LAPB encapsulation.
Theno form of this command disables debugging output.

debug lapb
no debug lapb

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command displays information on the X.25 layer 2 protocol. It is useful to users who are
familiar with the LAPB protocol.

You can use thedebug lapb command to determine why X.25 virtual circuits or LAPB connections
are going up and down. It is also useful for identifying link problems, as evidenced whenshow
interfaces command displays a high number of rejects or frame errors over the X.25 link.

Caution Because thedebug lapb command generates a lot of output, use it when the aggregate of
all LAPB traffic on X.25 and LAPB interfaces is fewer than five frames per second.

Sample Display
Figure 1-52 shows sampledebug lapboutput. (The numbers 1 through 6 at the top of the display
have been added in order to aid documentation.)

Figure 1-52 Sample Debug LAPB Output

In Figure 1-52 each line of output describes a LAPB event. There are two types of LAPB events:
frame events (when a frame enters or exits the router) and timer events. In Figure 1-52, the last line
describes a timer event; all of the other lines describe frame events. Table 1-30 describes the first six
fields shown in Figure 1-52.

   1      2   3    4     5     6   
Serial0: LAPB I CONNECT (5) IFRAME P 2 1 (C)
Serial0: LAPB 0 REJSENT (2) REJ P/F 1
Serial0: LAPB 0 REJSENT (5) IFRAME 0 1
Serial0: LAPB I REJSENT (2) REJ P/F 7 (C) 
Serial0: LAPB I DISCONNECT (2) SABM P (C)
Serial0: LAPB O CONNECT (2) UA F
Serial0: LAPB O CONNECT (5) IFRAME 0 0
Serial0: LAPB T CONNECT 357964 0 S

25
57

Timer event

Frame events



Debug Command Listing 2-95

debug lapb

Table 1-30 Debug LAPB Field Descriptions

AsFigure 1-52 shows, a timer event only displays the first six fields ofdebug lapb output. For frame
events, however, the fields that follow the sixth field document the LAPB control information present
in the frame. Depending on the value of the frame type name shown in the sixth field, these fields
may or may not appear. Descriptions of the fields following the first six fields shown in Figure 1-52
follow.

Field Description

First field Interface type and unit number reporting the frame event.

Second field Protocol providing the information.

Third field Command Mode of frame event. Possible values follow:

I—Frame input

O—Frame output

T—T1 timer expired

Fourth field State of the protocol when the frame event occurred. Possible values
follow:

BUSY (RNR frame received)

CONNECT

DISCONNECT

DISCSENT (disconnect sent)

ERROR (FRMR frame sent)

REJSENT (reject frame sent)

SABMSENT (SABM frame sent)

Fifth field In a frame event, this value is the size of the frame (in bytes). In a timer
event, this value is the current timer value (in milliseconds).

Sixth field In a frame event, this value is the frame type name. Possible values for
frame type names follow:

DISC—Disconnect

DM—Disconnect mode

FRMR—Frame reject

IFRAME—Information frame

ILLEGAL—Illegal LAPB frame

REJ—Reject

RNR—Receiver not ready

RR—Receiver ready

SABM—Set asynchronous balanced mode

UA—Unnumbered acknowledgment

In a timer event, this value is the number of retransmissions already
attempted.



2-96 Debug Command Reference

debug lapb

If the frame’s Poll/Final bit is set, an indicator will be printed after the frame type name. Possible
values follow:

• F—Final (printed for Response frames)

• P—Poll (printed for Command frames)

• P/F—Poll/Final (printed for RR, RNR and REJ frames, which can be either Command or
Response frames)

After the Poll/Final indicator, depending on the frame type, three different types of LAPB control
information can be printed.

For information frames, the value of the N(S) field and the N(R) field will be printed. The N(S) field
of an information frame is the sequence number of that frame, so this field will rotate between 0 and
7 for successive outgoing information frames and (under normal circumstances) also will rotate for
incoming information frame streams. The N(R) field is a “piggybacked” acknowledgment for the
incoming information frame stream; it informs the other end of the link what sequence number is
expected next.

RR, RNR, and REJ frames have an N(R) field, so the value of that field is printed. This field has
exactly the same significance that it does in an information frame.

For the FRMR frame, the frame’s three bytes of error information is printed (in hexadecimal
notation).

The remaining frames do not have this data, so nothing will be printed.

For incoming frames, the last field will indicate whether the received frame was a command (C) or
a response (R).



Debug Command Listing 2-97

debug lat packet

debug lat packet
Use thedebug lat packet EXEC command to display information on all LAT events. Theno form
of this command disables debugging output.

debug lat packet
no debug lat packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
For each datagram (packet) received or transmitted, a message is logged to the console.

Note This command severely impacts LAT performance and is intended for troubleshooting use
only.

Sample Display
Figure 1-53 shows sampledebug lat packetoutput.

Figure 1-53 Sample Debug LAT Packet Output

The following line of output describes a packet that is input to the router. Table 1-31 describes the
fields in this line of output.

LAT: I int=Ethernet0, src=0800.2b11.2d13, dst=0000.0c01.7876, type=A, M=0, R=0

router# debug lat packet

LAT: I int=Ethernet0, src=0000.0c01.0509, dst=0900.2b00.000f, type=0, M=0, R=0
LAT: I int=Ethernet0, src=0800.2b11.2d13, dst=0000.0c01.7876, type=A, M=0, R=0
LAT: O dst=0800.2b11.2d13, int=Ethernet0, type= A, M=0, R=0, len= 20, next 0 ref 1 S

26
86



2-98 Debug Command Reference

debug lat packet

Table 1-31 Debug LAT Packet Field Descriptions

The following line of output describes a packet that is output from the router. Table 1-32 describes
the last three fields in this line of output.

LAT: O dst=0800.2b11.2d13, int=Ethernet0, type= A, M=0, R=0, len= 20, next 0 ref 1

Table 1-32 Debug LAT Packet Field Descriptions

Field Description

LAT: Indicates that this display shows LAT debugging output.

I Indicates that this line of output describes a packet that is input to the
router (I) or output from the router (O).

int = Ethernet0 Indicates the interface on which the packet event took place.

src = 0800.2b11.2d13 Indicates the source address of the packet.

dst = 0000.0c01.7876 Indicates the destination address of the packet.

type = 0 Indicates the message type (in hex). Possible values are:

0 = Run Circuit

1 = Start Circuit

2 = Stop Circuit

A = Service Announcement

C = Command

D = Status

E = Solicit Information

F = Response Information

Field Description

len= 20 Indicates the length (hex) of the packet in bytes.

next 0 Indicates the link on transmit queue.

ref 1 Indicates the count of packet users.



Debug Command Listing 2-99

debug lnm events

debug lnm events
Use thedebug lnm eventsEXEC command to display any unusual events that occur on a Token
Ring network. These events includes such as stations reporting errors, or error thresholds being
exceeded. Theno form of this command disables debugging output.

debug lnm events
no debug lnm events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-54 shows sampledebug lnm events output.

Figure 1-54 Sample Debug LNM Events Output

Explanations for the messages shown in Figure 1-54 follow.

The following message indicates that station 0000.3001.1166 reported errors and has been added to
the list of stations reporting errors. This station is located on Ring 3.

IBMNM3: Adding 0000.3001.1166 to error list

The following message indicates that station 0000.3001.1166 has passed the “early warning”
threshold for error counts:

IBMNM3: Station 0000.3001.1166 going into preweight condition

The following message indicates that station 0000.3001.1166 is experiencing a severe number of
errors:

IBMNM3: Station 0000.3001.1166 going into weight condition

The following message indicates that the error counts for station 0000.3001.1166 have all decayed
to zero, so this station is being removed from the list of stations that have reported errors:

IBMNM3: Removing 0000.3001.1166 from error list

router# debug lnm events

IBMNM3: Adding 0000.3001.1166 to error list
IBMNM3: Station 0000.3001.1166 going into preweight condition
IBMNM3: Station 0000.3001.1166 going into weight condition
IBMNM3: Removing 0000.3001.1166 from error list
LANMGR0: Beaconing is present on the ring
LANMGR0: Ring is no longer beaconing
IBMNM3: Beaconing, Postmortem Started
IBMNM3: Beaconing, heard from 0000.3000.1234
IBMNM3: Beaconing, Postmortem Next Stage
IBMNM3: Beaconing, Postmortem Finished S

26
87



2-100 Debug Command Reference

debug lnm events

The following message indicates that Ring 0 has entered failure mode. This ring number is assigned
internally.

LANMGR0: Beaconing is present on the ring

The following message indicates that Ring 0 is no longer in failure mode. This ring number is
assigned internally.

LANMGR0: Ring is no longer beaconing

The following message indicates that the router is beginning its attempt to determine whether or not
any stations left the ring during the automatic recovery process for the last beaconing failure. The
router attempts to contact stations that were part of the fault domain to see if they are still operating
on the ring.

IBMNM3: Beaconing, Postmortem Started

The following message indicates that the router is attempting to determine whether or not any
stations left the ring during the automatic recovery process for the last beaconing failure. It heard
back from station 0000.3000.1234, one of the two stations in the fault domain.

IBMNM3: Beaconing, heard from 0000.3000.1234

The following message indicates that the router is attempting to determine whether or not any
stations left the ring during the automatic recovery process for the last beaconing failure. It is
initiating another attempt to contact the two stations in the fault domain.

IBMNM3: Beaconing, Postmortem Next Stage

The following output indicates that the router has attempted to determine whether or not any stations
left the ring during the automatic recovery process for the last beaconing failure. It has successfully
heard back from both stations that were part of the fault domain.

IBMNM3: Beaconing, Postmortem Finished

Explanations for other messages that thedebug lnm events command can generate follow.

The following message indicates that the router is out of memory:

LANMGR: memory request failed, find_or_build_station()

The following message indicates that Ring 3 is experiencing a large number of errors that cannot be
attributed to any individual station:

IBMNM3: Non-isolating error threshold exceeded

The following message indicates that a station (or stations) on Ring 3 are receiving frames faster than
they can be processed.

IBMNM3: Adapters experiencing congestion

The following message indicates that the beaconing has lasted for over 1 minute and is considered
to be a “permanent” error:

IBMNM3: Beaconing, permanent

The following message indicates that the beaconing lasted for less than 1 minute. The router is
attempting to determine whether either of the stations in the fault domain left the ring.

IBMNM: Beaconing, Destination Started

In the preceding line of output, the following can replace Started: Next State; Finished; Timed out;
and Cannot find station 0000.0301.4876.



Debug Command Listing 2-101

debug lnm llc

debug lnm llc
Use the debug lnm llc EXEC command to display all communication between the router/bridge and
the LNMs that have connections to it. Theno form of this command disables debugging output.

debug lnm llc
no debug lnm llc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
One line is displayed for each message sent or received.

Sample Display
Figure 1-55 shows sampledebug lnm llc output.

Figure 1-55 Sample Debug LNM LLC Output

As Figure 1-55 indicates,debug lnm llc output can vary somewhat in format. Table 1-33 describes
significant fields shown in the first line of output in Figure 1-55.

router# debug lnm llc

IBMNM: Received LRM Set Reporting Point frame from 1000.5ade.0d8a.
IBMNM: found bridge: 001-2-00A, addresses: 0000.3040.a630 4000.3040.a630
IBMNM: Opening connection to 1000.5ade.0d8a on TokenRing0
IBMNM: Sending LRM LAN Manager Accepted to 1000.5ade.0d8a on link 0.
IBMNM: sending LRM New Reporting Link Established to 1000.5a79.dbf8 on link 1.
IBMNM: Determining new controlling LNM
IBMNM: Sending Report LAN Manager Control Shift to 1000.5ade.0d8a on link 0.
IBMNM: Sending Report LAN Manager Control Shift to 1000.5a79.dbf8 on link 1.

IBMNM: Bridge 001-2-00A received Request Bridge Status from 1000.5ade.0d8a.
IBMNM: Sending Report Bridge Status to 1000.5ade.0d8a on link 0.
IBMNM: Bridge 001-2-00A received Request REM Status from 1000.5ade.0d8a.
IBMNM: Sending Report REM Status to 1000.5ade.0d8a on link 0.
IBMNM: Bridge 001-2-00A received Set Bridge Parameters from 1000.5ade.0d8a.
IBMNM: Sending Bridge Parameters Set to 1000.5ade.0d8a on link 0.
IBMNM: sending Bridge Params Changed Notification to 1000.5a79.dbf8 on link 1.
IBMNM: Bridge 001-2-00A received Set REM Parameters from 1000.5ade.0d8a.
IBMNM: Sending REM Parameters Set to 1000.5ade.0d8a on link 0.
IBMNM: sending REM Parameters Changed Notification to 1000.5a79.dbf8 on link 1.
IBMNM: Bridge 001-2-00A received Set REM Parameters from 1000.5ade.0d8a.
IBMNM: Sending REM Parameters Set to 1000.5ade.0d8a on link 0.
IBMNM: sending REM Parameters Changed Notification to 1000.5a79.dbf8 on link 1.
IBMNM: Received LRM Set Reporting Point frame from 1000.5ade.0d8a.
IBMNM: found bridge: 001-1-00A, addresses: 0000.3080.2d79 4000.3080.2d7 S

26
88



2-102 Debug Command Reference

debug lnm llc

Table 1-33 Debug LNM LLC Field Descriptions

Explanations for other types of messages shown in Figure 1-55 follow.

Field Description

IBMNM: Indicates that this line of output displays LLC-level debugging
information.

Received Indicates that the router received a frame. The other possible value is
Sending, to indicate that the router is sending a frame.

LRM Indicates which function of the LLC-level software is communicating:

CRS—Configuration Report Server

LBS—LAN Bridge Server

LRM—LAN Reporting Manager

REM—Ring Error Monitor

RPS—Ring Parameter Server

RS—Ring Station

Set Reporting Point Name of the specific frame that the router sent or received. Possible
values include the following:

Bridge Counter Report

Bridge Parameters Changed Notification

Bridge Parameters Set

CRS Remove Ring Station

CRS Report NAUN Change

CRS Report Station Information

CRS Request Station Information

CRS Ring Station Removed

LRM LAN Manager Accepted

LRM Set Reporting Point

New Reporting Link Established

REM Forward MAC Frame

REM Parameters Changed Notification

REM Parameters Set

Report Bridge Status

Report LAN Manager Control Shift

Report REM Status

Request Bridge Status

Request REM Status

Set Bridge Parameters

Set REM Parameters

from 1000.5ade.0d8a If the router has received the frame, this address is the source address of
the frame. If the router is sending the frame, this address is the
destination address of the frame.



Debug Command Listing 2-103

debug lnm llc

The following message indicates that the lookup for the bridge with which the LAN Manager was
requesting to communicate was successful:

IBMNM: found bridge: 001-2-00A, addresses: 0000.3040.a630 4000.3040.a630

The following message is self-explanatory:

IBMNM: Opening connection to 1000.5ade.0d8a on TokenRing0

The following message indicates that a LAN Manager has connected or disconnected from an
internal bridge and that the router computes which LAN Manager is allowed to change parameters.

IBMNM: Determining new controlling LNM

The following line of output indicates which bridge in the router is the destination for the frame:

IBMNM: Bridge 001-2-00A received Request Bridge Status from 1000.5ade.0d8a.



2-104 Debug Command Reference

debug lnm mac

debug lnm mac
Use thedebug lnm mac EXEC command to display all management communication between the
router/bridge and all stations on the local Token Rings. Theno form of this command disables
debugging output.

debug lnm mac
no debug lnm mac

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
One line is displayed for each message sent or received.

Sample Display
Figure 1-56 shows sampledebug lnm mac output.

Figure 1-56 Sample Debug LNM MAC Output

Table 1-34 describes significant fields shown in the first line of output in Figure 1-56.

router# debug lnm mac

LANMGR0: RS received request address from 4000.3040.a670.
LANMGR0: RS sending report address to 4000.3040.a670.
LANMGR0: RS received request state from 4000.3040.a670.
LANMGR0: RS sending report state to 4000.3040.a670.
LANMGR0: RS received request attachments from 4000.3040.a670.
LANMGR0: RS sending report attachments to 4000.3040.a670.
LANMGR2: RS received ring purge from 0000.3040.a630.
LANMGR2: CRS received report NAUN change from 0000.3040.a630.
LANMGR2: RS start watching ring poll.
LANMGR0: CRS received report NAUN change from 0000.3040.a630.
LANMGR0: RS start watching ring poll.
LANMGR2: REM received report soft error from 0000.3040.a630.
LANMGR0: REM received report soft error from 0000.3040.a630.
LANMGR2: RS received ring purge from 0000.3040.a630.
LANMGR2: RS received AMP from 0000.3040.a630.
LANMGR2: RS received SMP from 0000.3080.2d79.
LANMGR2: CRS received report NAUN change from 1000.5ade.0d8a.
LANMGR2: RS start watching ring poll.
LANMGR0: RS received ring purge from 0000.3040.a630.
LANMGR0: RS received AMP from 0000.3040.a630.
LANMGR0: RS received SMP from 0000.3080.2d79.
LANMGR0: CRS received report NAUN change from 1000.5ade.0d8a.
LANMGR0: RS start watching ring poll.
LANMGR2: RS received SMP from 1000.5ade.0d8a.
LANMGR2: RPS received request initialization from 1000.5ade.0d8a.
LANMGR2: RPS sending initialize station to 1000.5ade.0d8a. S

26
89



Debug Command Listing 2-105

debug lnm mac

Table 1-34 Debug LNM MAC Field Descriptions

As Figure 1-56 indicates, alldebug lnm mac messages follow the format described in Table 1-34
except the following:

LANMGR2: RS start watching ring poll
LANMGR2: RS stop watching ring poll

These messages indicate that the router starts and stops receiving AMP and SMP frames. These
frames are used to build a current picture of which stations are on the ring.

Field Description

LANMGR0: LANMGR indicates that this line of output displays MAC-level
debugging information. 0 indicates the number of the Token Ring
interface associated with this line of debugging output.

RS Indicates which function of the MAC-level software is communicating:

CRS—Configuration Report Server

REM—Ring Error Monitor

RPS—Ring Parameter Server

RS—Ring Station

received Indicates that the router received a frame. The other possible value is
sending, to indicate that the router is sending a frame.

request address Name of the specific frame that the router sent or received. Possible
values include the following:

AMP

initialize station

report address

report attachments

report NAUN change

report soft error

report state

request address

request attachments

request initialization

request state

ring purge

SMP

from 4000.3040.a670 If the router has received the frame, this address is the source address of
the frame. If the router is sending the frame, this address is the
destination address of the frame.



2-106 Debug Command Reference

debug local-ack state

debug local-ack state
Use thedebug local-ack state EXEC command to display the new and the old state conditions
whenever there is a state change in the Local Acknowledgment state machine. Theno form of this
command disables debugging output.

debug local-ack state
no debug local-ack state

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-57 shows sampledebug local-ack state output.

Figure 1-57 Sample Debug Local-Ack State Output

router# debug local-ack state

LACK_STATE: 2370300, hashp 2AE628, old state = disconn, new state = awaiting 
LLC2 open to finish
LACK_STATE: 2370304, hashp 2AE628, old state = awaiting LLC2 open to finish, 
new state = connected
LACK_STATE: 2373816, hashp 2AE628, old state = connected, new state = disconnected
LACK_STATE: 2489548, hashp 2AE628, old state = disconn, new state = awaiting 
LLC2 open to finish
LACK_STATE: 2489548, hashp 2AE628, old state = awaiting LLC2 open to finish, 
new state = connected
LACK_STATE: 2490132, hashp 2AE628, old state = connected, new state = awaiting 
linkdown response
LACK_STATE: 2490140, hashp 2AE628, old state = awaiting linkdown response, 
new state = disconnected
LACK_STATE: 2497640, hashp 2AE628, old state = disconn, new state = awaiting 
LLC2 open to finish
LACK_STATE: 2497644, hashp 2AE628, old state = awaiting LLC2 open to finish, 
new state = connected

S
26

90



Debug Command Listing 2-107

debug local-ack state

Table 1-35 describes significant fields shown in Figure 1-57.

Table 1-35 Debug Local-Ack State Field Descriptions

Field Description

LACK_STATE: Indicates that this packet describes a state change in the Local
Acknowledgment state machine.

2370300 System clock.

hashp 2AE628 Internal control block pointer used by technical support staff for
debugging purposes.

old state = disconn Indicates the old state condition in the Local Acknowledgment state
machine. Possible values include:

Disconn (disconnected)

awaiting LLC2 open to finish

connected

awaiting linkdown response

new state = awaiting LLC2 open
to finish

Indicates the new state condition in the Local Acknowledgment state
machine. Possible values include:

Disconn (disconnected)

awaiting LLC2 open to finish

connected

awaiting linkdown response



2-108 Debug Command Reference

debug netbios-name-cache

debug netbios-name-cache
Use thedebug netbios-name-cacheEXEC command to display name caching activities on a router.
Theno form of this command disables debugging output.

debug netbios-name-cache
no debug netbios-name-cache

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Examine the display to diagnose problems in NetBIOS name caching.

Sample Display
Figure 1-58 illustrates a collection of sampledebug netbios-name-cachedisplay output listings.

Figure 1-58 Sample Debug NetBIOS-Name-Cache Output

Note The sample display provided in Figure 1-58 is a composite output. Debugging output that you
might actually see would not necessarily be presented in this sequence.

Descriptions of selecteddebug netbios-name-cache output fields are provided in Table 1-36.

router# debug netbios-name-cache

NETBIOS: L checking name ORINDA , vrn=0
NetBIOS name cache table corrupted at offset 13
NetBIOS name cache table corrupted at later offset, at location 13
NETBIOS: U chk name=ORINDA, addr=1000.4444.5555, idb=TR1, vrn=0, type=1
NETBIOS: U upd name=ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0,type=1
NETBIOS: U add name=ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0,type=1
NETBIOS: U no memory to add cache entry. name=ORINDA,addr=1000.4444.5555
NETBIOS: Invalid structure detected in netbios_name_cache_ager
NETBIOS: flushed name=ORINDA, addr=1000.4444.5555
NETBIOS: expired name=ORINDA, addr=1000.4444.5555
NETBIOS: removing entry. name=ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0
NETBIOS: Tossing ADD_NAME/STATUS/NAME/ADD_GROUP frame
NETBIOS: Lookup Failed -- not in cache
NETBIOS: Lookup Worked, but split horizon failed
NETBIOS: Could not find RIF entry
NETBIOS: Cannot duplicate packet in netbios_name_cache_proxy S

26
91



Debug Command Listing 2-109

debug netbios-name-cache

Table 1-36 Debug NetBIOS-Name-Cache Field Descriptions

The following discussion briefly outlines each line shown in the example provided in Figure 1-58.

With the first line of output, the router declares that it has examined the NetBIOS name cache table
for the machine name ORINDA and that the packet that prompted the lookup came from virtual ring
0. In this case, this packet comes from a real interface— virtual ring number 0 is not valid.

NETBIOS: L checking name ORINDA, vrn=0

The following two entries indicate that there is a invalid NetBIOS entry and that the corrupted
memory was detected. The invalid memory will be removed from the table; no action is needed.

NetBIOS name cache table corrupted at offset 13
NetBIOS name cache table corrupted at later offset, at location 13

The following output indicates that the router has attempted to check the NetBIOS cache table for
the name ORINDA with MAC address 1000.4444.5555. This name was obtained from Token Ring
interface 1. The type field indicates that the name was learned from traffic.

NETBIOS: U chk name=ORINDA, addr=1000.4444.5555, idb=TR1, vrn=0, type=1

The following display indicates that the NetBIOS name ORINDA is in the name cache table and has
been updated to the current value:

NETBIOS: U upd name=ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0,type=1

The following display indicates that the NetBIOS name ORINDA is not in the table and must be
added to the table:

NETBIOS: U add name=ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0,type=1

The following display indicates that there was insufficient cache buffer space when the router tried
to add this name:

NETBIOS: U no memory to add cache entry. name=ORINDA,addr=1000.4444.5555

Field Description

NETBIOS Indicates that this is a NetBIOS name caching debugging output.

L, U L means lookup; U means update.

vrn=0 Router determined that the packet comes from virtual ring number 0;
this packet actually comes from a real Token Ring interface, because
virtual ring number 0 is not valid.

addr=1000.4444.5555 MAC address 1000.4444.5555 of machine being looked up in NetBIOS
name cache.

idb=TR1 Indicates that name of machine was learned from Token Ring interface
number 1; idb translates into interface data block

type=1 The type field indicates the way that the router learned about the
specified machine. The possible values for type are as follows:

1 = Learned from traffic

2 = Learned from a remote peer

4, 8 = Statically entered via the router’s configuration



2-110 Debug Command Reference

debug netbios-name-cache

The following display indicates that the NetBIOS ager detects an invalid memory in the cache. The
router clears the entry; no action is needed.

NETBIOS: Invalid structure detected in netbios_name_cache_ager

The following display indicates that the entry for ORINDA has been flushed from the cache table:

NETBIOS: flushed name=ORINDA, addr=1000.4444.5555

The following display indicates that the entry for ORINDA has timed out and has been flushed from
the cache table:

NETBIOS: expired name=ORINDA, addr=1000.4444.5555

The following display indicates that the router has removed the ORINDA entry from its cache table:

NETBIOS: removing entry. name=ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0

The following display indicates that the router discarded a NetBIOS packet of type ADD_NAME,
STATUS, NAME_QUERY, or ADD_GROUP. These packets are discarded when multiple copies of
one of these packet types are detected during a certain period of time.

NETBIOS: Tossing ADD_NAME/STATUS/NAME/ADD_GROUP frame

The following display indicates that the system was unable to find a NetBIOS name in the cache:

NETBIOS: Lookup Failed -- not in cache

The following display indicates that the destination NetBIOS name was found in the cache but was
determined to be located on the same ring from which the packet came. The router would drop this
packet because it should not leave this ring.

NETBIOS: Lookup Worked, but split horizon failed

The following display indicates that the NetBIOS name was found in the cache but the router could
not find the corresponding RIF. The packet will be sent as a broadcast frame.

NETBIOS: Could not find RIF entry

The following display indicates that no buffer was available to create a NetBIOS name-cache proxy.
A proxy will not be created for the packet, which will be forwarded as a broadcast frame.

NETBIOS: Cannot duplicate packet in netbios_name_cache_proxy



Debug Command Listing 2-111

debug packet

debug packet
Use thedebug packet EXEC command to display information on packets that the network is unable
to classify. Theno form of this command disables debugging output.

debug packet
no debug packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-59 shows sampledebug packet output. Notice how similar it is todebug broadcast output.

Figure 1-59 Sample Debug Packet Output

Table 1-37 describes significant fields shown in Figure 1-59.

Table 1-37 Debug Packet Field Descriptions

Field Description

Ethernet0 Name of the Ethernet interface that received the packet.

Unknown States that the network was unable to classify this packet. Examples
include packets with unknown link types.

ARPA States that this packet uses ARPA-style encapsulation. Possible
encapsulation styles vary depending on the media command mode
(MCM) and encapsulation style, as follows:

Ethernet (MCM)

Encapsulation Style
APOLLO
ARP
ETHERTALK
ISO1
ISO3
LLC2
NOVELL-ETHER
SNAP

router# debug packet

Ethernet0: Unknown ARPA, src 0000.0c00.6fa4, dst ffff.ffff.ffff, type 0x0a0
data 00000c00f23a00000c00ab45, len 60
Serial3: Unknown HDLC, size 64, type 0xaaaa, flags 0x0F00
Serial2: Unknown PPP, size 128
Serial7: Unknown FRAME-RELAY, size 174, type 0x5865, DLCI 7a
Serial0: compressed TCP/IP packet dropped S

26
92



2-112 Debug Command Reference

debug packet

FDDI (MCM)

Encapsulation Style
APOLLO
ISO1
ISO3
LLC2
SNAP

Frame Relay

Encapsulation Style
BRIDGE
FRAME-RELAY

Serial (MCM)

Encapsulation Style
BFEX25
BRIDGE
DDN-X25
DDNX25-DCE
ETHERTALK
FRAME-RELAY
HDLC
HDH
LAPB
LAPBDCE
MULTI-LAPB
PPP
SDLC-PRIMARY
SDLC-SECONDARY
SLIP
SMDS
STUN
X25
X25-DCE

Token Ring (MCM)

Encapsulation Style
3COM-TR
ISO1
ISO3
MAC
LLC2
NOVELL-TR
SNAP
VINES-TR

src 0000.0c00.6fa4 MAC address of the node generating the packet.

dst.ffff.ffff.ffff MAC address of the destination node for the packet.

type 0x0a0 Packet type.

data ... First 12 bytes of the datagram following the MAC header.

len 60 Length of the message in bytes that the interface received from the
wire.

size 64 Length of the message in bytes that the interface received from the
wire. Equivalent to the len field.

Field Description



Debug Command Listing 2-113

debug packet

flags 0x0F00 HDLC or PP flags field.

DLCI 7a The DLCI number on Frame Relay.

compressed TCP/IP packet
dropped

This message can occur when TCP header compression is enabled on
an interface and the packet does not turn out to be HDLC or X25 after
classification.

Field Description



2-114 Debug Command Reference

debug ppp

debug ppp
Use thedebug ppp EXEC command to display information on traffic and exchanges in an
internetwork implementing the Point-to-Point Protocol (PPP). Theno form of this command
disables debugging output.

debug ppp{ packet | negotiation | error  | chap}
no debug ppp{ packet | negotiation | error  | chap}

Syntax Description

Command Mode
EXEC

Usage Guidelines
Use thedebug ppp commands when trying to find the following:

• The Network Control Protocols (NCPs) that are supported on either end of a PPP connection

• Any loops that might exist in a PPP internetwork

• Nodes that are (or are not) properly negotiating PPP connections

• Errors that have occurred over the PPP connection

• Causes for CHAP session failures

Refer to Internet RFCs 1331, 1332, and 1333 for details concerning PPP-related nomenclature and
protocol information.

Sample Display
Figure 1-60 provides a sampledebug ppp packetoutput as seen from the Link Quality Monitor
(LQM) side of the connection. This display example depicts packet exchanges under normal PPP
operation.

packet Causes thedebug pppcommand to display PPP packets
being sent and received. (This command displays low-level
packet dumps.)

negotiation Causes the debug ppp command to display PPP packets
transmitted during PPP startup, where PPP options are
negotiated

error Causes thedebug ppp command to display protocol errors
and error statistics associated with PPP connection
negotiation and operation.

chap Causes thedebug ppp command to display Challenge
Authentication Protocol (CHAP) packet exchanges.



Debug Command Listing 2-115

debug ppp

Figure 1-60 Sample Debug PPP Packet Display Output

Explanations for individual fields of output for thedebug ppp packet command follow in Table 1-
38.

router# debug ppp packet

PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48
PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D3454, len = 48
PPP Serial4(i): pkt type 0xC021, datagramsize 16
PPP Serial4: I LCP ECHOREQ(9) id 3 (C) magic D3454
PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id = 3 len = 12
PPP Serial4: O LCP ECHOREP(A) id 3 (C) magic D21B4
PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48
PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D3454, len = 48
PPP Serial4(i): pkt type 0xC021, datagramsize 16
PPP Serial4: I LCP ECHOREQ(9) id 4 (C) magic D3454
PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id = 4 len = 12
PPP Serial4: O LCP ECHOREP(A) id 4 (C) magic D21B4
PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48
PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D3454, len = 48
PPP Serial4(i): pkt type 0xC021, datagramsize 16
PPP Serial4: I LCP ECHOREQ(9) id 5 (C) magic D3454
PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id = 5 len = 12
PPP Serial4: O LCP ECHOREP(A) id 5 (C) magic D21B4
PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48
PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D3454, len = 48
PPP Serial4(i): pkt type 0xC021, datagramsize 16
PPP Serial4: I LCP ECHOREQ(9) id 6 (C) magic D3454
PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id = 6 len = 12
PPP Serial4: O LCP ECHOREP(A) id 6 (C) magic D21B4
PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48
PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D3454, len = 48
PPP Serial4(i): pkt type 0xC021, datagramsize 16
PPP Serial4: I LCP ECHOREQ(9) id 7 (C) magic D3454
PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id = 7 len = 12
PPP Serial4: O LCP ECHOREP(A) id 7 (C) magic D21B4
PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48 S

26
93



2-116 Debug Command Reference

debug ppp

Table 1-38 Debug PPP Packet Field Descriptions

To elaborate on what the router is displaying here, consider the partial exchange in Figure 1-61. This
sequence shows that one side is using ECHO for its keepalives and the other side is using LQRs.

Figure 1-61 Partial Debug PPP Packet Display Output

The following discussion briefly outlines each line of this exchange.

The first line states that the router with debugging enabled has sent an LQR to the other side of the
PPP connection:

PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48

Field Description

PPP Indicates that this is PPP debugging output.

Serial4 Interface number associated with this debugging information.

(o), O Both indicate that this packet was detected as an output packet.

(i) I Both indicate that this packet was detected as an input packet.

lcp_slqr() Procedure name; running LQM, send a Link Quality Report (LQR).

lcp_rlqr() Procedure name; running LQM, received an LQR.

input (C025) Indicates that the router received a packet of the specified packet type (in
hex). A value of C025 indicates packet of type LQM.

state = OPEN PPP state; normal state is OPEN.

magic = D21B4 Magic Number for indicated node; when output is indicated, this is the
Magic Number of the node on which debugging is enabled. The actual
Magic Number depends on whether the packet detected is indicated as
I or O.

datagramsize = 52 Packet length including header.

code = ECHOREQ(9) Code identifies the type of packet received. Both forms of the packet,
string and hexadecimal, are presented.

len = 48 Packet length without header.

id = 3 ID number per Link Control Protocol (LCP) packet format.

pkt type 0xC025 Packet type in hexadecimal; typical packet types are C025 for LQM and
C021 for LCP.

LCP ECHOREQ (9) Specifies Echo Request; value in parentheses is the hexadecimal
representation of the LCP type.

LCP ECHOREP (A) Specifies Echo Reply; value in parentheses is the hexadecimal
representation of the LCP type.

PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48
PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D3454, len = 48
PPP Serial4(i): pkt type 0xC021, datagramsize 16
PPP Serial4: I LCP ECHOREQ(9) id 3 (C) magic D3454
PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id = 3 len = 12
PPP Serial4: O LCP ECHOREP(A) id 3 (C) magic D21B4
PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48 S

26
94



Debug Command Listing 2-117

debug ppp

The next two lines indicate that the router has received a packet of type C025 (LQM) and provides
details about the packet:

PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D3454, len = 48

The next two lines indicate that the router received an ECHOREQ of type C021 (LCP). The other
side is sending ECHOs. The router on which debugging is configured for LQM but also responds to
ECHOs.

PPP Serial4(i): pkt type 0xC021, datagramsize 16
PPP Serial4: I LCP ECHOREQ(9) id 3 (C) magic D3454

Next the router is detected to have responded to the ECHOREQ with an ECHOREP and is preparing
to send out an LQR:

PPP Serial4: O LCP ECHOREP(A) id 3 (C) magic D21B4
PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48

Figure 1-62 provides a sampledebug ppp negotiationoutput. This is a normal negotiation, where
both sides agree on NCP parameters. In this case, protocol type IP is proposed and acknowledged.

Figure 1-62 Sample Debug PPP Negotiation Display Output

Explanations for key individual fields of output from thedebug ppp negotiation command follow
in Table 1-39.

router# debug ppp negotiation

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 3D56CAC
ppp: received config for type = 4 (QUALITYTYPE) acked
ppp: received config for type = 5 (MAGICNUMBER) value = 3D567F8 acked (ok)
PPP Serial4: state = ACKSENT fsm_rconfack(C021): rcvd id 5
ppp: config ACK received, type = 4 (CI_QUALITYTYPE), value = C025
ppp: config ACK received, type = 5 (CI_MAGICNUMBER), value = 3D56CAC
ppp: ipcp_reqci: returning CONFACK.
 (ok)
PPP Serial4: state = ACKSENT fsm_rconfack(8021): rcvd id 4 S

26
95



2-118 Debug Command Reference

debug ppp

Table 1-39 Debug PPP Negotiation Field Descriptions

The following discussion briefly outlines each line shown in the example provided in Figure 1-62.

The first two lines in Figure 1-62 indicate that the router is trying to bring up LCP and intends to use
the indicated negotiation options (Quality Protocol and Magic Number). The value fields are the
values of the options themselves. C025/3E8 translates to Quality Protocol LQM. 3E8 is the reporting
period (in hundredths of a second). 3D56CAC is the value of the Magic Number for the router.

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 3D56CAC

The next two lines indicate that the other side negotiated for options 4 and 5 as requested and
acknowledged both. If the responding end does not support the options, a CONFREJ is sent by the
responding node. If the responding end does not like the value of the option, a CONFNAK is sent
with the value field modified.

ppp: received config for type = 4 (QUALITYTYPE) acked
ppp: received config for type = 5 (MAGICNUMBER) value = 3D567F8 acked (ok)

The next three messages indicate that the router received a CONFACK from the responding side and
displays accepted option values. Use the rcvd id field to verify the CONFREQ and CONFACK have
the same id field.

PPP Serial4: state = ACKSENT fsm_rconfack(C021): rcvd id 5
ppp: config ACK received, type = 4 (CI_QUALITYTYPE), value = C025
ppp: config ACK received, type = 5 (CI_MAGICNUMBER), value = 3D56CAC

The nextdebug ppp negotiation command output indicates that the router has IP routing enabled
on this interface and that the IPCP NCP negotiated successfully.

ppp: ipcp_reqci: returning CONFACK.

In the last message, the router’s state is listed as ACKSENT:

PPP Serial4: state = ACKSENT fsm_rconfack(C021): rcvd id 5\

Field Description

ppp Indicates that this is a PPP debugging output.

sending CONFREQ Indicates that the router sent a configuration request.

type = 4 (CI_QUALITYTYPE) Specifies the type of LCP configuration option that is being negotiated
and a descriptor. A type value of 4 indicates Quality Protocol
negotiation; a type value of 5 indicates Magic Number negotiation.

value = C025/3E8 For Quality Protocol negotiation, indicates NCP type and reporting
period. In the example, C025 indicates LQM; 3E8 is a hexadecimal
value translating to about 10 seconds (in hundredths of a second).

value = 3D56CAC For Magic Number negotiation, indicates the Magic Number being
negotiated.

received config Indicates that the receiving node has received the proposed option
negotiation for the indicated option type.

acked Indicates acknowledgment and acceptance of options.

state = ACKSENT Indicates the specific PPP state in the negotiation process.

ipcp_reqci IPCP notification message; sending CONFACK

fsm_rconfack (8021) The procedure fsm_rconfack processes received CONFACKs, and the
protocol (8021) is IP.



Debug Command Listing 2-119

debug ppp

Figure 1-63 provides a sample display output when bothdebug ppp packet and
debug ppp negotiationoutput are enabled at the same time.

Figure 1-63 Sample Debug PPP Display Output with Both Options Enabled

router# debug ppp negotiation
router# debug ppp packet

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = D4C64
PPP Serial4: O LCP CONFREQ(1) id 4 (12) QUALITYTYPE (8) 192 37 0 0 3 232
   MAGICNUMBER (6) 0 13 76 100
PPP Serial4(i): pkt type 0xC021, datagramsize 22
PPP Serial4: I LCP CONFREQ(1) id 4 (12) QUALITYTYPE (8) 192 37 0 0 3 232
   MAGICNUMBER (6) 0 13 84 240
PPP Serial4: input(C021) state = REQSENT code = CONFREQ(1) id = 4 len = 18
ppp: received config for type = 4 (QUALITYTYPE) acked
ppp: received config for type = 5 (MAGICNUMBER) value = D54F0 acked
PPP Serial4: O LCP CONFACK(2) id 4 (12) QUALITYTYPE (8) 192 37 0 0 3 232
   MAGICNUMBER (6) 0 13 84 240 (ok)
PPP Serial4(i): pkt type 0xC021, datagramsize 22
PPP Serial4: I LCP CONFACK(2) id 4 (12) QUALITYTYPE (8) 192 37 0 0 3 232
   MAGICNUMBER (6) 0 13 76 100
PPP Serial4: input(C021) state = ACKSENT code = CONFACK(2) id = 4 len = 18
PPP Serial4: state = ACKSENT fsm_rconfack(C021): rcvd id 4
ppp: config ACK received, type = 4 (CI_QUALITYTYPE), value = C025
ppp: config ACK received, type = 5 (CI_MAGICNUMBER), value = D4C64
PPP Serial4: O IPCP CONFREQ(1) id 3 (4)
PPP Serial4(i): pkt type 0x8021, datagramsize 8
PPP Serial4: I IPCP CONFREQ(1) id 3 (4)
PPP Serial4: input(8021) state = REQSENT code = CONFREQ(1) id = 3 len = 4
ppp: ipcp_reqci: returning CONFACK.
PPP Serial4: O IPCP CONFACK(2) id 3 (4) (ok)
PPP Serial4(i): pkt type 0x8021, datagramsize 8
PPP Serial4: I IPCP CONFACK(2) id 3 (4)
PPP Serial4: input(8021) state = ACKSENT code = CONFACK(2) id = 3 len = 4
PPP Serial4: state = ACKSENT fsm_rconfack(8021): rcvd id 3
PPP Serial4(o): lcp_slqr() state = OPEN magic = D4C64, len = 48
PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D54F0, len = 48
PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D54F0, len = 48
PPP Serial4(o): lcp_slqr() state = OPEN magic = D4C64, len = 48 S

25
58

This field shows a 
decimal representation 
of the Magic Number

This exchange 
represents a 
successful PPP 
negotiation for 
support of NCP 
type IPCP

This field shows 
a decimal representation 
of the NCP value

This field shows a 
decimal representation 
of the reporting period



2-120 Debug Command Reference

debug ppp

Figure 1-64 provides a sampledebug ppp negotiation display output when the remote side of the
connection is unable to respond to LQM requests.

Figure 1-64 Sample Debug PPP Negotiation Display Output when No Response Is Detected

Figure 1-65 provides a sample display output when no response is detected for configuration
requests (with bothdebug ppp negotiation anddebug ppp packet enabled).

router# debug ppp negotiation

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44C1488 S

26
96

router# debug ppp packet

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44DFDC8
PPP Serial4: O LCP CONFREQ(1) id 14 (12) QUALITYTYPE (8) 192 37 0 0 3 232
   MAGICNUMBER (6) 4 77 253 200
ppp: TIMEout: Time= 44E0980 State= 3
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44DFDC8
PPP Serial4: O LCP CONFREQ(1) id 15 (12) QUALITYTYPE (8) 192 37 0 0 3 232
   MAGICNUMBER (6) 4 77 253 200
ppp: TIMEout: Time= 44E1828 State= 3
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44DFDC8
PPP Serial4: O LCP CONFREQ(1) id 16 (12) QUALITYTYPE (8) 192 37 0 0 3 232
   MAGICNUMBER (6) 4 77 253 200
ppp: TIMEout: Time= 44E27C8 State= 3
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44DFDC8
PPP Serial4: O LCP CONFREQ(1) id 17 (12) QUALITYTYPE (8) 192 37 0 0 3 232
   MAGICNUMBER (6) 4 77 253 200
ppp: TIMEout: Time= 44E3768 State= 3 S

26
97



Debug Command Listing 2-121

debug ppp

Figure 1-65 Sample Debug PPP Display Output when No Response Is Detected (with Both Options Enabled)

Figure 1-66 provides a sampledebug ppp error output. These messages might appear when the
Quality Protocol option is enabled on an interface that is already running PPP.

Figure 1-66 Sample Debug PPP Error Output

Explanations for individual fields of output fromdebug ppp errors follow in Table 1-40.

Table 1-40 Debug PPP Error Field Descriptions

Field Description

PPP Indicates that this is PPP debugging output.

Serial3(i) Interface number associated with this debugging information; indicates
that this is an input packet.

rlqr receive failure Indicates that the request to negotiate the Quality Protocol option is not
accepted.

myrcvdiffp = 159 Number of packets received over the time period.

peerxmitdiffp = 41091 Number of packets sent by the remote node over this period.

myrcvdiffo = 2183 Number of octets received over this period.

peerxmitdiffo = 1714439 Number of octets sent by the remote node over this period.

threshold = 25 The maximum error percentage acceptable on this interface. This
percentage is calculated by the threshold value entered in the
ppp quality number interface configuration command. A value of 100–
number (100 minusnumber) is the maximum error percentage. In this
case, anumber of 75 was entered. This means that the local router must
maintain a minimum 75 percent non-error percentage, or the PPP link
will be considered down.

OutLQRs = 1 Local router’s current send LQR sequence number.

LastOutLQRs = 1 The last sequence number that the remote node side has seen from the
local node.

router# debug ppp error

PPP Serial3(i): rlqr receive failure.  successes = 15
PPP: myrcvdiffp = 159 peerxmitdiffp = 41091
PPP: myrcvdiffo = 2183 peerxmitdiffo = 1714439
PPP: threshold = 25
PPP Serial4(i): rlqr transmit failure. successes = 15
PPP: myxmitdiffp = 41091 peerrcvdiffp = 159
PPP: myxmitdiffo = 1714439 peerrcvdiffo = 2183
PPP: l->OutLQRs = 1 LastOutLQRs = 1
PPP: threshold = 25
PPP Serial3(i): lqr_protrej() Stop sending LQRs.
PPP Serial3(i): The link appears to be looped back. S

26
98



2-122 Debug Command Reference

debug ppp

Figure 1-67 provides a sampledebug ppp chapoutput. When doing CHAP authentication, use this
debugcommand to determine why an authentication fails.

Figure 1-67 Sample Debug PPP CHAP Output

In general, these messages are self-explanatory. Fields that appear indebug ppp chap displays that
can show optional output are outlined in Table 1-41.

Table 1-41 Debug PPP CHAP Field Descriptions

Field Description

Serial0 Interface number associated with this debugging information and CHAP
access session in question.

USERNAME pioneer not found. The namepioneer in this example is the name received in the CHAP
response. The router looks up this name in the list of usernames that are
configured for the router.

Remote message is Unknown
name

Messages that can appear are the following:
No name received to authenticate

Unknown name

No secret for given name

Short MD5 response received

MD compare failed

code = 4 Specific CHAP type packet detected. Possible values are as follows:

1 = Challenge

2 = Response

3 = Success

4 = Failure

len = 48 Packet length without header.

id = 3 ID number per Link Control Protocol (LCP) packet format.

router# debug ppp chap

Serial0: Unable to authenticate.  No name received from peer
Serial0: Unable to validate CHAP response.  USERNAME pioneer not found.
Serial0: Unable to validate CHAP response.  No password defined for USERNAME pioneer
Serial0: Failed CHAP authentication with remote.
Remote message is Unknown name
Serial0: remote passed CHAP authentication.
Serial0: Passed CHAP authentication with remote.
Serial0: CHAP input code = 4 id = 3 len = 48 S

26
99



Debug Command Listing 2-123

debug rif

debug rif
Use thedebug rif EXEC command to display information on entries entering and leaving the RIF
cache. Theno form of this command disables debugging output.

debug rif
no debug rif

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
In order to use thedebug rif command to display traffic source-routed through an interface, fast
switching of SRB frames must first be disabled with theno source-bridge route-cache interface
interface configuration command.

Sample Display
Figure 1-68 shows sampledebug rif output.

Figure 1-68 Sample Debug RIF Output

Explanations for representative lines ofdebug rif output in Figure 1-68 follow.

The first line of output in Figure 1-68 is an example of a RIF entry for an interface configured for
SDLLC or Local-Ack.

Table 1-42 describes significant fields shown in this line ofdebug rif output.

router# debug rif

RIF: U chk da=9000.5a59.04f9,sa=0110.2222.33c1 [4880.3201.00A1.0050] type 8 on 
static/remote/0
RIF: U chk da=0000.3080.4aed,sa=0000.0000.0000 [] type 8 on TokenRing0/0
RIF: U add 1000.5a59.04f9 [4880.3201.00A1.0050] type 8
RIF: L checking da=0000.3080.4aed, sa=0000.0000.0000
RIF: rcvd TEST response from 9000.5a59.04f9
RIF: U upd da=1000.5a59.04f9,sa=0110.2222.33c1 [4880.3201.00A1.0050]
RIF: rcvd XID response from 9000.5a59.04f9
SR1: sent XID response to 9000.5a59.04f9 S

25
59

SDLLC or 
Local-Ack 
entry

Non-SDLLC 
or non-Local-
Ack entry



2-124 Debug Command Reference

debug rif

Table 1-42 Debug RIF Field Descriptions—Part 1

The second line of output in Figure 1-68 is an example of a RIF entry for an interface that is not
configured for SDLLC or Local-ACK.

RIF: U chk da=0000.3080.4aed,sa=0000.0000.0000 [] type 8 on TokenRing0/0

Notice that the source address contains only zero values (0000.0000.0000), and that the RIF string
is null ([ ]). The last element in the entry indicates that this route was learned from a virtual ring,
rather than a real Token Ring port.

The third line of output in Figure 1-68 shows that a new entry has been added to the RIF cache:

RIF: U add 1000.5a59.04f9 [4880.3201.00A1.0050] type 8

The fourth line of output in Figure 1-68 shows that a RIF cache lookup operation has taken place:

RIF: L checking da=0000.3080.4aed, sa=0000.0000.0000

The fifth line of output in Figure 1-68 shows that a TEST response from address 9000.5a59.04f9 was
inserted into the RIF cache:

RIF: rcvd TEST response from 9000.5a59.04f9

The sixth line of output in Figure 1-68 shows that the RIF entry for this route has been found and
updated:

RIF: U upd da=1000.5a59.04f9,sa=0110.2222.33c1 [4880.3201.00A1.0050]

Field Description

RIF: Indicates that this message describes RIF debugging output.

U chk Update checking. The entry is being updated; the timer is set to zero (0).

da = 9000.5a59.04f9 Destination MAC address.

sa = 0110.2222.33c1 Source MAC address. This field contains values of zero
(0000.0000.0000) in a non-SDLLC or non-Local-ack entry.

[4880.3201.00A1.0050] RIF string. This field is blank (null RIF) in a non-SDLLC or non-Local-
ack entry.

 type 8 Possible values follow:

0—Null entry

1—This entry was learned from a particular Token Ring port (interface)

2—Statically configured

4—Statically configured for a remote interface

8—This entry is to be aged

16—This entry (which has been learned from a remote interface) is to be
aged

32—This entry is not to be aged

64 —This interface is to be used by LAN Network Manager (and is not
to be aged)

on static/remote/0 Indicates that this route was learned from a real Token Ring port, in
contrast to a virtual ring.



Debug Command Listing 2-125

debug rif

The seventh line of output in Figure 1-68 shows that an XID response from this address was inserted
into the RIF cache:

RIF: rcvd XID response from 9000.5a59.04f9

The eighth line of output in Figure 1-68 shows that the router sent an XID response to this address:

SR1: sent XID response to 9000.5a59.04f9

Table 1-43 explains the other possible lines ofdebug rif output.

Table 1-43 Debug RIF Field Descriptions—Part 2

Field Description

RIF: L Sending XID foraddress The router/bridge wanted to send a packet to
address but did not find it in the RIF cache. It sent
an XID explorer packet to determine which RIF it
should use. The attempted packet is dropped.

RIF: L No buffer for XID toaddress Similar to the previous description; however, a
buffer in which to build the XID packet could not
be obtained.

RIF: U remote rif too small [rif ] A packet’s RIF was too short to be valid.

RIF: U rejaddress too big [rif ] A packet’s RIF exceeded the maximum size
allowed and was rejected. The maximum size is 18
bytes.

RIF: U upd interfaceaddress The RIF entry for this router/bridge’s interface has
been updated.

RIF: U ignaddress interface update A RIF entry that would have updated an interface
corresponding to one of this router’s interfaces.

RIF: U addaddress[rif ] The RIF entry foraddress has been added to the
RIF cache.

RIF: U no memory to add rif foraddress No memory to add a RIF entry foraddress.

RIF: removing rif entry foraddress, type code The RIF entry foraddress has been forcibly
removed.

RIF: flushedaddress The RIF entry foraddress has been removed
because of a RIF cache flush.

RIF: expiredaddress The RIF entry foraddress has been aged out of the
RIF cache.



2-126 Debug Command Reference

debug sdlc

debug sdlc
Use thedebug sdlc EXEC command to display information on SDLC frames received and sent by
any router serial interface involved in supporting SDLC end station functions. Theno form of this
command disables debugging output.

debug sdlc
no debug sdlc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Because using this command is processor intensive, it is best to use it after hours, rather than in a
production environment. It is also best to turn this command on by itself, rather than use it in
conjunction with otherdebug commands.

Sample Display
Figure 1-69 shows sampledebug sdlc output.

Figure 1-69 Sample Debug SDLC Output

Explanations for individual lines of output from Figure 1-69 follow.

The following line of output indicates that the router is sending a Receiver Ready packet at location 4
in the code:

SDLC: Sending RR at location 4

The following line of output describes a frame input event:

Serial3: SDLC O (12495952) C2 CONNECT (2) RR P/F 6

Table 1-44 describes the fields in this line of output.

router# debug sdlc

SDLC: Sending RR at location 4
Serial3: SDLC O (12495952) C2 CONNECT (2) RR P/F 6
Serial3: SDLC I (12495964) [C2] CONNECT (2) RR P/F 0 (R) [VR: 6 VS: 0]
Serial3: SDLC T [C2] 12496064 CONNECT 12496064 0
SDLC: Sending RR at location 4
Serial3: SDLC O (12496064) C2 CONNECT (2) RR P/F 6
Serial3: SDLC I (12496076) [C2] CONNECT (2) RR P/F 0 (R) [VR: 6 VS: 0]
Serial3: SDLC T [C2] 12496176 CONNECT 12496176 0 S

27
00



Debug Command Listing 2-127

debug sdlc

Table 1-44 Debug SDLC Field Descriptions for a Frame Output Event

Field Description

Serial3 Interface type and unit number reporting the frame
event.

SDLC Protocol providing the information.

O Command Mode of frame event. Possible values
follow:

I—Frame input

O—Frame output

T—T1 timer expired

(12495952) Current timer value.

C2 SDLC address of the SDLC connection.

CONNECT State of the protocol when the frame event
occurred. Possible values follow:

CONNECT

DISCONNECT

DISCSENT (disconnect sent)

ERROR (FRMR frame sent)

REJSENT (reject frame sent)

SNRMSENT (SNRM frame sent)

USBUSY

THEMBUSY

BOTHBUSY

(2) Size of the frame (in bytes).



2-128 Debug Command Reference

debug sdlc

The following line of output describes a frame input event.

Serial3: SDLC I (12495964) [C2] CONNECT (2) RR P/F 0 (R) [VR: 6 VS: 0] rfp: P

In addition to the fields described in Table 1-44, output for a frame input event also includes two
additional fields, as described in Table 1-45.

Table 1-45 Debug SDLC Field Descriptions Unique to a Frame Input Event

RR Frame type name. Possible values follow:

DISC—Disconnect

DM—Disconnect mode

FRMR—Frame reject

IFRAME—Information frame

REJ—Reject

RNR—Receiver not ready

RR—Receiver ready

SIM—Set Initialization mode command

SNRM—Set Normal Response Mode

TEST—Test frame

UA—Unnumbered acknowledgment

XID—EXchange ID

P/F Poll/Final bit indicator. Possible values follow:

F—Final (printed for Response frames)

P—Poll (printed for Command frames)

P/F—Poll/Final (printed for RR, RNR and REJ
frames, which can be either Command or Response
frames)

6 Receive count; range: 0–7.

Field Description

(R) Frame Type:

C—Command

R—Response

VR: 6 Receive count; range: 0–7.

VS: 0 Send count; range: 0–7.

rfp: P Ready for poll;

P —Idle poll (keepalive) timer is on.

T—Data acknowledgment timer is on.

These timers are based on the T1 timer.

VS: 0 Send count; range: 0–7.

Field Description



Debug Command Listing 2-129

debug sdlc

The following line of output describes a frame timer event.

Serial3: SDLC T [C2] 12496064 CONNECT 12496064 0

Table 1-46 describes the fields in this line of output.

Table 1-46 Debug SDLC Field Descriptions for a Timer Event

Field Description

Serial3: Interface type and unit number reporting the frame
event.

SDLC Protocol providing the information.

T Indicates that the timer has expired.

[C2] SDLC address of this SDLC connection.

12496064 System clock.

CONNECT State of the protocol when the frame event
occurred. Possible values follow:

BOTHBUSY

CONNECT

DISCONNECT

DISCSENT (disconnect sent)

ERROR (FRMR frame sent)

REJSENT (reject frame sent)

SNRMSENT (SNRM frame sent)

THEMBUSY

BOTHBUSY

12496064 Top timer.

0 Retry count; default: 0.



2-130 Debug Command Reference

debug sdlc local-ack

debug sdlc local-ack
Use thedebug sdlc local-ack EXEC command to display information on the Local
Acknowledgment feature. Theno form of this command disables debugging output.

debug sdlc local-ack
no debug sdlc local-ack

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
You can select the frame types you want to monitor; the frame types correspond to bit flags. You can
select 1, 2, 4, or 7, which is the decimal value of the bit flag settings. If you select 1, the octet is set
to 00000001. If you select 2, the octet is set to 0000010. If you select 4, the octet is set to 00000100.
If you want to select all frame types, select 7; the octet is 00000111. The default is 7 for all events.
Table 1-47 defines these bit flags.

Table 1-47 Debug SDLC Local-Ack Debugging Levels

Caution Because using this command is processor intensive, it is best to use it after hours, rather
than in a production environment. It is also best to turn this command on by itself, rather than use it
in conjunction with other debug commands.

Sample Display
Figure 1-70 shows sampledebug sdlc local-ack output.

Debug Command Meaning

debug sdlc local-ack 1 Only U-Frame events

debug sdlc local-ack 2 Only I-Frame events

debug sdlc local-ack 4 Only S-Frame events

debug sdlc local-ack 7 All SDLC Local-Ack events (default setting)

router# debug sdlc local-ack 1

SLACK (Serial3): Input     = Network, LinkupRequest
SLACK (Serial3): Old State = AwaitSdlcOpen            New State = AwaitSdlcOpen

SLACK (Serial3): Output    = SDLC, SNRM

SLACK (Serial3): Input     = SDLC, UA
SLACK (Serial3): Old State = AwaitSdlcOpen            New State = Active

SLACK (Serial3): Output    = Network, LinkResponse S
25

60

Group of 
associated 
operations



Debug Command Listing 2-131

debug sdlc local-ack

Figure 1-70 Sample Debug SDLC Local-Ack Output

Explanations for individual lines of output from Figure 1-70 follow.

The first line of output in the first group of lines shows the input to the SDLC Local
Acknowledgment state machine:

SLACK (Serial3): Input     = Network, LinkupRequest

Table 1-48 describes the fields in this line of output.

Table 1-48 Debug SDLC Local-Ack Field Descriptions

The second line of output shows the change in the SDLC Local Acknowledgment state machine. In
this case the AwaitSdlcOpen state is an internal state that has not changed while this display was
captured.

SLACK (Serial3): Old State = AwaitSdlcOpen            New State = AwaitSdlcOpen

The third line of output shows the output from the SDLC Local Acknowledgment state machine:

SLACK (Serial3): Input     = Network, LinkupRequest

Field Description

SLACK Indicates that the SDLC Local-Acknowledgment
feature is providing the information.

(Serial3): Interface type and unit number reporting the event.

Input = Network Indicates that the source of the input.

LinkupRequest Indicates the op code. A LinkupRequest is an
example of possible values.



2-132 Debug Command Reference

debug sdllc

debug sdllc
Use thedebug sdllc EXEC command to display information about data link layer frames transferred
between a device on a Token Ring and a device on a serial line via a router configured with the
SDLLC feature. Theno form of this command disables debugging output.

debug sdllc
no debug sdllc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The SDLLC feature translates between the SDLC link layer protocol used to communicate with
devices on a serial line and the LLC2 link layer protocol used to communicate with devices on a
Token Ring.

The router configured with the SDLLC feature must be attached to the serial line. The router sends
and receives frames on behalf of the serial device on the attached serial line but acts as an SDLC
station.

The topology between the router configured with the SDLLC feature and the Token Ring is network
dependent and is not limited by the SDLLC feature.

Sample Display
Figure 1-71 shows sampledebug sdllcoutput between link layer peers from the perspective of the
SDLLC-configured router.

Figure 1-71 Sample Debug SDLLC Output

router# debug sdllc

SDLLC: rx explorer rsp, da 4000.2000.1001, sa C000.1020.1000, rif
 8840.0011.00A1.0050
SDLLC: tx short xid, sa 4000.2000.1001, da C000.1020.1000, rif
 88C0.0011.00A1.0050, dsap 4 ssap 4
SDLLC: tx long xid, sa 4000.2000.1001, da C000.1020.1000, rif
 88C0.0011.00A1.0050, dsap 4 ssap 4
Rcvd SABME/LINKUP_REQ pak from TR host S

27
01



Debug Command Listing 2-133

debug sdllc

Explanations for individual fields of output fromdebug sdllcfollow in Table 1-49:

Table 1-49 Debug SDLLC Field Descriptions

The following line of output indicates that an explorer frame response has been received by the
router at address 4000.2000.1001 from the FEP at address C000.1020.1000 with the specified RIF.
The original explorer sent to the FEP from the router is not monitored as part of thedebug sdllc
command.

SDLLC: rx explorer rsp, da 4000.2000.1001, sa C000.1020.1000, rif
 8840.0011.00A1.0050

The following line of output indicates that the router sent the null XID (Type 0) to the FEP. The
debugging information does not include the response to the XID message sent by the FEP to the
router.

SDLLC: tx short xid, sa 4000.2000.1001, da C000.1020.1000, rif
 88C0.0011.00A1.0050, dsap 4 ssap 4

The following line of output indicates that the router sent the XID command (Format 0 Type 2) to
the FEP:

SDLLC: tx long xid, sa 4000.2000.1001, da C000.1020.1000, rif
 88C0.0011.00A1.0050, dsap 4 ssap 4

The following line of output is the SABME response to the XID command previously sent by the
router to the FEP:

Rcvd SABME/LINKUP_REQ pak from TR host

Field Description

rx Router receives message from the FEP.

explr rsp Response to an explorer (TEST) frame previously sent by the router to
FEP.

da Destination address. This is the address of the router receiving the
response.

sa Source address. This is the address of the FEP sending the response to
the router.

rif Routing information field.

tx Router sent message to the FEP.

short xid Router sent the null XID to the FEP.

dsap Destination service access point

ssap Source service access point.

tx long xid Router sent the XID type 2 to the FEP.

Rcvd Router received layer 2 message from the FEP

SABME/LINKUP_REQ Set asynchronous Balanced Mode Extended command.



2-134 Debug Command Reference

debug serial interface

debug serial interface
Use the debug serial interface EXEC command to display information on a serial connection
failure. Theno form of this command disables debugging output.

debug serial interface
no debug serial interface

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
If the show interface serialcommand shows that the line and protocol are down, you can use the
debug serial interface command to isolate a timing problem as the cause of a connection failure. If
the keepalive values in the mineseq, yourseen, and myseen fields are not incrementing in each
subsequent line of output, there is a timing or line problem at one of end of the connection.

Note While thedebug serial interface command typically does not generate a lot of output,
nevertheless use it cautiously during production hours. When SMDS is enabled, for example, it can
generate considerable output.

The output of thedebug serial interface command can vary, depending on the type of WAN
configured for an interface: DDR, Frame Relay, HDLC, HSSI, SMDS, or X.25. The output also can
vary depending on the type of encapsulation configured for that interface. The hardware platform
also can impactdebug serial interface output.

The following sections show exampledebug serial interface displays for various configurations
and describe the possible output the command can generate for these configurations.



Debug Command Listing 2-135

debug serial interface

Debug Serial Interface for DDR
Table 1-50 describes the error messages that thedebug serial interface command can generate for
a serial interface being used as a V.25bis dialer for dial-on-demand routing.

Table 1-50 Debug Serial Interface Message Descriptions for DDR

Debug Serial Interface for Frame Relay Encapsulation
The following message is displayed if the encapsulation for the interface is Frame Relay (or HDLC)
and the router attempts to send a packet containing an unknown packet type.

Illegal serial link type code xxx

Message Description

Serial 0: Dialer result =xxxxxxxxxx This message displays the result returned from the V.25bis
dialer. It is useful in debugging if calls are failing. On some
hardware platforms, this message cannot be displayed due to
hardware limitations. Possible values for thexxxxxxxx variable
depend on the V.25bis device with which the router is
communicating.

Serial 0: No dialer string defined.
Dialing cannot occur.

This message is displayed when a packet is received that should
cause a call to be placed. However, there is no dialer string
configured, so dialing cannot occur. This message usually
indicates a configuration problem.

Serial 0: Attempting to dialxxxxxxxxxx This message indicates that a packet has been received that
passes the dial-on-demand access lists. That packet causes
dialing of a phone number. Thexxxxxxxx variable is the number
being called.

Serial 0: Unable to dialxxxxxxxxxx This message is displayed if for some reason, the phone call
could not be placed. This might be due to a lack of memory, full
output queues, or other problems.

Serial 0: disconnecting call This message is displayed when the router attempts to hang up a
call.

Serial 0: idle timeout

Serial 0: re-enable timeout

Serial 0: wait for carrier timeout

One of these three messages is displayed when their
corresponding dialer timer expires. They are mostly
informational, but are useful when debugging a disconnected
call or call failure.



2-136 Debug Command Reference

debug serial interface

Debug Serial Interface for HDLC
Figure 1-72 shows sampledebug serial interface output for an HDLC connection when keepalives
have been enabled.

Figure 1-72 Sample Debug Serial Interface Output for HDLC

In Figure 1-72, thedebug serial interface display shows that the remote router is not receiving all
of the keepalives the router is sending. When the difference in the values in the myseq and mineseen
fields exceeds three, the line goes down and the interface is reset.

Table 1-51 describes significant fields shown in Figure 1-72.

router# debug serial interface

Serial1: HDLC myseq 636119, mineseen 636119, yourseen 515032, line up
Serial1: HDLC myseq 636120, mineseen 636120, yourseen 515033, line up
Serial1: HDLC myseq 636121, mineseen 636121, yourseen 515034, line up
Serial1: HDLC myseq 636122, mineseen 636122, yourseen 515035, line up
Serial1: HDLC myseq 636123, mineseen 636123, yourseen 515036, line up
Serial1: HDLC myseq 636124, mineseen 636124, yourseen 515037, line up
Serial1: HDLC myseq 636125, mineseen 636125, yourseen 515038, line up
Serial1: HDLC myseq 636126, mineseen 636126, yourseen 515039, line up

Serial1: HDLC myseq 636127, mineseen 636127, yourseen 515040, line up
Serial1: HDLC myseq 636128, mineseen 636127, yourseen 515041, line up
Serial1: HDLC myseq 636129, mineseen 636129, yourseen 515042, line up

Serial1: HDLC myseq 636130, mineseen 636130, yourseen 515043, line up
Serial1: HDLC myseq 636131, mineseen 636130, yourseen 515044, line up
Serial1: HDLC myseq 636132, mineseen 636130, yourseen 515045, line up
Serial1: HDLC myseq 636133, mineseen 636130, yourseen 515046, line down
Serial1: HDLC myseq 636127, mineseen 636127, yourseen 515040, line up
Serial1: HDLC myseq 636128, mineseen 636127, yourseen 515041, line up
Serial1: HDLC myseq 636129, mineseen 636129, yourseen 515042, line up S

25
61

1 missed 
keepalive

3 missed 
keepalives; 
line goes 
down and 
interface is 
reset



Debug Command Listing 2-137

debug serial interface

Table 1-51 Debug Serial Interface Field Descriptions for HDLC

Table 1-52 describes additional error messages that thedebug serial interface command can
generate for HDLC.

Table 1-52 Debug Serial Interface Error Messages for HDLC

Debug Serial Interface for HSSI
On an HSSI interface, thedebug serial interface command can generate the following additional
error message:

HSSI0: Reset from 0x nnnnnnn

This message indicates that the HSSI hardware has been reset. The 0xnnnnnnn variable is the
address of the routine requesting that the hardware be reset; this value is useful only to development
engineers.

Field Description

Serial1 Interface through which the serial connection is taking place.

HDLC Indicates that the serial connection is an HDLC connection.

myseq 636119 The myseq counter increases by one each time the router sends a
keepalive packet to the remote router.

mineseen 636119 The value of the mineseen counter reflects the last myseq sequence
number the remote router has acknowledged receiving from the router.
The remote router stores this value in its yourseen counter and sends that
value in a keepalive packet to the router.

yourseen 515032 The yourseen counter reflects the value of the myseq sequence number
the router has received in a keepalive packet from the remote router.

line up Indicates that the connection between the routers is maintained. Value
changes to line down if the values of the myseq and myseen fields in a
keepalive packet differ by more than three. Value returns to line up when
the interface is reset. If the line is in loopback mode, (looped) appears
after this field.

Field Description

Illegal serial link type codexxx, PC
= 0xnnnnnn

This message is displayed if the router attempts to send a packet
containing an unknown packet type.

Illegal HDLC serial type codexxx,
PC = 0xnnnnn

This message is displayed if an unknown packet type is received.

Serial 0: attempting to restart This message is displayed periodically if the interface is down. The
hardware is then reset to hopefully correct the problem.

Serial 0: Received bridge packet
sent tonnnnnnnnn

This message is displayed if a bridge packet is received over a serial
interface configured for HDLC, and bridging is not configured on
that interface.



2-138 Debug Command Reference

debug serial interface

Debug Serial Interface for ISDN Basic Rate
Table 1-53 describes error messages that thedebug serial interface command can generate for
ISDN Basic Rate.

Table 1-53 Debug Serial Interface Message Descriptions for ISDN Basic Rate

Message Description

BRI: D-chan collision Indicates that a collision on the ISDN D channel has
occurred; the software will reattempt transmission.

Received SID Loss of Frame Alignment int. Indicates that the ISDN hardware has lost frame
alignment. This usually indicates a problem with the
ISDN network.

Unexpected IMP int: ipr = 0xnn Indicates that the ISDN hardware received an
unexpected interrupt. The 0xnnvariable indicates the
value returned by the interrupt register.

BRI(d): RX Frame Length Violation. Length =n

BRI(d): RX Nonoctet Aligned Frame

BRI(d): RX Abort Sequence

BRI(d): RX CRC Error

BRI(d): RX Overrun Error

BRI(d): RX Carrier Detect Lost

Any of these messages may be displayed when a
receive error occurs on one of the ISDN channels. The
(d) indicates which channel it is on. These messages
may indicate a problem with the ISDN network
connection.

BRI0: Reset from 0xnnnnnnn Indicates that the BRI hardware has been reset. The
0xnnnnnnn variable is the address of the routine that
requested that the hardware be reset; it is useful only to
development engineers.

BRI(d): Bad state in SCMs scm1 = x scm2 = x
scm3 = x

BRI(d): Bad state in SCONs scon1 =x scon2 =x
scon3 =x

BRI(d): Bad state ub SCR; SCR = x

Any of these messages may be displayed if the ISDN
hardware is not in the proper state. The hardware is
then reset. If the message is displayed constantly, it
usually indicates a hardware problem.

BRI(d): Illegal packet encapsulation = n This message is displayed if a packet is received, but
the encapsulation used for the packet is not recognized.
It can indicate that the interface is misconfigured.



Debug Command Listing 2-139

debug serial interface

Debug Serial Interface for an MK5025 Device
Table 1-54 describes the additional error messages that thedebug serial interface command can
generate for an MK5025 device.

Table 1-54 Debug Serial Interface Message Descriptions for an MK5025 Device

Debug Serial Interface for PPP Encapsulation
Figure 1-73 lists all of the messages that thedebug serial interface command can generate when
the encapsulation is set to PPP and PPP is negotiating configuration options.

Message Description

MK5(d): Reset from 0xnnnnnnnn This message indicates that the hardware has been reset. The
0xnnnnnnn variable is the address of the routine that requested
that the hardware be reset; it is useful only to development
engineers.

MK5(d): Illegal packet encapsulation =n This message is displayed if a packet is received, but the
encapsulation used for the packet is not recognized. Possibly
an indication that the interface is misconfigured.

MK5(d): No packet available for packet
realignment

This message is displayed in cases where the serial driver
attempted to get a buffer (memory) and was unable to do so.

MK5(d): Bad state in CSR0 = (x) This message is displayed if the hardware is not in the proper
state. The hardware is then reset. If this message is displayed
constantly, it usually indicates a hardware problem.

MK5(d): New serial state =n This message is displayed to indicate that the hardware has
interrupted the software. It displays the state that the hardware
is reporting.

MK5(d): DCD is down.

MK5(d): DCD is up.

If the interrupt indicates that the state of carrier has changed,
one of these messages is displayed to indicate the current state
of DCD.

router# debug serial interface

ppp: deccp_ackci: received bad Ack
ppp: deccp_nakci: received bad Nak
ppp: deccp_rejci: received bad Reject
ppp: ipcp_reqci: bad CI length
ppp: ipcp_ackci: received bad Ack
ppp: ipcp_nakci: received bad Nak
ppp: ipcp_rejci: received bad Reject
ppp: ipcp_reqci: bad CI length
ppp: ipcp_reqci: returning CONFACK
ppp: ipcp_reqci: returning CONFNAK
ppp: ipcp_reqci: returning CONFREJ
ppp: rcvd short code-reject packet
ppp: rcvd code-reject for code n
ppp: received bad configuration ACK
ppp: received bad configuration NAK
ppp: received bad configuration reject
ppp: bad CI length = n
ppp: rcvd unknown option n S

27
02



2-140 Debug Command Reference

debug serial interface

Figure 1-73 Sample Debug Serial Interface Output for PPP

A knowledge of the PPP protocol is necessary to understand the significance of the messages listed
in Figure 1-73.

Figure 1-74 lists thedebug serial interface messages that can be displayed when CHAP is enabled
on a PPP interface.

Figure 1-74 Sample Debug Serial Interface Output When CHAP Is Enabled on a PPP Interface

The messages listed in Figure 1-74 indicate the current state of CHAP negotiation.

Debug Serial Interface for SMDS Encapsulation
When encapsulation is set to SMDS,debug serial interface displays SMDS packets that have been
sent and received, as well as any error messages resulting from SMDS packet transmission.

The error messages that thedebug serial interface command can generate for SMDS follow.

The following message indicates that a new protocol requested SMDS to encapsulate the data for
transmission. SMDS does not know yet how to encapsulate the protocol.

SMDS: Error on Serial 0, encapsulation bad protocol = x

The following message indicates that SMDS was asked to encapsulate a packet, but no
corresponding destination E.164 SMDS address was found in any of the static SMDS tables or in
the ARP tables:

SMDS send: Error in encapsulation, no hardware address, type = x

The following message indicates that a protocol such as CLNS or IP has been enabled on an SMDS
interface, but the corresponding multicast addresses have not been configured. Then variable
displays the link type for which encapsulation was requested. This value is only significant to Cisco
as an internal protocol type value.

SMDS: Send, Error in encapsulation, type= n

The following messages can occur when a packet that was somehow corrupted is received on an
SMDS interface. The router expected x, but received y.

SMDS: Invalid packet, Reserved NOT ZERO, x y
SMDS: Invalid packet, TAG mismatch x y
SMDS: Invalid packet, Bad TRAILER length x y

router# debug serial interface

Attempt to reject authentication ignored.
Serial 0: Unable to respond to CHAP challenge. No USERNAME entry for xxxx
Serial 0: Unable to respond to CHAP challenge. No password defined for \
USERNAME xxx
Serial 0: Failed CHAP authentication with remote.
Serial 0: remote passed CHAP authentication.
Serial 0: Passed CHAP authentication with remote. S

27
03



Debug Command Listing 2-141

debug serial interface

The following messages can indicate an invalid length for an SMDS packet:

SMDS: Invalid packet, Bad BA length x
SMDS: Invalid packet, Bad header extension length x
SMDS: Invalid packet, Bad header extension type x
SMDS: Invalid packet, Bad header extension value x

The following messages are displayed when thedebug serial interface command is enabled:

Interface Serial 0 Sending SMDS L3 packet:
SMDS: dgsize: x type:0 xn  src: y dst: z

If the debug serial interface command is enabled, the following message can be displayed when a
packet is received on an SMDS interface, but the destination SMDS address does not match any on
that interface:

SMDS: Packet n, not addressed to us



2-142 Debug Command Reference

debug serial packet

debug serial packet
Use the debug serial packetEXEC command to display more detailed serial interface debugging
information than you can obtain usingdebug serial interface command. Theno form of this
command disables debugging output.

debug serial packet
no debug serial packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Thedebug serial packet command generates output that is dependent on the type of serial interface
and the encapsulation that is running on that interface. The hardware platform also can impactdebug
serial packet output.

Sample Displays
Currently, thedebug serial packet command displays output for only DDR, PPP, and SMDS
encapsulations.

Debug Serial Packet for DDR
When you enable thedebug serial packet command and DDR is enabled on the interface,
information concerning the cause of any calls (called Dialing cause) may be displayed.

The following line of output for an IP packet lists the name of the DDR interface and the source and
destination addresses of the packet.

Dialing cause: Serial0: ip (s=131.108.1.111 d=131.108.2.22)

The following line of output for a bridged packet lists the DDR interface and the type of packet (in
hexadecimal). For information on these packet types, see Appendix B, “Ethernet Type Codes,” of
theRouter Products Command Reference publication.

Dialing cause: Serial1: Bridge (0x6005)

Debug Serial Packet for PPP
Figure 1-75 shows sampledebug serial packet output when PPP is enabled on the interface.

ppp: config ACK received, type = nnn
ppp: config ACK received, type = nnn, value = yyy
ppp: config ACK received, type = nnn, value = yyy
ppp: config ACK received, type = nnn
ppp: config ACK received, type = nnn S

27
04



Debug Command Listing 2-143

debug serial packet

Figure 1-75 Sample Debug Serial Packet Output for PPP

The preceding five messages may appear when PPP is attempting to negotiate a link. They indicate
that PPP received an ACK for option type, and if the option has a value, the value that was acked
also is displayed. This is possibly useful in debugging PPP link establishment, but is mostly useful
with some knowledge of the PPP protocol.

Table 1-55 describes significant fields shown in Figure 1-75.

Table 1-55 Debug Serial Packet Field Descriptions for PPP

Additional messages that thedebug serial packet command can generate when PPP is enabled
follow.

The following message is displayed when PPP sends a packet onto the line. The “Serial0” shows the
interface the packet is sent on. The state corresponds to a PPP state machine state, and is only useful
to technical support staff. The link can be either ppp-lcp or ppp-ipcp, indicating that it is either a PPP
LCP packet or a PPP IPCP packet. The code is the PPP packet type being transmitted, the ID is a
sequence number for this packet, and LEN is the length of packet. This message is only displayed
for PPP-generated packets, not for all packets using PPP encapsulation.

PPP send: on Serial0 STATE= 4 LINK= ppp-lcp, CODE= 5, ID= 345, LEN = 9

The following message is displayed if the PPP timer expires. It indicates that the remote side did not
respond to the packet in the time allowed.

ppp: TIMEout: Time= 3245532 State= 4

The following three messages may be displayed if PPP receives a packet that is incorrectly
formatted:

ppp: rcvd short header for ppp-lcp
ppp: rcvd illegal length for ppp-lcp
ppp: rcvd short packet. len x > y for ppp-lcp

Field Description

ppp: config ACK received The router has received an acknowledgment packet in response to the
configuration negotiation request packet it sent.

type =nnn Number indicating the LCP configuration option to be negotiated.
Possible values include:

1—Maximum Received Unit (MRU)

2—Async Control Character Map

3—Authentication Protocol

4—Quality Protocol

5—Magic Number

6—Undefined

7—Protocol Field Compression

8—Address and Control Field Compression

9—32 Bit FCS

value =yyy Value of the LCP configuration option that has been negotiated.



2-144 Debug Command Reference

debug serial packet

The following message is displayed when a PPP-specific packet is received. It either will be for ppp-
lcp or ppp-ipcp, depending on which PPP layer the packet is for. It will give a state, which is a state
in the PPP state machine; a code, which is the type of PPP packet received; the ID, which is a
sequence number; and the length of the packet.

PPP input(ppp-lcp): state = 4 code = 5 id = 345 len = 9

The following message is displayed if PPP has received an ACK for a configuration request it
transmitted. The ID can be matched with an ID displayed in the PPP send debug message to verify
which packet was acked.

ppp: state = 4 fsm_rconfack(ppp-lcp): rcvd id 345

One of the following messages is displayed when PPP receives a configuration packet from the other
side. It displays the configuration type and whether there is a value for that type, the value, and
whether it is going to ack, nack, or reject this configuration option.

ppp: received config for type = x  value = y acked
ppp: received config for type = x  value = y rejected
ppp: received config for type = x  value = y nacked

Debug Serial Packet for SMDS Encapsulation
Figure 1-76 shows sample output when SMDS is enabled on the interface.

Figure 1-76 Sample Debug Serial Packet Output for SMDS

As Figure 1-76 shows, when encapsulation is set to SMDS,debug serial packet displays the entire
SMDS header (in hex), as well as some payload data on transmit or receive. This information is
useful only when you have an understanding of the SMDS protocol. The first line of the output
indicates either Sending or Receiving.

router# debug serial packet

Interface Serial2 Sending SMDS L3 packet:
SMDS Header  : Id: 00 RSVD: 00 BEtag: EC Basize: 0044
Dest:E18009999999FFFF Src:C12015804721FFFF Xh:04030000030001000000000000000000
SMDS LLC   : AA AA 03 00 00 00 80 38
SMDS Data  : E1 19 01 00 00 80 00 00 0C 00 38 1F 00 0A 00 80 00 00 0C 01 2B 71
SMDS Data  : 06 01 01 0F 1E 24 00 EC 00 44 00 02 00 00 83 6C 7D 00 00 00 00 00
SMDS Trailer  : RSVD: 00 BEtag: EC Length: 0044 S

27
05



Debug Command Listing 2-145

debug source-bridge

debug source-bridge
Use thedebug source-bridge EXEC command to display information about packets and frames
transferred across a source route bridge. Theno form of this command disables debugging output.

debug source-bridge
no debug source-bridge

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-77 shows sampledebug source-bridgeoutput for peer bridges using TCP as a transport
mechanism. The RSRB network configuration has ring 2 and ring 1 bridged together through remote
peer bridges. The remote peer bridges are connected via a serial line and use TCP as the transport
mechanism.

Figure 1-77 Sample Debug Source Bridge Output in TCP Environment

The following line of output indicates that a remote explorer frame has been sent to IP address
131.108.250.1 and like all RSRB TCP connections, has been assigned port 1996. The bridge belongs
to ring group 5. The explorer frame originated from ring number 2. The routing information field
(RIF) descriptor has been generated by the local station and indicates that the frame was sent out via
bridge 1 onto virtual ring 5.

RSRB: remote explorer to 5/131.108.250.1/1996 srn 2 [C840.0021.0050.0000]

The following line of output indicates that a request for remote peer information has been sent to IP
address 131.108.250.1, TCP port 1996. The bridge belongs to ring group 5.

RSRB: Version/Ring XReq sent to peer 5/131.108.250.1/1996

The following line of output is the response to the version request previously sent. The response is
sent from IP address 131.108.250.1, TCP port 1996. The bridge belongs to ring group 5.

RSRB: Received version reply from 5/131.108.250.1/1996 (version 2)

router# debug source-bridge

RSRB: remote explorer to 5/131.108.250.1/1996 srn 2 [C840.0021.0050.0000]
RSRB: Version/Ring XReq sent to peer 5/131.108.250.1/1996
RSRB: Received version reply from 5/131.108.250.1/1996 (version 2)
RSRB: DATA: 5/131.108.250.1/1996 Ring Xchg Rep, trn 2, vrn 5, off 18, len 10
RSRB: added bridge 1, ring 1 for 5/131.108.240.1/1996
RSRB: DATA: 5/131.108.250.1/1996 Explorer trn 2, vrn 5, off 18, len 69
RSRB: DATA: 5/131.108.250.1/1996 Forward trn 2, vrn 5, off 0, len 92
RSRB: DATA: forward Forward srn 2, br 1, vrn 5 to peer 5/131.108.250.1/1996 S

27
06



2-146 Debug Command Reference

debug source-bridge

The following line of output is the response to the ring request previously sent. The response is sent
from IP address 131.108.250.1, TCP port 1996. The target ring number is 2, virtual ring number is
5, the offset is 18, and the length of the frame is 10 bytes.

RSRB: DATA: 5/131.108.250.1/1996 Ring Xchg Rep, trn 2, vrn 5, off 0, len 10

The following line of output indicates that bridge 1 and ring 1 have been added to the source-bridge
table for IP address 131.108.250.1, TCP port 1996.

RSRB: added bridge 1, ring 1 for 5/131.108.250.1/1996

The following line of output indicates that a packet containing an explorer frame has come across
virtual ring 5 from IP address 131.108.250.1, TCP port 1996. The packet is 69 bytes in length. This
packet is received after the Ring Exchange information was received and updated on both sides.

RSRB: DATA: 5/131.108.250.1/1996 Explorer trn 2, vrn 5, off 18, len 69

The following line of output indicates that a packet containing data has come across virtual ring 5
from IP address 131.108.250.1 over TCP port 1996. The packet is being placed on the local target
ring 2.The packet is 92 bytes in length.

RSRB: DATA: 5/131.108.250.1/1996 Forward trn 2, vrn 5, off 0, len 92

The following line of output indicates that a packet containing data is being forwarded to the peer
that has IP 131.108.250.1 address belonging to local ring 2 and bridge 1. The packet is forwarded
via virtual ring 5. This packet is sent after the Ring Exchange information was received and updated
on both sides.

RSRB: DATA: forward Forward srn 2, br 1, vrn 5 to peer 5/131.108.250.1/1996

Figure 1-78 shows sampledebug source-bridgeoutput for peer bridges using direct encapsulation
as a transport mechanism. The RSRB network configuration has ring 1 and ring 2 bridged together
through peer bridges. The peer bridges are connected via a serial line and use TCP as the transport
mechanism.

Figure 1-78 Sample Debug Source Bridge Output in Direct Encapsulation Environment

The following line of output indicates that a remote explorer frame has been sent to remote peer
Serial1, which belongs to ring group 5. The explorer frame originated from ring number 1. The
routing information field (RIF) descriptor 0011.0050 has been generated by the local station and
indicates that the frame was sent out via bridge 1 onto virtual ring 5.

RSRB: remote explorer to 5/Serial1 srn 1 [C840.0011.0050.0000]

The following line of output indicates that a request for remote peer information has been sent to
Serial1. The bridge belongs to ring group 5.

RSRB: Version/Ring XReq sent to peer 5/Serial1

router# debug source-bridge

RSRB: remote explorer to 5/Serial1 srn 1 [C840.0011.0050.0000]
RSRB: Version/Ring XReq sent to peer 5/Serial1
RSRB: Received version reply from 5/Serial1 (version 2)
RSRB: IFin: 5/Serial1 Ring Xchg, Rep trn 0, vrn 5, off 0, len 10
RSRB: added bridge 1, ring 1 for 5/Serial1 S

27
07



Debug Command Listing 2-147

debug source-bridge

The following line of output is the response to the version request previously sent. The response is
sent from Serial 1. The bridge belongs to ring group 5 and the version is 2.

RSRB: Received version reply from 5/Serial1 (version 2)

The following line of output is the response to the ring request previously sent. The response is sent
from Serial1. The target ring number is 2, virtual ring number is 5, the offset is 0, and the length of
the frame is 39 bytes.

RSRB: IFin: 5/Serial1 Ring Xchg Rep, trn 2, vrn 5, off 0, len 39

The following line of output indicates that bridge 1 and ring 1 have been added to the source-bridge
table for Serial1.

RSRB: added bridge 1, ring 1 for 5/Serial1



2-148 Debug Command Reference

debug source event

debug source event
Use thedebug source event EXEC command to display information on source-route bridging
activity. Theno form of this command disables debugging output.

debug source event
no debug source event

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Output of thedebug source bridge command is identical to the output of this command.

Note In order to use thedebug source event command to display traffic source-routed through an
interface, you first must disable fast switching of SRB frames with theno source-bridge route-
cache interface subcommand.

Sample Display
Figure 1-79 shows sampledebug source event output.

Figure 1-79 Sample Debug Source Event Output

Table 1-56 describes significant fields shown in Figure 1-79.

router# debug source event

RSRB0: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9 
[0800.3201.00A1.0050]
RSRB0: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9 
[0800.3201.00A1.0050]
RSRB0: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9 
[0800.3201.00A1.0050]
RSRB0: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9 
[0800.3201.00A1.0050]
RSRB0: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9 
[0800.3201.00A1.0050]

S
27

08



Debug Command Listing 2-149

debug source event

Table 1-56 Debug Source Event Field Descriptions

Examples of otherdebug source event messages that can be displayed follow.

In the following example messages, SRBn or RSRBn denotes a message associated with interface
Token Ringn. An n of 99 denotes the remote side of the network.

SRBn: no path, s: <src MAC addr>d: <dst MAC addr>rif: <rif>

In the preceding example, a bridgeable packet came in on interface Token Ringn but there was
nowhere to send it. This is most likely a configuration error. For example, an interface has source
bridging turned on, but it is not connected to another source bridging interface or a ring group.

In the following example, a bridgeable packet has been forwarded from Token Ringn to the target
ring. The two interfaces are directly linked.

SRBn: direct forward (srn <ring>bn <bridge>trn <ring>)

In the following examples, a proxy explorer reply was not generated because there was no way to
get to the address from this interface. The packet came from the node with the first <address>.

SRBn: br dropped proxy XID,  <address> for <address>, wrong vring (rem)
SRBn: br dropped proxy TEST, <address> for <address>, wrong vring (rem)
SRBn: br dropped proxy XID,  <address> for <address>, wrong vring (local)
SRBn: br dropped proxy TEST, <address> for <address>, wrong vring (local)
SRBn: br dropped proxy XID,  <address> for <address>, no path
SRBn: br dropped proxy TEST, <address> for <address>, no path

In the following example, an appropriate proxy explorer reply was generated on behalf of the second
<address>. It is sent to the first <address>.

SRBn: br sent proxy XID,  <address> for <address>[<rif>]
SRBn: br sent proxy TEST, <address> for <address>[<rif>]

The following example indicates that the broadcast bits were not set, or that the routing information
indicator on the packet was not set:

SRB<unit#>: illegal explorer, s: <srcMACaddr> d: <destMACaddr> rif:
<RIFstring>

Field Description

RSRB0: Indicates that this RIF cache entry is for the Token Ring 0 interface, which
has been configured for remote source-route bridging. (SRB1, in contrast,
would indicate that this RIF cache entry is for Token Ring 1, configured for
source-route bridging.)

forward Indicates that this is a forward (normal data) packet, in contrast to a control
packet containing proprietary Cisco bridging information.

srn 5 Indicates the ring number of the packet’s source ring.

bn 1 Indicates the bridge number of the bridge this packet traverses.

trn 10 Indicates the ring number of the packet’s target ring.

src: 8110.2222.33c1 Source address of the route in this RIF cache entry.

dst: 1000.5a59.04f9 Destination address of the route in this RIF cache entry.

[0800.3201.00A1.0050] RIF string in this RIF cache entry.



2-150 Debug Command Reference

debug source event

The following example indicates that the direction bit in the RIF field was set, or that an odd packet
length was encountered. Such packets are dropped.

SRB<unit #>: bad explorer control, D set or odd

The following example indicates that a spanning explorer was dropped because the spanning option
was not configured on the interface:

SRB<unit #>: span dropped, input off, s: <src mac addr> d: <dest mac addr>
rif: <rif string>

The following example indicates that a spanning explorer was dropped because it had traversed the
ring previously:

SRB<unit #>: span violation, s: <src mac addr> d: <dest mac addr> rif:
<rif string>

The following example indicates that an explorer was dropped because the maximum hop count
limit was reached on that interface:

SRB<unit #>: max hops reached - <hop cnt>, s: <src mac addr> d: <dest mac addr>
rif: <rif string>

The following example indicates that the ring exchange request was sent to the indicated peer. This
request tells the remote side which rings this node has and asks for a reply indicating which rings
that side has.

RSRB: sent RingXreq to <ring group>/<ip addr>

The following example indicates that a message has been sent to the remote peer. The <label>
variable can be AHDR (active header), PHDR (passive header), HDR (normal header), or DATA
(data exchange), and <op> can be Forward, Explorer, Ring Xchg, Req, Ring Xchg, Rep, Unknown
Ring Group, Unknown Peer, or Unknown Target Ring.

RSRB: <label>: sent <op> to <ring group>/<ip addr>

The following example indicates that the remote bridge and ring pair have been removed from or
added to the local ring group table because the remote peer has changed:

RSRB: removing bn <bridge> rn <ring> from <ring group>/<ip addr>
RSRB: added bridge <bridge>, ring <ring> for <ring group>/<ip addr>

The following example shows miscellaneous remote peer connection establishment messages:

RSRB: peer <ring group>/<ip addr> closed [last state n]
RSRB: passive open <ip addr>(remote port) -> <local port>
RSRB: CONN: opening peer <ring group>/<ip addr>, attempt n
RSRB: CONN: Remote closed <ring group>/<ip addr> on open
RSRB: CONN: peer <ring group>/<ip addr> open failed, <reason>[code]

The following example shows that an explorer packet was propagated onto the local ring from the
remote ring group:

RSRBn: sent local explorer, bridge <bridge> trn <ring>, [rif]

The following messages indicate that the remote source-route bridging code found the packet to be
in error:

RSRBn: ring group <ring group> not found
RSRBn: explorer rif [rif] not long enough



Debug Command Listing 2-151

debug source event

The following example indicates that a buffer could not be obtained for a ring exchange packet; this
is an internal error.

RSRB: couldn’t get pak for ringXchg

The following example indicates that a ring exchange packet was received that had an incorrect
length; this is an internal error.

RSRB: XCHG: req/reply badly formed, length <pak length>, peer <peer id>

The following example indicates that a ring entry was removed for the peer; the ring was possibly
disconnected from the network, causing the remote router to send an update to all its peers.

RSRB: removing bridge <br #> ring <ring #> from <peer name> <ring type>

The following example indicates that a ring entry was added for the specified peer; the ring was
possibly added to the network, causing the other router to send an update to all its peers.

RSRB: added bridge <br #>, ring <ring #> for <peer id>

The following example indicates that no memory was available to add a ring number to the ring
group specified; this is an internal error.

RSRB: no memory for ring element <ring group #>

The following example indicates that memory was corrupted for a connection block; this is an
internal error.

RSRB: CONN: corrupt connection block

The following example indicates that a connector process started, but that there was no packet to
process; this is an internal error.

RSRB: CONN: warning, no initial packet, peer: <ip addr> <peer pointer>

The following example indicates that a packet was received with a version number different from
the one present on the router:

RSRB: IF New version. local=<local version #>, remote=<remote version>,
<pak op code> <peer id>

The following example indicates that a packet with a bad op code was received for a direct
encapsulation peer; this is an internal error.

RSRB: IFin: bad op <op code> (op code string) from <peer id>

The following example indicates that the virtual ring header will not fit on the packet to be sent to
the peer; this is an internal error:

RSRB: vrif_sender, hdr won't fit

The following example indicates that the specified peer is being opened. The retry count specifies
the number of times the opening operation is attempted.

RSRB: CONN: opening peer <peer id> <retry count>

The following example indicates that the router, configured for FST encapsulation, received a
version reply to the version request packet it had sent previously:

RSRB: FST Rcvd version reply from <peer id> (version #)



2-152 Debug Command Reference

debug source event

The following example indicates that the router, configured for FST encapsulation, sent a version
request packet to the specified peer:

RSRB: FST Version Request. op = <opcode>, <peer id>

The following example indicates that the router received a packet with a bad op code from the
specified peer; this is an internal error.

RSRB: FSTin: bad op <opcode> (op code string) from <peer id>

The following example indicates that the TCP connection between the router and the specified peer
is being aborted:

RSRB: aborting <ring group #>/<peer id> (vrtcpd_abort called)

The following example indicates that an attempt to establish a TCP connection to a remote peer
timed out:

RSRB: CONN: attempt timed out

The following example indicates that a packet was dropped because the ring group number in the
packet did not correlate with the ring groups configured on the router:

RSRB<unit #>: ring group <ring group #> not found



Debug Command Listing 2-153

debug span

debug span
Use thedebug span EXEC command to display information on changes in the spanning-tree
topology when debugging a transparent bridge. Theno form of this command disables debugging
output.

debug span
no debug span

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is useful for tracking and verifying that the spanning-tree protocol is operating
correctly.

Sample Display—IEEE Spanning Tree
Sampledebug span output for an IEEE BPDU packet follows:

ST: Ether4 0000000000000A080002A02D6700000000000A080002A02D6780010000140002000F00

Figure 1-80 shows the precedingdebug span output broken up by fields and labeled to aid
documentation.

Figure 1-80 Sample Debug Span Output

Table 1-57 describes significant fields shown in thisdebug span output.

ST: Ether4 0000 00 00 00 000A 080002A02D67 00000000 000A 080002A02D67 80 01 0000 1400 0200 0F00
        A B C D E F G H I J K L M N O S

25
75



2-154 Debug Command Reference

debug span

Table 1-57 Debug Span Field Descriptions for an IEEE BPDU Packet

Sample Display—DEC Spanning Tree
Sampledebug span output for a DEC BPDU packet follows:

ST: Ethernet4 E1190100000200000C01A2C90064008000000C0106CE0A01050F1E6A

Figure 1-81 shows the precedingdebug span output broken up by fields and labeled to aid
documentation.

Figure 1-81 Sample Debug Span Output

Table 1-58 describes significant fields shown in thisdebug span output.

Field Description

ST: Indicates that this is a spanning tree packet

Ether4 Interface receiving the packet

(A) 0000 Indicates that this is an IEEE BPDU packet

(B) 00 Version

(C) 00 Command Mode

00 indicates config BPDU

80 indicates the Topology Change Notification (TCN) BPDU

(D) 00 Topology change acknowledgment

00 indicates no change

80 indicates a change notification

(E) 000A Root priority

(F) 080002A02D67 Root ID

(G) 00000000 Root path cost (0 means the sender of this BPDU packet is the root
bridge)

(H) 000A Bridge priority

(I)  080002A02D67 Bridge ID

(J) 80 Port priority

(K)  01 Port No. 1

(L)  0000 Message age in 256ths of a second (0 seconds, in this case)

(M)  1400 Maximum age in 256ths of a second (20 seconds, in this case)

(N) 0200 Hello time in 256ths of a second (2 seconds, in this case)

(O) 0F00 Forward delay in 256ths of a second (15 seconds, in this case)

E1  19  01  00  0002  00000C01A2C9  0064  0080  00000C0106CE  0A  01  05  0F  1E  6A
A B C D E F G H I J K L M N O S

25
76



Debug Command Listing 2-155

debug span

Table 1-58 Debug Span Field Descriptions for a DEC BPDU Packet

Field Description

ST: Indicates that this is a spanning tree packet.

Ethernet4 Interface receiving the packet.

(A) E1 Indicates that this is a DEC BPDU packet.

(B) 19 Indicates that this is a DEC Hello packet. Possible values are as follows:

0x19—DEC Hello

0x02—Topology change notification (TCN)

(C) 01 DEC version.

(D) 00 Flag that is a bit field with the following mapping:

1—TCN

2—TCN acknowledgment

8—Use short timers

(E) 0002 Root priority.

(F) 00000C01A2C9 Root ID (MAC address).

(G) 0064 Root path cost (translated as 100 in decimal notation).

(H) 0080 Bridge priority.

(I)  00000C0106CE Bridge ID.

(J) 0A Port ID (in contrast to interface number).

(K)  01 Message age (in seconds).

(L)  05 Hello time (in seconds).

(M)  0F Maximum age (in seconds).

(N) 1E Forward delay (in seconds).

(O) 6A Not applicable.



2-156 Debug Command Reference

debug stun packet

debug stun packet
Use thedebug stun packet EXEC command to display information on packets traveling through
the STUN links. Use theno form of this command to disable debugging output.

debug stun packet[group] [address]
no debug stun packet[group] [address]

Syntax Description

Command Mode
EXEC

Usage Guidelines
Because using this command is processor intensive, it is best to use it after hours, rather than in a
production environment. It is also best to turn this command on by itself, rather than use it in
conjunction with other debug commands.

Sample Display
Figure 1-82 shows sampledebug stun packet output.

 group (Optional.) Decimal integer assigned to a group. Using this
option limits output to packets associated with the specified
STUN group.

address (Optional.) Output is further limited to only those packets
containing the specified STUN address. Theaddress
argument is in the appropriate format for the STUN
protocol running for the specified group.

router# debug stun packet

STUN sdlc: 0:00:04 Serial3         NDI: (0C2/008) U: SNRM    PF:1
STUN sdlc: 0:00:04 Serial3         NDI: (0C2/008) U: SNRM    PF:1
STUN sdlc: 0:00:01 Serial3         SDI: (0C2/008) U: UA      PF:1
STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S: RR      PF:1  NR:000
STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S: RR      PF:1  NR:000
STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S: RR      PF:1  NR:000
STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S: RR      PF:1  NR:000
STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S: RR      PF:1  NR:000
STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S: RR      PF:1  NR:000
STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S: RR      PF:1  NR:000
STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S: RR      PF:1  NR:000
STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S: RR      PF:1  NR:000
STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S: RR      PF:1  NR:000
STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S: RR      PF:1  NR:000
STUN sdlc: 0:00:00 Serial3         NDI: (0C2/008) I:         PF:1  NR:000  NS:000
STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) I:         PF:1  NR:001  NS:000
STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S: RR      PF:1  NR:001
STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S: RR      PF:1  NR:001
STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S: RR      PF:1  NR:001
STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S: RR      PF:1  NR:001 S

25
63

X3 type 
of packet

X1 type 
of packet

X2 type 
of packet



Debug Command Listing 2-157

debug stun packet

Figure 1-82 Sample Debug STUN Packet Output

Explanations for individual lines of output from Figure 1-82 follow.

The following line of output describes an X1 type of packet.

STUN sdlc: 0:00:04 Serial3         NDI: (0C2/008) U: SNRM    PF:1

Table 1-59 describes significant fields shown in this line ofdebug stun packet output.

Table 1-59 Debug STUN Packet Field Descriptions

The following line of output describes an X2 type of packet:

STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S: RR      PF:1  NR:000

All of the fields in the previous line of output match those for an X1 type of packet, except the last
field, which is additional. NR:000 indicates a receive count of 0; the range for the receive count is 0
to 7.

Field Description

STUN sdlc: Indicates that the STUN feature is providing the
information.

0:00:04 Time elapsed since receipt of previous packet.

Serial3 Interface type and unit number reporting the event.

NDI: Indicates the type of cloud separating the SDLC
end nodes. Possible values follow:

NDI—Network input

SDI—Serial link

0C2 SDLC address of the SDLC connection.

008 Indicates a modulo value of 8.

U:SNRM Indicates the frame type followed by the command
or response type. In this case it is an Unnumbered
frame that contains an SNRM (Set Normal
Response Mode) command. The possible frame
types are as follows:

I—Information frame

S—Supervisory frame. The possible commands
and responses are: RR (Receive Ready), RNR
(Receive Not Ready), and REJ (Reject).

U—Unnumbered frame. The possible commands
are: UI (Unnumbered Information), SNRM,
DISC/RD (Disconnect/Request Disconnect),
SIM/RIM, XID Exchange Identification), TEST.
The possible responses are UA (unnumbered
acknowledgment), DM (Disconnected Mode), and
FRMR (Frame Reject Mode)

PF:1 Poll/Final bit.

0—Off

1—On



2-158 Debug Command Reference

debug stun packet

The following line of output describes an X3 type of packet:

STUN sdlc: 0:00:00 Serial3         SDI: (0C2/008) S:I PF:1  NR:000 NS:000

All of the fields in the previous line of output match those for an X2 type of packet, except the last
field, which is additional. NS:000 indicates a send count of 0; the range for the send count is 0 to 7.



Debug Command Listing 2-159

debug tftp

debug tftp
Use thedebug tftp EXEC command to display TFTP debugging information when encountering
problems netbooting or using theconfigure network orwrite network  commands. Theno form of
this command disables debugging output.

debug tftp
no debug tftp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-83 shows sampledebug tftp output from the EXEC commandwrite network .

Figure 1-83 Sample Debug TFTP Output

Table 1-60 describes significant fields shown in the first line of output from Figure 1-83.

Table 1-60 Debug TFTP Field Descriptions

Message Description

TFTP: Indicates that this entry describes a TFTP packet.

msclock 0x292B4; Internal timekeeping clock (in milliseconds).

Sending write request
(retry 0)

Indicates the TFTP operation.

socket_id 0x301DA8 Unique memory address for the socket for the TFTP connection.

router# debug tftp

TFTP: msclock 0x292B4; Sending  write request (retry 0), socket_id 0x301DA8
TFTP: msclock 0x2A63C; Sending  write request (retry 1), socket_id 0x301DA8
TFTP: msclock 0x2A6DC; Received ACK for block 0,   socket_id 0x301DA8
TFTP: msclock 0x2A6DC; Received ACK for block 0,   socket_id 0x301DA8
TFTP: msclock 0x2A6DC; Sending  block 1 (retry 0), socket_id 0x301DA8
TFTP: msclock 0x2A6E4; Received ACK for block 1,   socket_id 0x301DA8 S

27
09



2-160 Debug Command Reference

debug token ring

debug token ring
Use thedebug token ring EXEC command to display messages about Token Ring interface activity.
Theno form of this command disables debugging output.

debug token ring
no debug token ring

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command reports several lines of information for each packet sent or received and is intended
for low traffic, detailed debugging.

The Token Ring interface records provide information regarding the current state of the ring. These
messages are only displayed when thedebug token events command is enabled.

Thedebug token ring command invokes verbose Token Ring hardware debugging. This includes
detailed displays as traffic arrives and departs the unit.

Note It is best to use this command only on router/bridges with light loads.

Sample Display
Figure 1-84 shows sampledebug token ring output.

Figure 1-84 Sample Debug Token Ring Output

Descriptions of sample lines of output in Figure 1-84 follow.

router# debug token ring

TR0: Interface is alive, phys. addr 5000.1234.5678
TR0:  in: MAC: acfc: 0x1105 Dst: c000.ffff.ffff Src: 5000.1234.5678  bf: 0x45
TR0:  in:      riflen 0, rd_offset 0, llc_offset 40
TR0: out: MAC: acfc: 0x0040 Dst: 5000.1234.5678 Src: 5000.1234.5678  bf: 0x00
TR0: out: LLC: AAAA0300 00009000 00000100 AAC00000 00000802 50001234 ln: 28
TR0:  in: MAC: acfc: 0x1140 Dst: 5000.1234.5678 Src: 5000.1234.5678  bf: 0x09
TR0:  in: LLC: AAAA0300 00009000 00000100 AAC0B24A 4B4A6768 74732072 ln: 28
TR0:  in:      riflen 0, rd_offset 0, llc_offset 14
TR0: out: MAC: acfc: 0x0040 Dst: 5000.1234.5678 Src: 5000.1234.5678  bf: 0x00
TR0: out: LLC: AAAA0300 00009000 00000100 D1D00000 FE11E636 96884006 ln: 28
TR0:  in: MAC: acfc: 0x1140 Dst: 5000.1234.5678 Src: 5000.1234.5678  bf: 0x09
TR0:  in: LLC: AAAA0300 00009000 00000100 D1D0774C 4DC2078B 3D000160 ln: 28
TR0:  in:      riflen 0, rd_offset 0, llc_offset 14
TR0: out: MAC: acfc: 0x0040 Dst: 5000.1234.5678 Src: 5000.1234.5678  bf: 0x00
TR0: out: LLC: AAAA0300 00009000 00000100 F8E00000 FE11E636 96884006 ln: 28 S

27
10



Debug Command Listing 2-161

debug token ring

Table 1-61 describes significant fields shown in the second line of output from Figure 1-84.

TR0:  in: MAC: acfc: 0x1105 Dst: c000.ffff.ffff Src: 5000.1234.5678  bf: 0x45

Table 1-61 Debug Token Ring Field Descriptions—Part 1

Table 1-62 describes significant fields shown in the third line of output from Figure 1-84.

TR0:  in:      riflen 0, rd_offset 0, llc_offset 40

Table 1-62 Debug Token Ring Field Descriptions—Part 2

Table 1-63 describes significant fields shown in the fifth line of output from Figure 1-84.

TR0: out: LLC: AAAA0300 00009000 00000100 AAC00000 00000802 50001234 ln: 28

Table 1-63 Debug Token Ring Field Descriptions—Part 3

Message Description

TR0: Name of the interface associated with the Token Ring event.

in: Indicates whether the packet was input to the interface (in) or output from the
interface (out).

MAC: Indicates the type of packet, as follows:

MAC—Media Access Control

LLC—Link Level Control

acfc: 0x1105 Access Control, Frame Control bytes, as defined by the IEEE 802.5 standard.

Dst: c000.ffff.ffff Destination address of the frame.

Src: 5000.1234.5678 Source address of the frame.

bf: 0x45 Bridge flags for internal use by technical support staff.

Message Description

TR0: Name of the interface associated with the Token Ring event.

in: Indicates whether the packet was input to the interface (in) or output from the
interface (out).

riflen 0 Length of the RIF field (in bytes).

rd_offset 0 Offset (in bytes) of the frame pointing to the start of the RIF field.

llc_offset 40 Offset in the frame pointing to the start of the LLC field.

Message Description

TR0: Name of the interface associated with the Token Ring event.

out: Indicates whether the packet was input to the interface (in) or output from the
interface (out).

LLC: Indicates the type of frame, as follows:

MAC—Media Access Control

LLC—Link Level Control

AAAA0300.... This and the octets that follow it indicate the contents (hex) of the frame.

ln: 28 Indicates the length of the information field (in bytes).



2-162 Debug Command Reference

debug vines arp

debug vines arp
Use thedebug vines arp EXEC command to display debugging information on all ARP packets that
the router sends or receives. Theno form of this command disables debugging output.

debug vines arp
no debug vines arp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-85 shows sampledebug vines arp output.

Figure 1-85 Sample Debug VINES ARP Output

In Figure 1-85, the first line shows that the router received an ARP request (type 0) from station
address 0260.8c43.a7e4. The second line shows that the router is sending back the ARP service
response (type 1) indicating that it is willing to assign VINES Internet addresses. The third line
shows that the router received a VINES Internet address assignment request (type 2) from address
0260.8c43.a7e4. The fourth line shows that the router is responding (type 3) to the address
assignment request from the client and assigning it the address 3001153C:8004.

Table 1-64 describes significant fields shown in Figure 1-85.

router# debug vines arp

VNSARP: received ARP type 0 from 0260.8c43.a7e4
VNSARP: sending ARP type 1 to 0260.8c43.a7e4
VNSARP: received ARP type 2 from 0260.8c43.a7e4
VNSARP: sending ARP type 3 to 0260.8c43.a7e4 assigning address 3001153C:8004
VSARP: received ARP type 0 from 0260.8342.1501
VSARP: sending ARP type 1 to 0260.8342.1501
VSARP: received ARP type 2 from 0260.8342.1501
VSARP: sending ARP type 3 to 0260.8342.1501 assigning address 3001153C:8005, 
       sequence 143C, metric 2 S2

71
1



Debug Command Listing 2-163

debug vines arp

Table 1-64 Debug VINES ARP Field Descriptions

Field Description

VINES: Indicates that this is one of the Banyan VINES debugging messages.

received ARP type 0 Indicates that an ARP request of type 0 was received. Possible type
values follow:

0—Query request. The ARP client broadcasts a type 0 message to
request an ARP service to respond.

1—Service response. The ARP service responds with a type 1 message
to an ARP client’s query request.

2—Assignment request. The ARP client responds to a service response
with a type 2 message to request a Banyan VINES Internet address.

3—Assignment response. The ARP service responds to an assignment
request with a type 3 message that includes the assigned Banyan VINES
Internet address.

from 0260.8c43.a7e4 Indicates the source address of the packet.



2-164 Debug Command Reference

debug vines echo

debug vines echo
Use thedebug vines echo EXEC command to display information on all MAC-level echo packets
that the router sends or receives. Banyan VINES interface testing programs make use of these echo
packets. Theno form of this command disables debugging output.

debug vines echo
no debug vines echo

Syntax Description
This command has no arguments or keywords.

Note These echo packets do not include network layer addresses.

Command Mode
EXEC

Sample Display
Figure 1-86 shows sampledebug vines echo output.

Figure 1-86 Sample Debug VINES Echo Output

Table 1-65 describes the fields shown in Figure 1-86.

Table 1-65 Debug VINES Echo Field Descriptions

Field Description

VINESECHO Indicates that this is adebug vines echo message.

100 byte packet Packet size in bytes.

from 0260.8c43.a7e4 Source address of the echo packet.

router# debug vines echo

VINESECHO: 100 byte packet from 0260.8c43.a7e4 S
27

12



Debug Command Listing 2-165

debug vines ipc

debug vines ipc
Use thedebug vines ipc EXEC command to display information on all transactions that occur at the
VINES IPC layer, which is one of the two VINES transport layers. Theno form of this command
disables debugging output.

debug vines ipc
no debug vines ipc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
You can use thedebug vines ipc command to discover why an IPC layer process on the router is not
communicating with another IPC layer process on another router or Banyan VINES server.

Sample Display
Figure 1-87 shows sampledebug vines ipc output for three pairs of transactions. For more
information about these fields or their values, refer to Banyan VINES documentation.

Figure 1-87 Sample Debug VINES IPC Output

Table 1-66 describes the fields shown in Figure 1-87. For more information about these fields or their
values, refer to Banyan VINES documentation.

router# debug vines ipc

VIPC: sending IPC Data to Townsaver port 7 from port 7
 r_cid 0, l_cid 1, seq 1, ack 0, length 12
VIPC: received IPC Data from Townsaver port 7 to port 7
 r_cid 51, l_cid 1, seq 1, ack 1, length 32
VIPC: sending IPC Ack to Townsaver port 0 from port 0
 r_cid 51, l_cid 1, seq 1, ack 1, length 0 S

27
13



2-166 Debug Command Reference

debug vines ipc

Table 1-66 VINES IPC Field Descriptions

Field Description

VIPC: Indicates that this is output from thedebug vines ipc command.

sending Indicates that the router is either sending an IPC packet to another router
or has received an IPC packet from another router.

IPC Data to Indicates the type of IPC frame:

Acknowledgment

Data

Datagram

Disconnect

Error

Probe

Townsaver port 7 Indicates the machine name as assigned using the VINEShost
command, or IP address of the other router. Also indicates the port on
that machine through which the packet has been transmitted.

from port 7 Indicates the port on the router through which the packet has been
transmitted.

r_cid 0, l_cid 1, seq 1, ack 0,
length 12

Indicates the values for various fields in the IPC layer header of this
packet. Refer to Banyan VINES documentation for more information.



Debug Command Listing 2-167

debug vines netrpc

debug vines netrpc
Use thedebug vines netrpc EXEC command to display information on all transactions that occur
at the VINES NetRPC layer, which is the VINES Session/Presentation layer. Theno form of this
command disables debugging output.

debug vines netrpc
no debug vines netrpc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
You can use thedebug vines netrpc command to discover why a NetRPC layer process on the router
is not communicating with another NetRPC layer process on another router or Banyan server.

Sample Display
Figure 1-88 shows sampledebug vines netrpc output. For more information about these fields or
their values, refer to Banyan VINES documentation.

Figure 1-88 Sample Debug VINES NetRPC Output

Table 1-67 describes the fields shown in the first line of output in Figure 1-88. For more information
about these fields or their values, refer to Banyan VINES documentation.

router# debug vines netrpc

VRPC: sending RPC call to Townsaver
VRPC: received RPC return from Townsaver S

27
14



2-168 Debug Command Reference

debug vines netrpc

Table 1-67 Debug VINES NetRPC Field Descriptions

Field Description

VRPC: Indicates that this is output from thedebug vines netrpc command.

sending RPC Indicates that the router is either sending a NetRPC packet to another
router or has received a NetRPC packet from another router.

call Indicates the transaction type:

abort

call

reject

return

return address

search

search all

Townsaver Indicates the machine name as assigned using the VINEShost command
or IP address of the other router.



Debug Command Listing 2-169

debug vines packet

debug vines packet
Use thedebug vines packet EXEC command to display general VINES debugging information.
This information includes packets received, generated, and forwarded, as well as failed access
checks and other operations. Theno form of this command disables debugging output.

debug vines packet
no debug vines packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-89 shows sampledebug vines packet output.

Figure 1-89 Sample Debug VINES Packet Output

The following information describes selected lines of output from Figure 1-89.

Table 1-68 describes the fields shown in the first line of output.

Table 1-68 Debug VINES Packet Field Descriptions

Field Description

VINES: Indicates that this is a Banyan VINES packet.

s = 30028CF9:1 Source address of the packet.

(Ether2) Indicates the interface through which the packet was received.

d = FFFFFFFF:FFFF Indicates that the destination is a broadcast address.

rcvd w/ hops 0 Indicates that the packet was received because it was a local broadcast packet.
The remaining hop count in the packet was zero (0).

router# debug vines packet

VINES: s=30028CF9:1 (Ether2), d=FFFFFFFF:FFFF, rcvd w/ hops 0
VINES: s=3000CBD4:1 (Ether1), d=3002ABEA:1 (Ether2), g=3002ABEA:1, sent
VINES: s=3000CBD4:1 (Ether1), d=3000B959:1, rcvd by gw
VINES: s=3000B959:1 (local), d=3000CBD4:1 (Ether1), g=3000CBD4:1, sent S

27
15



2-170 Debug Command Reference

debug vines packet

In the second line of output that follows, the destination is the address 3002ABEA:1 associated with
interface Ether2. Source address 3000CBD4:1 sent a packet to this destination through the gateway
at address 3000ABEA:1.

VINES: s=3000CBD4:1 (Ether1), d=3002ABEA:1 (Ethernet2), g=3002ABEA:1, sent

In the third line of output that follows, the router being debugged is the destination address
(3000B959:1).

VINES: s=3000CBD4:1 (Ether1), d=3000B959:1, rcvd by gw

In the following fifth line of output, (local) indicates that the router being debugged generated the
packet.

VINES: s=3000B959:1 (local), d=3000CBD4:1 (Ether1), g=3000CBD4:1, sent



Debug Command Listing 2-171

debug vines routing

debug vines routing
Use thedebug vines routing EXEC command to display information on all RTP update messages
sent or received and all routing table activities that occur in the router. Theno form of this command
disables debugging output.

debug vines routing
no debug vines routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 1-90 shows sampledebug vines routing output.

Figure 1-90 Sample Debug VINES Routing Output

Figure 1-90 describes two VINES routing updates; the first includes two entries and the second
includes three entries. The following describes selected lines of output from Figure 1-90.

The following first line shows that the router sent a periodic routing update to the broadcast address
FFFFFFFF:FFFF through the Ethernet3 interface.

VINESRTP: sending update to FFFFFFFF:FFFF on Ethernet3

The following second line indicates that the router knows how to reach network 3000073B, which
is a metric of 2 away from the router. The value that follows the metric (0.4 seconds) interprets the
metric in seconds.

network 3000073B, metric 2 (0.4 seconds)

The following third line indicates that the router knows how to reach network 27AF9A, which is a
metric of 2 away from the router. The value that follows the metric (0.4 seconds) interprets the metric
in seconds.

network 27AF9A, metric 2 (0.4 seconds)

The following fourth line of output indicates that the router received a routing update from the
VINES server at VINES address 27AF9A:1 through the Ethernet2 interface.

VINESRTP: received update from 27AF9A:1 on Ethernet2

router# debug vines routing

VINESRTP: sending update to FFFFFFFF:FFFF on Ethernet3
 network 3000073B, metric 2 (0.4 seconds)
 network 27AF9A, metric 2 (0.4 seconds)
VINESRTP: received update from 27AF9A:1 on Ethernet2
 network 27AF9A from the server
 network 30019AC7, metric 2 (0.4 seconds)
 network 3002ABEA, metric 2 (0.4 seconds) S

25
64

Update 
sent

Update 
received



2-172 Debug Command Reference

debug vines routing

The following fifth line of output implies that the server sending this update is directly accessible to
the router (even though VINES servers do not explicitly list themselves in routing updates). Because
this is an implicit entry in the table, there is no metric associated with this line of output.

network 27AF9A from the server

As the first actual entry in the routing update from the VINES server at 27AF9A:1, the following
sixth line indicates that network 30019AC7 can be reached by sending to this server. This network
is a metric of 2 away from the sending server. The value that follows the metric (0.4 seconds)
interprets the metric in seconds.

network 30019AC7, metric 2 (0.4 seconds)



Debug Command Listing 2-173

debug vines service

debug vines service
Use thedebug vines service EXEC command to display information on all transactions that occur
at the VINES Service (or applications) layer. Theno form of this command disables debugging
output.

debug vines service
no debug vines service

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
You can use thedebug vines service command to discover why a VINES Service layer process on
the router is not communicating with another Service layer process on another router or Banyan
server.

Note Because thedebug vines service command provides the highest level overview of VINES
traffic through the router, it is best to begin debugging using this command, and then proceed to use
lower-level VINESdebug commands as necessary.

Sample Display
Figure 1-91 shows sampledebug vines service output.

Figure 1-91 Sample Debug VINES Service Output

As Figure 1-91 suggests,debug vines service lines of output appear as activity pairs—either a
sent/response pair as shown, or as a received/sent pair.

Table 1-69 describes the fields shown in the second line of output in Figure 1-91. For more
information about these fields or their values, refer to Banyan VINES documentation.

router# debug vines service

VSRV: Get Time Info sent to Townsaver
VSRV: Get Time Info response from Townsaver, time: 01:47:54 PDT Apr 29 1993
VSRV:     epoch SS@Aloe@Servers-10, age: 0:15:15

S
25

65
Sent/ 
Response 
pair



2-174 Debug Command Reference

debug vines service

Table 1-69 Debug VINES Service Field Descriptions—Part 1

Table 1-70 describes the fields shown in the third line of output in Figure 1-91. This line is an
extension of the first two lines of output. For more information about these fields or their values, refer
to Banyan VINES documentation.

Table 1-70 Debug VINES Service Field Descriptions—Part 2

Field Description

VSRV: Indicates that this is output from thedebug vines service command.

Get Time Info Indicates one of three packet types:

Get Time Info

Time Set

Time Sync

response from Indicates whether the packet was sent to another router, a response from
another router, or received from another router.

Townsaver Indicates the machine name as assigned using the VINEShost
command, or IP address of the other router.

time: 01:47:54 PDT Apr 29 1993 Indicates the current time in hours:minutes:seconds and current date.

Field Description

VSRV: Indicates that this is output from thedebug vines service command.

epoch Indicates that this line of output describes a VINES epoch.

SS@Aloe@Servers-10 Epoch name.

age: 0:15:15 Epoch—elapsed time since the time was last set in the network.



Debug Command Listing 2-175

debug vines table

debug vines table
Use thedebug vines table EXEC command to display information on all modifications to the
VINES routing table. Theno form of this command disables debugging output.

debug vines table
no debug vines table

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command provides a subset of the information provided by thedebug vines routing command,
as well as some more detailed information on table additions and deletions.

Sample Display
Figure 1-92 shows sampledebug vines table output.

Figure 1-92 Sample Debug VINES Table Output

Table 1-71 describes significant fields shown in Figure 1-92.

Table 1-71 Debug VINES Table Field Descriptions

Field Description

VINESRTP: Indicates that this is adebug vines routing or debug vines table
message.

create neighbor 3001153C:8004 Indicates that the client at address 3001153C:8004 has been added to the
Banyan VINES neighbor table.

interface Ethernet 0 Indicates that this neighbor can be reached through the router interface
named Ethernet0.

router# debug vines table

VINESRTP: create neighbor 3001153C:8004, interface Ethernet0 S
27

16



2-176 Debug Command Reference

debug xns packet

debug xns packet
Use thedebug xns packet EXEC command to display information on XNS packet traffic, including
the addresses for source, destination, and next hop router of each packet. Theno form of this
command disables debugging output.

debug xns packet
no debug xns packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
To gain the fullest understanding of XNS routing activity, you should enabledebug xns routing and
debug xns packet together.

Sample Display
Figure 1-93 shows sampledebug xns packet output.

Figure 1-93 Sample Debug XNS Packet Output.

Table 1-72 describes significant fields shown in Figure 1-93.

Table 1-72 Debug XNS Packet Field Descriptions

Field Description

XNS: Indicates that this is an XNS packet.

src = 5.0000.0c02.6d04 Indicates that the source address for this message is 0000.0c02.6d04 on
network 5.

dst = 5.ffff.ffff.ffff Indicates that the destination address for this message is the broadcast
address ffff.ffff.ffff on network 5.

packet sent Indicates that the packet to destination address 5.ffff.ffff.ffff in Figure 1-
93, as displayed using thedebug xns packet command, was queued on
the output interface.

rcvd. on Ethernet0 Indicates that the router just received this packet through the Ethernet0
interface.

local processing Indicates that the router has examined the packet and determined that it
must process it, rather than forwarding it.

router# debug xns packet

XNS: src=5.0000.0c02.6d04, dst=5.ffff.ffff.ffff, packet sent
XNS: src=1.0000.0c00.440f, dst=1.ffff.ffff.ffff, rcvd. on Ethernet0
XNS: src=1.0000.0c00.440f, dst=1.ffff.ffff.ffff, local processing S

27
17



Debug Command Listing 2-177

debug xns routing

debug xns routing
Use thedebug xns routing EXEC command to display information on XNS routing transactions.
Theno form of this command disables debugging output.

debug xns routing
no debug xns routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
To gain the fullest understanding of XNS routing activity, enabledebug xns routing anddebug xns
packet together.

Sample Display
Figure 1-94 shows sampledebug xns routing output.

Figure 1-94 Sample Debug XNS Routing Output

Table 1-73 describes significant fields shown in Figure 1-94.

router# debug xns routing

XNSRIP: sending standard periodic update to 5.ffff.ffff.ffff via Ethernet2
  network 1, hop count 1
  network 2, hop count 2

XNSRIP: got standard update from 1.0000.0c00.440f socket 1 via Ethernet0
  net 2: 1 hops

S
27

18



2-178 Debug Command Reference

debug xns routing

Table 1-73 Debug XNS Routing Field Descriptions

Field Description

XNSRIP: Indicates that this is an XNS routing packet.

sending standard periodic update The router indicates that this is a periodic XNS routing information
update.

to 5.ffff.ffff.ffff Indicates that the destination address is ffff.ffff.ffff on network 5.

via Ethernet2 Name of the output interface.

network 1, hop count 1 Indicates that network 1 is one hop away from this router.

got standard update from
1.0000.0c00.440f

The router indicates that it has received an XNS routing information
update from address 0000.0c00.440f on network 1.

socket 1 The socket number is a well-known port for XNS. Possible values
include:

1—routing information

2—echo

3—router error



Debug Command Listing 2-179

debug x25 all

debug x25 all
Use thedebug x25 all EXEC command to display information on all X.25 traffic, this includes data,
control messages, and flow control (RR and RNR) packets. Theno form of this command disables
debugging output.

debug x25 all
no debug x25 all

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is particularly useful for diagnosing problems encountered when placing CALLs.

Thedebug x25 all output includes data, control messages and flow control packets for all of the
router’s virtual circuits. Thedebug x25 events and debug x25 vc commands provide a subset of this
output.

Caution Becausedebug x25 all displays all X.25 traffic, it is processor intensive and can render the
router useless. Only usedebug x25 all when the aggregate of all X.25 traffic is fewer than five
packets per second.

Sample Display
Figure 1-95 shows sampledebug x25 all output.

router# debug x25 all

Serial2 (236414440): X25 O R3 RESTART (5) 8 lci 0 cause 7 diag 0
Serial2 (236414444): X25 I R3 RESTART (5) 8 lci 0 cause 0 diag 0
Serial2 (236424436): X25 I P1 CALL REQUEST (11) 8 lci 1024
 From(2): 49 To(2): 46
 Facilities: (0)
 First byte of call user data (4): 0xCC
Serial2 (236424440): X25 O P4 CALL CONNECTED (3) 8 lci 1024
Serial2 (236426444): X25 I P4 DATA (103) 8 lci 1024 PS 0 PR 0
Serial2 (236426448): X25 O D1 DATA (103) 8 lci 1024 PS 0 PR 1
Serial2 (236426460): X25 I D1 DATA (103) 8 lci 1024 PS 1 PR 0
Serial2 (236426464): X25 O D1 DATA (103) 8 lci 1024 PS 1 PR 2
Serial2 (236426484): X25 I D1 RR (3) 8 lci 1024 PR 2
Serial2 (236426500): X25 I D1 DATA (103) 8 lci 1024 PS 2 PR 2
Serial2 (236426500): X25 O D1 DATA (103) 8 lci 1024 PS 2 PR 3
Serial2 (236453060): X25 I D1 CLEAR REQUEST (5) 8 lci 1024 cause 0 diag 122
Serial2 (236453060): X25 O D1 CLEAR CONFIRMATION (3) 8 lci 1024
X25-Switch (274428): X25 O D1 PVC-SETUP, wait to connect (29) <Serial2 pvc 3><Serial2 pvc 1> 2/1 128/64
X25-Switch (274432): X25 I D1 PVC-SETUP, connected (29) <Serial2 pvc 3><Serial2 pvc 1> 2/1 128/64
Serial2 (236453064): X25 O D1 RESET REQUEST (5) 8 lci 3 cause 15 diag 0
Serial2 (236453064): X25 1 D1 RESET CONFIRMATION (3) 8 lci 3 S

27
19



2-180 Debug Command Reference

debug x25 all

Figure 1-95 Sample Debug X25 All Output

Figure 1-95 shows a typical exchange of packets between two X.25 devices on a network. The first
line of output in Figure 1-95, shown below, describes a RESTART packet.

Serial2 (236414440): X25 O R3 RESTART (5) 8 lci 0 cause 7 diag 0

Table 1-74 describes the fields in this line of output.

Table 1-74 Debug X25 All Field Descriptions

Field Description

Serial2 Indicates the interface associated with this X.25 event.

(236414440) System clock (in milliseconds). Useful for determining the amount of
time between events.

X25 Indicates that this message describes an X.25 event.

O Indicates whether the X.25 message was input (I) or output (O) through
the interface.

R3 State of the virtual circuit. Possible values follow.

D1—Flow control ready

D2—DTE reset request

D3—DCE reset indication

P1—Idle

P2—DTE waiting for DCE to connect CALL

P3—DCE waiting for DTE to accept CALL

P4—Data transfer

P5—CALL collision

P6—DTE clear request

P7—DCE clear indication

R1—Packet level ready

R2—DTE restart request

R3—DCE restart indication

X1—Nonstandard state for a virtual circuit in hold-down

See Annex B of the 1984 CCITT X.25 Recommendation for more
information on these states.



Debug Command Listing 2-181

debug x25 all

Notice that the first DATA packet in Figure 1-95 contains two fields not yet documented.

Serial2 (236426444): X25 I P4 DATA (103) 8 lci 1024 PS 0 PR 0

RESTART Describes the type of X.25 packet. Possible values follow.

CALL CONNECTED

CALL REQUEST

CLEAR CONFIRMATION

CLEAR REQUEST

DATA

DIAGNOSTIC

ILLEGAL

INTR CONFIRMATION

INTR (interrupt)

PVC-SETUP

REGISTRATION

REGISTRATION CONFIRMATION

RESET CONFIRMATION

RESET REQUEST

RESTART

RESTART CONFIRMATION

RNR (Receiver Not Ready)

RR (Receiver Ready)

(5) Number of bytes in the packet.

8 Modulo of the virtual circuit. Possible values are 8 or 128.

lci 0 Virtual circuit number. See Annex A of the 1984 CCITT X.25
Recommendation for information on VC assignment.

cause 7 Code indicating the event that triggered the packet. The cause field can
only appear in entries for CLEAR REQUEST, RESET REQUEST, and
RESTART packets. Possible values for the cause field can vary,
depending on the type of packet. Refer to Appendix A of this manual,
“X.25 Cause and Diagnostics Codes,” for explanations of these codes.

diag 0 Code providing an additional hint as to what, if anything, went wrong.
The diag field can only appear in entries for CLEAR REQUEST,
DIAGNOSTIC (as “error 0”), RESET REQUEST and RESTART
packets. Because of the large number of possible values, they are listed
in Appendix A of this manual, “X.25 Cause and Diagnostic Codes.”

Field Description



2-182 Debug Command Reference

debug x25 all

Table 1-75 describes the PS and PR fields that can appear in adebug x25 all display.

Table 1-75 Debug X25 PS and PR Field Descriptions

In Figure 1-95, notice also that the CALL REQUEST packet precedes three other lines of output that
have a unique format.

Serial2 (236424436): X25 I P1 CALL REQUEST (11) 8 lci 1024
From(2): 49 To(2): 46
Facilities: (0)
First byte of call user data (4): 0xCC

These lines indicate that the CALL REQUEST packet has a two-digit source address, 49, and a two-
digit destination address, 46. These are X.121 addresses that can be from 0 to 15 digits in length.
The Facilities field is (0) bytes in length, indicating that no X.25 facilities are being requested. The
optional call user data field is 4 bytes in length. The first of these bytes has the hexadecimal value of
CC, indicating that the caller intends for IP datagrams to be carried on the VC.

The two lines of output in Figure 1-95 that begin with X25-Switch are shown below.

X25-Switch (274428): X25 O D1 PVC-SETUP, wait to connect (29) <Serial2 pvc 3><Serial2 pvc
1> 2/1 128/64
X25-Switch (274432): X25 I D1 PVC-SETUP, connected (29) <Serial2 pvc 3><Serial2 pvc 1>
2/1 128/64

These lines of output do not describe standard X.25 packets. Instead, they describe proprietary Cisco
messages that represent a tunneled PVC setup between two routers. Table 1-76 describes the fields
these two lines of output.

Table 1-76 Debug X25 All Field Descriptions for Packets Representing Tunneled PVC Activity

Field Description

PS 0 Packet send sequence number; used for flow control of the outgoing
packet stream. Present only in DATA packets.

PR 0 Packet receive sequence number; used for flow control of the incoming
packet. stream. Present only in DATA, RR, and RNR packets.

Field Description

X25-Switch Indicates that this message travels over a TCP connection.

(274428) System clock (in milliseconds). Useful for determining the amount of
time between events.

X25 Indicates that this message describes an X.25 event.

O Indicates whether the X.25 message was input (I) or output (O) through
the interface.

D1 State of the permanent virtual circuit. Possible values follow.

D1—Flow control ready

D2—DTE reset request

D3—DCE reset indication

See Annex B of the 1984 CCITT X.25 Recommendation for more
information on these states.



Debug Command Listing 2-183

debug x25 all

waiting to connect State of the PVC. Some of these strings only apply to PVCs that are
remotely tunneled over a TCP connection. The %X25-3-PVCBAD
system error message (as documented in theSystem Error Messages
publication), and theshow x25 vc command (as documented in the
Router Products Command Reference publication) also use these PVC
state strings. Possible values follow:

awaiting PVC-SETUP reply

can’t support flow control values

connected

dest. disconnected

dest. interface is not up

dest. PVC configuration mismatch

mismatched flow control values

no such dest. interface

no such dest. PVC

non-X.25 dest. interface

PVC setup protocol error

PVC/TCP connect timed out

PVC/TCP connection refused

PVC/TCP routing error

trying to connect via TCP

waiting to connect

(29) Incoming/outgoing message size (in bytes).

<Serial2 pvc 3> Interface and PVC port that originated the message (originator).

<Serial2 pvc 1> Interface and PVC port that responded to that message (responder).

2/1 Window size (in packets).

128/64 Maximum packet size (in bytes).

Field Description



2-184 Debug Command Reference

debug x25 events

debug x25 events
Use thedebug x25 events EXEC command to display information on all X.25 traffic except X.25
data or acknowledgment packets. Theno form of this command disables debugging output.

debug x25 events
no debug x25 events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Thedebug x25 events command is useful for debugging X.25 problems, because it shows changes
that occur in the virtual circuits handled by the router. Because most X.25 connectivity problems
stem from errors that CLEAR or RESET virtual circuits, you can usedebug x25 events to identify
these errors.

While debug x25 all output includes both data and control messages for all of the router’s virtual
circuits,debug x25 events output includes only control messages for all of the router’s VCs. In
contrast,debug x25 vc output includes only control messages for a particular VC. Thus,debug x25
events output is a subset ofdebug x25 all output, anddebug x25 vc output is a subset ofdebug x25
events output.

Note Becausedebug x25 events displays a subset of all X.25 traffic, it is safer to use thandebug
x25 all during production hours.

Sample Display
Figure 1-96 shows sampledebug x25 events output.

Figure 1-96 Sample Debug X25 Events Output

See thedebug x25 all command description for information on the fields indebug x25 events
output.

router# debug x25 events

Serial2 (236543528): X25 I R3 RESTART (5) 8 lci 0 cause 0 diag 0
Serial2 (236552660): X25 I P1 CALL REQUEST (11) 8 lci 1024
 From(2): 49 To(2): 46
 Facilities: (0)
 First byte of call user data (4): 0xCC
Serial2 (236552664): X25 O P4 CALL CONNECTED (3) 8 lci 1024
Serial2 (236564056): X25 I D1 CLEAR REQUEST (5) 8 lci 1024 cause 0 diag 122
Serial2 (236564056): X25 O D1 CLEAR CONFIRMATION (3) 8 lci 1024
Serial2 (236564060): X25 I D1 RESET REQUEST (5) 8 lci 1 cause 0 diag 122
Serial2 (236564060): X25 O D1 RESET CONFIRMATION (3) 8 lci 1 S

27
20



Debug Command Listing 2-185

debug x25 vc

debug x25 vc
Use thedebug x25 vc EXEC command to display information on traffic for a particular virtual
circuit in order to solve any connectivity or performance problems it is exhibiting. Theno form of
this command disables debugging output.

debug x25 vc number
no debug x25 vc number

Syntax Description

Command Mode
EXEC

Usage Guidelines
Because no interface is specified, traffic on any VC that has the specifiednumber is reported.

While debug x25 all output includes both data and control messages for all of the router’s virtual
circuits,debug x25 events output includes only control messages for all of the router’s VCs. In
contrast,debug x25 vc output includes only control messages for a particular VC. Thus,debug x25
events output is a subset ofdebug x25 all output, anddebug x25 vc output is a subset ofdebug x25
events output.

Note Becausedebug x25 vc only displays traffic for a small subset of virtual circuits, it is safe to
use even under heavy traffic conditions, as long as events for that virtual circuit are fewer than
25 packets per second.

Sample Display
Figure 1-97 shows sampledebug x25 vc output.

Figure 1-97 Sample Debug X25-VC Output

See thedebug x25 all command description for information on the fields indebug x25 vc output.

number LCI number associated with the virtual circuit(s) you want to monitor.

router# debug x25 events
X25 special event debugging is on
router# debug x25 vc 1
X25 debugging output restricted to VC1
router# show debug 
X.25 (debugging restricted to VC number 1):
 X25 special event debugging is on

Serial0: X25 0 P2 CALL REQUEST (19) 8 lci 1
 From(14): 31250000000101 To(14): 31109090096101
 Facilities (0)
Serial0: X25 I P2 CLEAR REQUEST (5) 8 lci 1 cause diag 122 S2

72
1



2-186 Debug Command Reference

debug x25 vc


