
Cisco Gatekeeper Ext
Cisco IOS Releases 12.2(8)T
C H A P T E R 3
ntains

iting.

ming
an

sed to
P

ith

n,
these
nd the
ication.
Implementing an External Interface to the
Cisco IOS Gatekeeper

This chapter describes how to implement an external interface to the Cisco IOS Gatekeeper and co
the following sections:

• How the External Interface Works, page 3-1

• How Gatekeeper Triggers Work, page 3-2

• How RAS Messages are Processed, page 3-7

• How Security Works, page 3-10

• GKTMP Message Examples, page 3-11

• How the API Works, page 3-14

• Gatekeeper API Examples, page 3-16

Although the Cisco IOS Gatekeeper provides many functions, there might be the occasion when
additional function is desired or needed. For example, an organization could require additional
authentication functions, need to implement specific policy controls, or want to use Internet call wa

The Gatekeeper Transaction Message Protocol (GKTMP) and the gatekeeper application program
interface (API) were developed to allow communication between the Cisco IOS Gatekeeper and
external application.

GKTMP is based on RAS and provides a set of ASCII request/response messages that can be u
exchange information between the Cisco IOS Gatekeeper and the external application over a TC
connection, and through the use of the gatekeeper API.

The gatekeeper API is object code that contains the API functions, which are designed to work w
GKTMP. An external application links with the object code and calls the functions as necessary.

Using the GKTMP and the gatekeeper API, organizations can supplement the functions of the
Cisco IOS Gatekeeper with their own external application.

How the External Interface Works
As part of its normal function, a gatekeeper receives certain RAS registration, admission, locatio
resource, and disengage messages from H.323 endpoints. Typically, the gatekeeper processes
messages and responds to the request. However, with the Cisco IOS Gatekeeper, the GKTMP, a
gatekeeper API, you can supplement or offload the processing of the request to an external appl
3-1
ernal Interface Reference, Version 3.1

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
How Gatekeeper Triggers Work

rs are

es the

d sends

I.

ekeeper.

e

ingle
al
r IDs.
n and

re
ations
 their

tions.
th the
to the
ssage

n.

eper
e

 no

tration

from

ts
tration
In general, the process works as follows:

1. You establish triggers for each external application on the Cisco IOS Gatekeeper. These trigge
based on RAS tags and values.

2. When the Cisco IOS Gatekeeper receives a RAS message from an H.323 endpoint, it compar
message to the triggers.

3. If there is a match, the Cisco IOS Gatekeeper repackages the contents of the RAS message an
it to the appropriate external application.

4. The gatekeeper API decodes the byte stream and creates a usable C structure.

5. The external application processes the data and sends the results back to the gatekeeper AP

6. The gatekeeper API encodes the response message and sends the data to the Cisco IOS Gat

7. The Cisco IOS Gatekeeper performs any additional processing, if necessary, and forwards th
results to the requesting H.323 endpoint.

The interaction between the Cisco IOS Gatekeeper and the external application is completely
transparent to the H.323 endpoint.

Communication between the Cisco IOS Gatekeeper and the external application is over a TCP
connection through the gatekeeper API. Multiple Cisco IOS Gatekeepers can be configured on a s
Cisco IOS router as logical gatekeepers. The same TCP connection can be used by all the logic
Cisco IOS Gatekeepers. The individual Cisco IOS Gatekeepers are identified by their gatekeepe
This ID is included in all messages that the Cisco IOS Gatekeeper sends to the external applicatio
in all responses that the external application sends back to the Cisco IOS Gatekeeper. If there a
different external applications running on the same host, messages to the different external applic
can also be multiplexed on the same TCP connection. The external applications are identified by
server IDs.

How Gatekeeper Triggers Work
By default, the Cisco IOS Gatekeeper does not forward any RAS messages to any external applica
If an application is interested in receiving certain RAS messages, it must register this interest wi
Cisco IOS Gatekeeper. To determine which RAS messages the Cisco IOS Gatekeeper forwards
external application, you can specify trigger parameters. If the Cisco IOS Gatekeeper receives a me
that satisfies the specified trigger conditions, the message is forwarded to the external applicatio

If multiple trigger conditions are specified in a single registration message, the Cisco IOS Gateke
treats the trigger conditions as “OR” conditions. In other words, if a RAS message received by th
gatekeeper meets any of the trigger conditions the message is sent to the external application.

Trigger conditions are optional. If the Cisco IOS Gatekeeper receives a registration that contains
trigger conditions, it forwards all messages of the specified RAS message type to the external
application.

If the Cisco IOS Gatekeeper has a registration for a RAS message type and receives another regis
for the same RAS message from the same external application with the same priority, the
Cisco IOS Gatekeeper uses the new registration and discards the previous one. The
Cisco IOS Gatekeeper allows registrations for the same RAS message type with the same priority
multiple servers.

To indicate that the external application is no longer interested in a message, it must unregister i
interest. The contents of the unregistration message must match that of the corresponding regis
message before the trigger can be removed.
3-2
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
How Gatekeeper Triggers Work

ugh

h

ure

and:

ing

n RAI

and:

ith an

wing

and:

ith a
A Cisco IOS Gatekeeper can be statically (through a command-line interface) or dynamically (thro
the gatekeeper API) configured with trigger parameters.

Note Triggers that are statically configured can be removed only through the command-line interface.
Likewise, those triggers that are dynamically configured can be removed or modified only throug
the gatekeeper API.

Statically Configured Triggers
Statically configured triggers are established on the router using Cisco IOS commands. To config
triggers using the Cisco IOS command line, do the following:

Step 1 Access the Cisco IOS Gatekeeper configuration mode. Enter the following command:

gatekeeper

Step 2 Enter the trigger configuration mode and specify the RAS message type for the trigger. Enter the
following command:

server trigger { arq | lcf | lrj | lrq | rrq | urq | rai | drq | brq } gkid priority
server-id server-ip_address server-port

Step 3 If the trigger is to send qualifying messages on a notification-only basis, enter the following comm

info-only

Step 4 If you want to limit the qualifying messages based on the destination information, enter the follow
command:

destination-info { e164 | email-id | h323-id } value

You can repeat this command to enter multiple destinations. This command cannot be used with a
message trigger.

Step 5 If you want to limit the qualifying messages based on the redirect reason, enter the following comm

redirect-reason value

You can repeat this command to enter multiple redirect reasons. This command cannot be used w
RAI message trigger.

Step 6 If you want to limit the qualifying messages based on the remote extension address, enter the follo
command:

remote-ext-address value

You can repeat this command to enter multiple remote extension addresses.

Step 7 If you want to limit the qualifying messages based on the endpoint type, enter the following comm

endpoint-type value

You can repeat this command to enter multiple endpoint types. This command cannot be used w
DRQ message trigger.

Step 8 If you want to limit the qualifying messages based on the supported prefix, enter the following
command:

supported-prefix value
3-3
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
How Gatekeeper Triggers Work

with

n

on.

r

e
n

stration

xternal
sages

d
icates

nction
o the
he
ust
You can repeat this command to enter multiple supported prefixes. This command cannot be used
a DRQ message trigger.

Step 9 When you have specified all the parameters for this trigger, exit trigger submode by entering the
following command:

exit

Step 10 Repeat stepsStep 2 throughStep 9 for each trigger that you want to define.

Step 11 If you want to change the server timeout value for triggers, enter the following command:

timer server timeout value

To remove a trigger, use theno server trigger command. To temporarily suspend a trigger, enter the
trigger configuration mode, as described in stepStep 2 and enter theshutdown subcommand.

For more information about the Cisco IOS commands for configuring triggers, seeChapter 6, “GKTMP
Command Reference.”

Note With statically configured triggers, the gatekeeper initiates the connection to the external applicatio
and keeps the connection open for as long as it is running. If the connection is terminated by the
external application, the Cisco IOS Gatekeeper periodically attempts to re-establish the connecti

Dynamically Configured Triggers
Dynamically configured triggers are established using the gatekeeper API and the GKTMP trigge
registration messages.

1. The external application creates a trigger and sends it to the Cisco IOS Gatekeeper using th
WriteRegisterMessage API function. The triggers are sent in the format for trigger registratio
messages as prescribed by the GKTMP.

2. In response, the Cisco IOS Gatekeeper sends a message back that indicates whether the regi
request has been accepted.

You must send a separate registration message for each message type that you want sent to the e
application. If you send a registration message that does not contain any trigger definitions, all mes
of the specified type are sent to the external application.

Dynamically configured triggers are removed using the WriteUnregisterMessage API function an
GKTMP trigger unregistration messages. Again, the response from the Cisco IOS Gatekeeper ind
whether the unregistration request has been accepted.

API Functions

You can use the following API functions to dynamically configure triggers:

• WriteRegisterMessage—Sends a registration message to the Cisco IOS Gatekeeper. This fu
reads the information in the GK_REGISTER_MSG_TYPE structure and sends the contents t
Cisco IOS Gatekeeper using the gkHandle read from the GKAPI_SOCK_INFO_T structure. T
header structure, REGISTER_REQUEST_HEADER_TYPE, within each message structure m
3-4
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
How Gatekeeper Triggers Work

 is
age),

et to
 for
or

his
tents
ture.
ure

s:

rom

s the
header
the

n a line
icates
t the

icates

 and
ingle

y.
contain information for the From, To, and Priority fields. Optionally, if the external application
interested in receiving only notification of a message (not in processing any data for the mess
the notificationOnly field should be set to True. Otherwise, it is set to False.

If no filter conditions are to be sent, the parameters within the registration structure should be s
their initialization values or to NULL for pointers. WriteRegisterMessage processes the filters
sending until it reaches the first initialization value for the parameter, or the first null pointer f
pointer types.

• WriteUnregisterMessage—Sends an unregistration message to the Cisco IOS Gatekeeper. T
function reads the information in the GK_REGISTER_MSG_TYPE structure and sends the con
to the Cisco IOS Gatekeeper using the gkHandle read from the GKAPI_SOCK_INFO_T struc
The header structure, REGISTER_REQUEST_HEADER_TYPE, within each message struct
must contain information for the From, To, and Priority fields.

GKTMP Messages

The format of the GKTMP registration/unregistration request and response messages is as follow

Message line
Message header line 1
Message header line 2
Message header line x

Message body line 1
Message body line 2
Message body line x

The request and response messages contain the following fields:

• Message line—A single line indicating whether this message is a REGISTRATION or
UNREGISTRATION request from the external application. This line is echoed in the response f
the Cisco IOS Gatekeeper. The format is REGISTERxxx or UNREGISTERxxx.

• Message header—A series of lines indicating the server ID of the external application, the
gatekeeper ID of the Cisco IOS Gatekeeper, and the priority of the trigger. The priority indicate
order in which this trigger should be processed with respect to other triggers. The message
also includes a version ID, which indicates the version of the GKTMP. The version ID must be
first header in every GKTMP message.

For trigger registration requests, if the message contains a body, the header can also contai
indicating the content length of the body. The message header might also contain a line that ind
whether the external application only wants to be notified of the specified RAS messages tha
Cisco IOS Gatekeeper receives. For more information on notification only, see the
“Notification-Only Triggers” section on page 3-7.

For trigger registration and unregistration responses, the header also contains a line that ind
the status of the registration or unregistration request.

The format of each line isfield:value.

• An empty line.

• Message body (optional)—The body of trigger registration messages contains the RAS tags
values that define the desired triggering parameters. Each triggering parameter occupies a s
line. The format of each line istag=value.

The message body can be included only in trigger registration requests. Trigger registration
responses and trigger unregistration requests and responses cannot contain a message bod
3-5
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
How Gatekeeper Triggers Work

e
should
xternal
keeper

hould

.164
lows:
For more information about the format of trigger registration and unregistration messages, see
Chapter 4, “GKTMP Messages.”

With dynamically configured triggers, the external application establishes a TCP connection to th
gatekeeper and registers its interest in any of the RAS message types. The external application
then leave the connection open for receiving such messages and for sending its responses. If the e
application closes the connection, its registrations are considered cancelled. The Cisco IOS Gate
does not attempt to re-establish the connection.

Example of a Dynamic Trigger Registration Message

In the following example the trigger registration request indicates that the Cisco IOS Gatekeeper s
forward to the external application any RRQ messages from a voice gateway or a gateway with a
supported prefix of 1# or 2#:

REGISTER RRQ
Version-id: 100
From: server-12
To: gk-dallas1
Priority: 20
Notification-Only:
Content-Length: 29

t=voice-gateway
p=1#
p=2#

Specifying Wildcards in Triggers
Within a trigger, certain wildcard characters are allowed for an alias-address field that contains an E
address. Trigger criteria for E.164 alias-addresses can include trailing wildcard characters as fol

• One or more periods can be used, each denoting a single character

• An asterisk can be used to denote zero or more characters.

Examples of legal E164 address patterns are:

Examples of illegal E164 address patterns are:

1800....... The digits 1800 followed by seven characters.

011* The digits 011 followed by any number of
characters.

...4567 Wildcard characters must be used as trailing
characters. They cannot be used at the beginning
of a field.

4802*2 Wildcard characters cannot be used within a field.
In this case, the asterisk is interpreted as a literal
character.
3-6
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
How RAS Messages are Processed

e
f
set

t does
t to
awaits

e

ions, it
UEST

essage

t do not
only as

Q

Notification-Only Triggers
If the application needs to be aware of messages but will not be preforming any processing of th
message, you can indicate that the messages should be forwarded on a notification-only basis. I
notification-only is present in a GKTMP registration message (which means that notification-only is
to true at the API), the Cisco IOS Gatekeeper forwards messages that meet the trigger criteria bu
not expect a response. If notification-only is not present (which means that notification-only is se
false at the API), the Cisco IOS Gatekeeper forwards messages that meet the trigger criteria and
a corresponding RESPONSE message from the external application.

This header line is typically used for REQUEST RRQ and REQUEST URQ messages, so that th
Cisco IOS Gatekeeper can populate an external application’s registration database.

How RAS Messages are Processed
When the Cisco IOS Gatekeeper receives an RAS message that meets the specified trigger condit
packages the contents of the fields of the RAS message into the message body of a GKTMP REQ
message. When the external application receives a request, it must package the response into the m
body of a GKTMP RESPONSE message.

The GKTMP specifies formats for exchanging the following types of RAS messages:

• RRQ—Registration request

• RCF—Registration confirm

• RRJ—Registration reject

• URQ—Unregistration request

• ARQ—Admission request

• ACF—Admission confirm

• ARJ—Admission reject

• LRQ—Location request

• LCF—Location confirm

• LRJ—Location reject

• RIP—Request in progress

• RAI—Resource availability indication

• DRQ—Disengage request

• BRQ—Bandwidth request

• BCF—Bandwidth confirm

• BRJ—Bandwidth reject

The URQ, RAI, and DRQ messages are issued as a request from the Cisco IOS Gatekeeper, bu
have a corresponding response. Other messages (RCF, RRJ, ACF, ARJ, BCF, and BRJ) are sent
responses from the external application.

Note The Cisco IOS Gatekeeper does not generate GKTMP Request RRQ messages for lightweight RR
messages, which are used by H.323 endpoints as a keep-alive mechanism to refresh existing
registrations.
3-7
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
How RAS Messages are Processed

. The

e
which

gth of

ther the
 see

and
n the
r new

type of

is
is
l

sion

sends
The general format of the GKTMP RAS messages is:

Message line
Message header line 1
Message header line 2
Message header line x

Message body line 1
Message body line 2
Message body line x

These messages include the following fields:

• Message line—A single line indicating whether this message is a REQUEST or RESPONSE
format is REQUESTxxx or RESPONSExxx.

• Message header—A series of lines indicating the server ID of the external application and th
gatekeeper ID of the Cisco IOS Gatekeeper. The message header also includes a version ID,
indicates the version of the GKTMP. The version ID must be the first header in every GKTMP
message.

If the message contains a body, the header can also contain a line indicating the content len
the body. The header can also contain a transaction ID, which uniquely identifies the
request/response message. The message header might also contain a line that indicates whe
message is being sent on a notification-only basis. For more information on notification only,
the“Notification-Only Triggers” section on page 3-7.

The format of each line isfield:value.

• An empty line.

• Message body (optional)—The body of trigger registration messages contains the RAS tags
values for the corresponding RAS message. The tags included in the body vary depending o
type of RAS message. Responses from the external application should contain only changed o
body information. The format of each line istag=value.

For more information about the format of GKTMP RAS messages, seeChapter 4, “GKTMP Messages.”

How the external application processes requests from the Cisco IOS Gatekeeper depends on the
RAS message and how the external application has been configured to respond.

Note The Cisco IOS Gatekeeper maintains a timeout value for the processing of requests. If a response
not received within the timeout value, the Cisco IOS Gatekeeper assumes the external application
unavailable. Therefore, when the external application receives a message that will take additiona
time to process, it should send a message back to the Cisco IOS Gatekeeper to request an exten
to the timeout. This message is a RESPONSE RIP.

Processing of xRQ Requests
When the external application receives a REQUESTxRQ message from the Cisco IOS Gatekeeper it
must take one of the following actions:

• Instruct the Cisco IOS Gatekeeper to reject the request. In this case, the external application
a RESPONSExRJ message to the Cisco IOS Gatekeeper.
3-8
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
How RAS Messages are Processed

er

he

In this

n this
t

have

zone.
ternal

.

er, the

 a

t the
sent in

eaning
eeper

er it

sage

LCF
ation
essage
• Modify one or more of the fields and return the request to the Cisco IOS Gatekeeper for furth
processing. In this case, the external application sends a RESPONSExRQ message with the altered
information in the body. Only fields that the external application changes can be included in t
body. Unchanged fields must not be present in the response message body.

• Indicate no interest in the message and instruct the gatekeeper to continue normal processing.
case, the external application sends a RESPONSExRQ message with a null message body.

• Complete the processing of the request and send the results to the Cisco IOS Gatekeeper. I
case, the external application sends a RESPONSExCF message. The body of this message mus
contain all the fields that the Cisco IOS Gatekeeper needs to respond with anxCF to the client. This
message indicates to the gatekeeper that no further processing is required. If multiple triggers
been configured such that the REQUEST is sent to more than one external application, the
RESPONSE xCF preempts any other external applications from receiving this message.

• Send no response. This action must be taken only if the request message contains the line
Notification-Only: in the header.

Processing of LCF Requests
An LCF message is sent by a peer gatekeeper to confirm the location of a destination endpoint in its
You can configure the Cisco IOS Gatekeeper to forward any LCF messages that it receives to the ex
application. This gives the application an opportunity to alter any of the fields in the confirmation

When the external application receives a REQUEST LCF message from the Cisco IOS Gatekeep
application must take one of the following actions:

• Confirm the information contained in the request. In this case, the external application sends
RESPONSE LCF with a null message body.

• Alter the information contained in the request. In this case, the external application sends a
RESPONSE LCF message with the altered information in the message body. Only fields tha
external application changes can be included in the body. Unchanged fields must not be pre
the response message body.

• Reject the information contained in the LCF. In this case, the external application sends a
RESPONSE LRJ.

Processing of LRJ Requests
An LRJ message is sent by a peer gatekeeper to reject the location of a destination endpoint, m
the endpoint does not exist in the peer gatekeeper’s zone. You can configure the Cisco IOS Gatek
to forward to the external application any LRJ messages that it receives. This gives the external
application an opportunity to recommend an alternate destination.

When the external application receives a REQUEST LRJ message from the Cisco IOS Gatekeep
must take one of the following actions:

• Accept the LRJ. In this case, the external application sends a RESPONSE LRJ with a null mes
body.

• Suggest an alternate destination. In this case, the external application sends a RESPONSE
message with the altered information in the message body. Only fields that the external applic
changes can be included in the body. Unchanged fields must not be present in the response m
body.
3-9
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
How Security Works

ed in

e
ord

t the
 the
ain
n

ude

g:

want to
want

ken is
How Security Works
The GKTMP supports the use of CryptoH323Tokens for authentication. The CryptoH323Token is
defined in H.225 Version 2 and is used in a “password with hashing” security scheme as describ
section 10.3.3 of the H.235 specification.

A cryptoToken can be included in any RAS message and is used to authenticate the sender of th
message. The use of cryptoTokens allows you to use a separate database for user ID and passw
verification.

CryptoTokens and Cisco Gateways

Cisco gateways support the following levels of authentication:

• Registration—Tokens are generated for RRQ and URQ messages.

• Per-Call—Tokens are generated for ARQ messages.

• All—Tokens are generated for RRQ, URQ, and ARQ messages.

You can configure the level of authentication for the gateway using the Cisco IOS software
command–line interface.

CryptoTokens for RRQ, URQ, and the terminating side of ARQ messages contain information abou
gateway that generated the token, including the gateway ID (which is the H.323 ID configured on
gateway) and the gateway password. CryptoTokens for the originating side ARQ messages cont
information about the user that is placing the call, including the user ID and personal identificatio
number (PIN).

Therefore, if you want to use cryptoTokens for authentication, all clients in your network must incl
a cryptoToken in every message that they send to the Cisco IOS Gatekeeper.

Requirements for using CryptoTokens

To participate in this authentication scheme, a GKTMP-based application must have the followin

• Access to a database of user IDs, gateway IDs, and their associated passwords.

• Access to an ASN.1 encoder.

The application should be set up to authenticate the messages that you deem necessary. If you
authenticate gateways when they register, your application should validate RRQ messages. If you
per-call authentication, your application should validate ARQ messages. Or, you can have your
application validate all messages.

Validating a CryptoToken

To validate a cryptoToken received in a RAS message, the application should:

1. Use the alias in the cryptoToken to look up the associated password.

2. Use the password, the timestamp, and the alias, to ASN.1 encode a ClearToken. The ClearTo
a PwdCertToken. The application should maintain the password and alias as NULL-terminated
strings and include the NULL when performing the ASN.1 encoding.

3. Perform an MD5 Hash on the ASN.1 encoded buffer. This results in a 16-byte Hash.

4. Compare the calculated Hash with the one found in the token field of the cryptoEPPwdHash.
3-10
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
GKTMP Message Examples

 (

e of
n.

ernal

ct

cation
If the hash values match, the application should issue a confirmation message (xCF) to the gatekeeper,
which is transmitted to the gateway. Otherwise, the application should send a rejection messagexRJ)
with a reject reason of securityDenial.

CryptoTokens in RAS Messages

The cryptoToken message body line contains a type identifier followed by a colon and a sequenc
space separated tag=value parameters that are associated with the particular type of cryptoToke

For example, a message body line containing a cryptoToken could look like the following:

$=E:a=H:gw1-rtp T=940647784 h=FFABCD0067AE12436780167364847343

For more information about the parameters included in cryptoTokens, seeChapter 4, “GKTMP
Messages.”

GKTMP Message Examples
The following examples show the GKTMP messages that are generated in some uses of the ext
interface.

Populating an External Application’s Registration Database
An external application might need to maintain a database of active gateways so that it can sele
gateways for ARQ or LRQ resolution. In this case, triggers can be configured on the
Cisco IOS Gatekeepers so that any RRQ or URQ messages will be forwarded to the external appli
on a notification-only: basis.Example 3-1shows an RRQ notification for a gateway.Example 3-2shows
a URQ notification for a gateway.

Example 3-1 RRQ Notification

REQUEST RRQ
Version-id: 100
From: gk1-sj
Notification-only:
Content-Length:90

c=I:171.69.136.205:1720
r=I:171.69.136.205:16523
a=H:gw3-sj
t=voice-gateway
p=2# 99#

Example 3-2 URQ Notification

REQUEST URQ
Version-id: 100
From: gk1-sj
Notification-only:
Content-Length:23

c=I:171.69.136.205:1720
3-11
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
GKTMP Message Examples

e the

 a
al
800 Number Lookup
You might want the Cisco IOS Gatekeeper to forward ARQs to an external application to determin
mapping for an 800 number.Example 3-3 shows an ARQ request from the Cisco IOS Gatekeeper.
Example 3-4 shows the corresponding response from the external application.

Example 3-3 Gatekeeper Request

REQUEST ARQ
Version-id: 100
From: gk1-sj
Transaction-Id: 5de04245
Content-Length: 127

s=E:4085552132
d=E:8005721234
b=560
A=f
m=t
c=f81d4fae-7dec-11d0-a765-00a0c91e6bf6
C=f81d4fae-7dec-11d0-a765-00a0c91e6bf6

Example 3-4 External Application Response

RESPONSE ARQ
Version-id: 100
To: gk1-sj
Transaction-Id: 5de04245
Content-Length:14

d=E:4155551212

Internet Call-Waiting
If you have an internet call-waiting (ICW) server in your network, you might want configure the
Cisco IOS Gatekeeper to forward all LRQ requests to the ICW server.Example 3-5 shows the LRQ
request from the Cisco IOS Gatekeeper.

Example 3-5 Gatekeeper LRQ Request

REQUEST LRQ
Version-id: 100
From: gk1-sj
Transaction-Id: 5de04246
Content-Length:64

s=H:gk3-la
d=E:4085551111
p=0
c=4085552222

If the ICW server determines that the destination (4085551111) is not a subscriber, it sends back
RESPONSE LRQ with a null message body. The Cisco IOS Gatekeeper then proceeds with norm
processing.Example 3-6 shows the response.
3-12
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
GKTMP Message Examples

ogged
everal

ll

he IP
route
Example 3-6 Null Response

RESPONSE LRQ
Version-id: 100
To: gk1-sj
Transaction-Id: 5de04246

If the ICW server determines that the destination (4085551111) is a subscriber and is currently l
on, it pings the subscriber to determine how the call should be handled. Because this can take s
seconds, the ICW server first sends a RESPONSE RIP to the Cisco IOS Gatekeeper asking for a
60-second extension to the timeout.Example 3-7 shows the response.

Example 3-7 RIP Response

RESPONSE RIP
Version-id: 100
To: gk1-sj
Transaction-Id: 5de04246
Content-Length:7

d=60000

If the subscriber refuses the call, the ICW server sends a rejection to the Cisco IOS Gatekeeper.
Example 3-8 shows the response.

Example 3-8 Rejection

RESPONSE LRJ
Version-id: 100
To: gk1-sj
Transaction-Id: 5de04246
Content-Length:15

R=requestDenied

If the subscriber hangs up to accept the call, the ICW server sends a RESPONSE LRQ with a nu
message body, which instructs the Cisco IOS Gatekeeper to proceed with the call.Example 3-9 shows
the response.

Example 3-9 Null Response

RESPONSE LRQ
Version-id: 100
To: gk1-sj
Transaction-Id: 5de04246

If the subscriber chooses to route the call to voicemail (4085553333) and the ICW server knows t
address of the voicemail gateway (172.45.63.49), the server instructs the Cisco IOS Gatekeeper to
the call to the voicemail system.Example 3-10 shows the response.

Example 3-10 Response to Reroute

RESPONSE LCF
Version-id: 100
To: gk1-sj
Transaction-Id: 5de04246
Content-Length:94
3-13
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
How the API Works

 work
ns

on.

 data
, as

n.

 the

nction.

 by
n
er.

w

he

ed,
e

d=E:4085553333
D=I:172.45.63.49:1720
r=I:172.45.63.49:13982
t=voice-gateway
X=4085551111

How the API Works
The gatekeeper API is offered as a library that contains the API functions, which are designed to
with GKTMP. An external application must link with the GKAPI object code and call the API functio
to communicate with the Cisco IOS Gatekeeper.

The GKAPI includes the following files:

• gk_api—The gatekeeper API object code.

• gk_api.h—The gatekeeper API interface header file, which must be included by the applicati

The gatekeeper API provides functions and structures that allow an external application to obtain
from and return information to the Cisco IOS Gatekeeper. Using the API functions and structures
well as some standard functions, the external client application:

1. Establishes a connection with the Cisco IOS Gatekeeper using the GkapiSetupClient functio

2. Monitors the appropriate socket using a standard function.

3. When a connect complete is detected, the application notifies the gatekeeper API using the
GkapiClientConnected function.

4. When a read message is detected, it allocates memory for the storage of the message using
GetReadMsgBuffer function.

5. Stores the contents of the message in the appropriate structure using the ReadMsgBuffer fu

Note If the message received from the Cisco IOS Gatekeeper is a RAS message that is not supported
the API function, the msgType will be set to MSG_NOT_SUPPORTED. If a response is required, a
appropriate response will be constructed by the API function and sent to the Cisco IOS Gatekeep
The header information in the UNSUPPORTED_MSG_TYPE structure will be filled in by the API
function. This situation could occur if the Cisco IOS Gatekeeper has been upgraded to support ne
messages but the API function has not been correspondingly upgraded.

If the message received from the Cisco IOS Gatekeeper, is not recognized by the API function, t
msgType will be set to UNKNOWN_MSG and the STATUS_TYPE will be set to
MSG_READ_ERROR. In this case, the external application should close the connection to the
Cisco IOS Gatekeeper by calling the CloseGateKeeperConnection function.

If the application has specified the use of non-blocking I/0, the GkapiSetupClient and
ReadMsgBuffer functions can return with a CONNECT_IN_PROGRESS or
INCOMPLETE_MSG_READ error. These errors indicate that either the connection setup is still in
progress or a complete GKTMP message has not been received. If either of these errors is return
additional socket events will indicate the further processing and completion of these requests. Th
application shouldnotcall CloseGateKeeperConnection in these conditions. Instead, the application
must monitor the socket using the appropriate handles to detect the additional socket events.

6. Obtains the data from the structure and performs the processing as designed.
3-14
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
How the API Works

red or if
cation

 API
ation
rary.

 from
meet

d
e
r could

s. The
tored
 type

before

nction
at as it
7. Frees the memory allocated for the read message using the FreeReadMsgBuffer function.

8. Writes the resulting data to the appropriate structure using the WriteResponseMsg function.

The external application can repeat these steps as often as necessary. If a read error is encounte
the external application wants to terminate the connection to the Cisco IOS Gatekeeper, the appli
should use the CloseGateKeeperConnection function.

The API functions and structures are described inChapter 5, “Gatekeeper API Functions and
Structures.”

Linking with the Gatekeeper API
As stated earlier, an external application must be linked with the GKAPI object code and call the
functions in order to communicate with the Cisco IOS Gatekeeper. If you have an external applic
to use with the gatekeeper API and GKTMP, be sure that you link you it with the gatekeeper API lib

The following is an example makefile for building an application using the GNU “C” compiler and
linking with the gatekeeper API library.

This sample makefile is bundled with the GKAPI binary and the header file and can be extracted
the GK software .tar file on the Cisco.com website. The sample file can be modified and used to
the individual requirements of the end user.

rm -f gkapiver.c
echo \#ifndef GKAPI_MAX_VER_STR_LEN >>gkapiver.c
echo \#define GKAPI_MAX_VER_STR_LEN 128 >>gkapiver.c
echo \#endif >>gkapiver.c
echo char version_string\[GKAPI_MAX_VER_STR_LEN\]= \"Compiled `date +"%a
%d-%h-%y %H:%M"` OS target: `uname -sr` \"\; >>gkapiver.c
gcc -g -Wall -c gkapiver.c -o gkapiver
gcc -g gk_api gkapiver gk_application.c
/usr/lib/libintl.a -lsocket -lnsl -ldl -lthread
-lpthread -lposix4 -ogk_application

Guidelines for Using the Gatekeeper API
When you are writing an application that uses the gatekeeper API, keep the following in mind:

• For response messages, the application must sendonlychanged or new parameters. Any unchange
fields must not be included in the response message body. If unchanged fields are sent to th
Cisco IOS Gatekeeper in a response message, the performance of the Cisco IOS Gatekeepe
be severely impacted.

• For messages received from the Cisco IOS Gatekeeper, the API function removes the tag field
type prefix (H:, E:, M: for alias-addresses and I: for transport-addresses) is preserved and is s
in the appropriate structure. The application must interpret the type of address based on the
prefix.

• For responses from the application, the application must insert the type prefix (H:, E:, M: for
alias-addresses and I: for transport-addresses). The API function inserts the appropriate tag
constructing the response message.

• For sequence of parameters in messages received from the Cisco IOS Gatekeeper, the API fu
removes the tag field and stores the parameter in the appropriate structure in the same form
was read—with the spaces included in the string.
3-15
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
Gatekeeper API Examples

e the

 can
ion

r the
t the
nal

tion.
les of
• For sequence of parameters in responses from the application, the application must separat
parameters with spaces. The API function inserts the appropriate tag before constructing the
response message.

• For register functions, “sequence of” parameters are not supported. However, the application
have multiple trigger conditions. This is limited by the maximum size of the array in the registrat
structures.

• The application is responsible for receiving all signals from the operating system. In order fo
API function to detect a closed connection with the gatekeeper during a write operation (so tha
STATUS_TYPE can be set to TCP_CONNECTION_CLOSED), the application must install a sig
handler for SIGPIPE.

Gatekeeper API Examples
The following examples show how the gatekeeper API functions can be used in an external applica
These examples are meant to illustrate how the API functions can be called. They are not examp
actual implementations of the API. Two examples are included in this section; one in which the
application is the client and one in which the application is the server.

Note The examples that follow are only cursory examples and will not actually compile.

Example 3-11 Client Example

#include "gk_api.h" /* API header file */
#include </usr/include/sys/fcntl.h>
#include </usr/include/sys/socket.h>
#include </usr/include/sys/select.h>
#include <signal.h>

#define APP_VER 1

void sig_int(int sigNo);
STATUS_TYPE BuildRRQRegisterMsg(GKAPI_SOCK_INFO_T *clientConnect);
STATUS_TYPE BuildRRQResponse(GK_READ_MSG_TYPE *ptr,
 GKAPI_SOCK_INFO_T *connectPtr);

main()
{
 GKAPI_SOCK_INFO_T clientConnect;
 STATUS_TYPE status;
 GK_READ_MSG_TYPE *readMsgPtr;
 struct timeval tval;
 int conn_handle;
 int n;
 fd_set wset, rset;
 BOOLEAN read_pending = FALSE;

 readMsgPtr=NULL;

 /* Install signal handler for SIGPIPE */
 if (signal(SIGPIPE, sig_int) == SIG_ERR) {
 printf("error registering signal \n");
 }

 /* Open Connection to GateKeeper */
3-16
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
Gatekeeper API Examples
 /* Fill in TCP port and IP address of GateKeeper */
 clientConnect.IPAddress = inet_addr("111.222.111.222");
 clientConnect.TCPPort=2000;

 /* Setup the connection for nonblocking I/O */
 conn_handle= GkapiSetupClient(&clientConnect, &status, TRUE) ;

 /* Check status for errors */
 /* If status == PROCESSING_SUCCESSFUL, no errors were encountered */
 /* status == TCP_CONNECT_ERROR, error in connecting to GateKeeper */
 /* status == TCP_HANDLE_ERROR, error in handle creation */
 /* For error conditions, retry connecting to the GateKeeper */

 /* Check for following errors:
 * status = MEM_ALLOC_FAIL
 * INVALID_MSG_SPECIFIED
 * INVALID_ENDPOINT_SPECIFIED
 * INVALID_REDIRECT_REASON_SPECIFIED
 * HEADER_INFO_INCOMPLETE
 * NULL_POINTER_PASSED
 */

 /* If status is PROCESSING_SUCCESSFUL or CONNECT_IN_PROGRESS,
 wait for connect and read event */
 if (status == CONNECT_IN_PROGRESS) {
 FD_ZERO(&rset);
 FD_SET(conn_handle, &rset);
 wset = rset;
 tval.tv_sec = 1;
 tval.tv_usec = 0;
 if ((n = select(conn_handle + 1, &rset, &wset, NULL,
 &tval)) == 0) {
 printf("\nApplication connect timed out");
 CloseGateKeeperConnection(&clientConnect);
 exit(1);
 }

 if (FD_ISSET(conn_handle, &rset) ||
 FD_ISSET(conn_handle, &wset)) {
 status = PROCESSING_SUCCESSFUL;
 } else {
 printf("\nSelect error");
 CloseGateKeeperConnection(&clientConnect);
 exit(1);
 }
 }

 /* If a connect event has occurred tell GKAPI so */
 conn_handle = GkapiClientConnected(&clientConnect, &status, conn_handle) ;

 /* If conn_handle is valid and */
 /* If status is PROCESSING_SUCCESSFUL, register triggers if required */
 /* Build an RRQ Register message */
 status = BuildRRQRegisterMsg(&clientConnect);
 /* Check status for errors */
 /* If status == PROCESSING_SUCCESSFUL, no errors were encountered */
 if ((status == TCP_WRITE_ERROR) || /* TCP error encountered */
 (status == TCP_CONNECTION_CLOSED)) { /* TCP connection closed */
 /* Close connection to GateKeeper and free system resources */

CloseGateKeeperConnection(&clientConnect) ;
 }

 for(;;) {
 FD_ZERO(&rset);
3-17
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
Gatekeeper API Examples
 FD_SET(conn_handle, &rset);
 select(conn_handle + 1, &rset, NULL, NULL, NULL);
 printf("Select event occurred \n");
 if (FD_ISSET(conn_handle, &rset)) {

 /* If a read event has occurred:
 * Allocate a read buffer
 * Call ReadMsgBuffer
 * Process Message
 * Build Response if required
 */
 if (!read_pending)
 readMsgPtr= GetReadMsgBuffer() ;

 /* Check if readMsgPtr is NULL, if NULL, memory allocation failed. */
 /* if readMsgPtr != NULL, continue */
 read_pending = FALSE;
 status= ReadMsgBuffer(&clientConnect, readMsgPtr) ;

 /* Check status for errors */
 /* If status == PROCESSING_SUCCESSFUL, no errors were encountered */
 if ((status == TCP_READ_ERROR) || /* TCP error encountered */
 (status == TCP_CONNECTION_CLOSED) || /* TCP connection closed */
 (status == MSG_READ_ERROR)) { /* Message not understood */
 /* Free the read buffer
 Close connection to GateKeeper and free system resources
 */

FreeReadMsgBuffer(readMsgPtr) ;
 CloseGateKeeperConnection(&clientConnect) ;

 /* Reopen connection to GateKeeper */
 }

 /* Check for other error conditions:
 * status==MEM_ALLOC_FAIL
 * status==NULL_POINTER_PASSED
 */

FreeReadMsgBuffer(readMsgPtr) ;

 /* status==INCOMPLETE_MSG_READ */
 /* Call ReadMsgBuffer on the next read event */
 if (status == INCOMPLETE_MSG_READ)
 read_pending = TRUE;

 /* status == PROCESSING_SUCCESSFUL */
 /* Extract message received */
 switch(readMsgPtr->msgType) {
 case RRQ_REQUEST_MSG:
 status=BuildRRQResponse(readMsgPtr, &clientConnect);
 /* Check status for errors.
 * If TCP_WRITE_ERROR or TCP_CONNECTION_CLOSED
 * call CloseGateKeeperConnection(&clientConnect)
 * Reopen connection to GateKeeper.
 * Check for other errors.
 */

FreeReadMsgBuffer(readMsgPtr) ;
 break;

 case ARQ_REQUEST_MSG:
 /* Do processing */

FreeReadMsgBuffer(readMsgPtr) ;
 break;
3-18
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
Gatekeeper API Examples
 case MSG_NOT_SUPPORTED:
FreeReadMsgBuffer(readMsgPtr) ;

 break;

 default:
FreeReadMsgBuffer(readMsgPtr) ;

 break;
 }
 }
 }
}

STATUS_TYPE BuildRRQResponse(GK_READ_MSG_TYPE *ptr,
 GKAPI_SOCK_INFO_T *connectPtr)
{
 GK_WRITE_MSG_TYPE *writePtr;
 HEADER_INFO_TYPE *headerPtr;
 char buffer1[100];
 char buffer2[100];
 STATUS_TYPE status;

 headerPtr=&ptr->MESSAGE_TYPE.rrqReqMsg.headerInfo;
 /* allocate memory for writePtr, writePtr=malloc(...) */
 /* Fill in msgType and header information */
 writePtr->msgType=RRQ_RESPONSE_MSG;

 writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.headerInfo.versionId = APP_VER;
 strcpy(writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.headerInfo.from,
 headerPtr->to);
 strcpy(writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.headerInfo.to,
 headerPtr->from);
 strcpy(writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.headerInfo.
 transactionID, headerPtr->transactionID);

 /* Fill in paramters */
 strcpy(buffer1, "M:joe_smith");
 strcpy(buffer2, "1800");
 writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.terminalAlias=buffer1;
 writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.supportedPrefix=buffer2;

 /* Send message to GateKeeper */
 status= WriteResponseMsg(connectPtr, writePtr) ;
 /* If memory was allocated for writePtr, free(writePtr) */
 return(status);
}

STATUS_TYPE BuildRRQRegisterMsg(GKAPI_SOCK_INFO_T *clientConnect)
{
 GK_REGISTER_MSG_TYPE *regPtr;
 STATUS_TYPE status;
 int i=0;
 char buffer1[20];

 /* Allocate memory for regPtr, regPtr=malloc(...) */
 /* After allocating memory:
 * Fill in header info and
 * message parameters if needed
 */

 /* Fill in message type */
 regPtr->msgType = RRQ_REGISTER_MSG;
3-19
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
Gatekeeper API Examples
 /* Fill in header info */
 regPtr->
 REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.versionId =
 APP_VER;
 strcpy(regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.from,
 "APPL 1");
 strcpy(regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.to,
 "GK 1");
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.notificationOnly
 =FALSE;
 /* Set priority */
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.priority=1;

 /* Specify filters for RRQ message */
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.terminalType[0] =
 VOICEGATEWAY;
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.terminalType[1] = MCU;

 for (i=2; i<MAX_NUM_ENDPOINT_TYPES; i++) {
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.terminalType[i] =
 ENDPOINT_INFO_NOT_RCVD;
 }

 strcpy(buffer1, "1#");
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.supportedPrefix[0]=buffer1;
 for (i=1; i< MAX_NUM_SUPPORTED_PREFIX; i++) {
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.supportedPrefix[i] = NULL;
 }
 /* Now gatekeeper will only send an RRQ message to the application
 * if filter conditions are satisfied.
 */
 status= WriteRegisterMessage(clientConnect, regPtr) ;
 /* If memory was allocated for regPtr, free(regPtr) */
 return(status);
}

STATUS_TYPE BuildRRQUnRegisterMsg(GKAPI_SOCK_INFO_T *clientConnect)
{
 GK_UNREGISTER_MSG_TYPE unRegMsg;
 STATUS_TYPE status;

 unRegMsg.versionId = APP_VER;
 strcpy(unRegMsg.from, "APPL 1");
 strcpy(unRegMsg.to, "GK 1");
 unRegMsg.unregisterMsg = RRQ_REGISTER_MSG;
 /* Set priority */
 unRegMsg.priority=1;

status= WriteUnregisterMessage(clientConnect, &unRegMsg) ;
 return(status);
}

void sig_int(int sigNo)
{
 switch (sigNo) {
 case SIGPIPE:
 printf("SIGPIPE received\n");
 break;

 /* case ... */
 default:
 }
}

3-20
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
Gatekeeper API Examples
Example 3-12 Server Example

#include "gk_api.h" /* API header file */
#include </usr/include/sys/socket.h>
#include </usr/include/sys/select.h>
#include </usr/include/netinet/in.h>
#include </usr/include/sys/errno.h>
#include <signal.h>

typedef struct client_db_t_ {
 int handle;
 GK_READ_MSG_TYPE *buf;
 GKAPI_SOCK_INFO_T *conn_info;
} client_db_t;

#define MAX_CLIENTS 1024
#define APP_VER 1

void sig_int(int sigNo);
STATUS_TYPE BuildRRQRegisterMsg(GKAPI_SOCK_INFO_T *clientConnect);
STATUS_TYPE BuildRRQResponse(GK_READ_MSG_TYPE *ptr,
 GKAPI_SOCK_INFO_T *connectPtr);

main()
{
 GKAPI_SOCK_INFO_T ServerInfo;
 GKAPI_TCP_ADDR_INFO_T client_addr;
 STATUS_TYPE status;
 GK_READ_MSG_TYPE *readMsgPtr;
 GKAPI_SOCK_INFO_T *connInfo;
 client_db_t client[MAX_CLIENTS+1];
 int conn_handle, serverHandle, max_fd;
 int i, n;
 fd_set rset;
 BOOLEAN read_pending = FALSE;

 readMsgPtr=NULL;

 for (i=0; i<=MAX_CLIENTS; i++) {
 client[i].handle=0;
 client[i].buf=0;
 client[i].conn_info=0;
 }

 /* Install signal handler for SIGPIPE */
 if (signal(SIGPIPE, sig_int) == SIG_ERR) {
 printf("error registering signal \n");
 }

 /* Open Connection to GateKeeper */
 /* Fill in TCP port and IP address of Application */
 ServerInfo.IPAddress = inet_addr("111.222.111.222");
 ServerInfo.TCPPort=2000;

 /* Setup the connection for nonblocking I/O */
 serverHandle= GkapiSetupServer(&ServerInfo, &status, TRUE) ;

 /* Check status for errors */
 /* If the serverHandle < 0, there was an error. Check status for
 /* for the error code.
 /* If status == TCP_CONNECT_ERROR, error in connecting to GateKeeper */
 /* status == TCP_BIND_ERROR, error in connecting to Gatekeeper */
 /* status == TCP_LISTEN_ERROR, error in connecting to Gatekeeper */
 /* status == TCP_NONBLOCK_ERROR, error setting up for */
3-21
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
Gatekeeper API Examples
 /* nonblocking connection */
 /* status == TCP_HANDLE_ERROR, error in handle creation */
 /* For error conditions, quit */
 if (serverHandle < 0)
 exit(1);

 /* Set up select mask with the server’s handle to listen for
 * incoming connections.
 */

 max_fd = serverHandle;

 FD_ZERO(&rset);
 FD_SET(serverHandle, &rset);

 for (; ;) {
 /* If status is PROCESSING_SUCCESSFUL wait for incoming connections
 * and read events */
 n = select(max_fd + 1, &rset, NULL, NULL, NULL);

 /* If the select event has occurred on the server handle,
 * it is a new incoming connection.
 */
 if (FD_ISSET(serverHandle, &rset)) {
 connInfo = (GKAPI_SOCK_INFO_T *)malloc(sizeof(GKAPI_SOCK_INFO_T));
 connInfo->TCPPort = ServerInfo.TCPPort;
 connInfo->IPAddress = ServerInfo.IPAddress;
 conn_handle = GkapiAcceptConnection(connInfo, &status,
 serverHandle, &client_addr);
 /* If conn_handle < 0, there is an error. Ignore and continue to
 * to process other select events.
 * If conn_handle is valid, add new connection
 * to select read list
 */
 FD_SET(conn_handle, &rset);

 /* Setup the max file descriptor we need to select on */
 if (conn_handle > max_fd)
 max_fd = conn_handle;

 /* Add this new connection to list of active connections */
 for (i=0; i<MAX_CLIENTS; i++) {
 if (client[i].handle == 0) {
 client[i].handle = conn_handle;
 client[i].buf = 0;
 client[i].conn_info = connInfo;
 }
 }

 /* The application set GK triggers for this connection at
 * this point.
 */
 }

 /*
 * Check to see if the select event is a read occurring
 * on one of the existing connections. If so, have GKAPI process the
 * received buffer.
 */
 for (i=0; n>0,i<=MAX_CLIENTS; i++,n--) {
 if (client[i].handle <= 0)
 continue;

 if (FD_ISSET(client[i].handle, &rset)) {
3-22
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
Gatekeeper API Examples
 if (client[i].buf == 0) {
 readMsgPtr=GetReadMsgBuffer();
 } else {
 readMsgPtr=client[i].buf;
 }

 /* If a read event has occurred:
 * Allocate a read buffer if it isn’t a pending read.
 * Call ReadMsgBuffer
 * Process Message
 * Build Response if required
 */
 if(readMsgPtr != NULL) {
 status= ReadMsgBuffer(client[i].conn_info, readMsgPtr);

 /* Check if readMsgPtr is NULL, if NULL,
 * memory allocation failed.
 */
 /* if readMsgPtr != NULL, continue */
 if(status == PROCESSING_SUCCESSFUL) {
 client[i].buf = 0;
 /* Process the Message */
 /* Extract message received */
 switch(readMsgPtr->msgType) {
 case RRQ_REQUEST_MSG:
 status=BuildRRQResponse(readMsgPtr, &ServerInfo);
 /* Check status for errors.
 * If TCP_WRITE_ERROR or TCP_CONNECTION_CLOSED
 * call CloseGateKeeperConnection(&ServerInfo)
 * Reopen connection to GateKeeper.
 * Check for other errors.
 */

FreeReadMsgBuffer(readMsgPtr);
 break;

 case ARQ_REQUEST_MSG:
 /* Do processing */

FreeReadMsgBuffer(readMsgPtr);
 break;

 case MSG_NOT_SUPPORTED:
FreeReadMsgBuffer(readMsgPtr);

 break;

 default:
FreeReadMsgBuffer(readMsgPtr);

 break;
 }

 } /* End of status == PROCESSING_SUCCESSFUL */

 /* Check status for errors */

 if ((status == TCP_READ_ERROR) || /* TCP error encountered */
 (status == TCP_CONNECTION_CLOSED) || /*connection closed*/
 (status == MSG_READ_ERROR)) { /* Message not understood */
 /* Free the read buffer
 * Close connection to GateKeeper and
 * free system resources
 */

 FreeReadMsgBuffer(readMsgPtr);
 CloseGateKeeperConnection(client[i].conn_info);

 /* Reopen connection to GateKeeper */
 }
3-23
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
Gatekeeper API Examples
 /* Check for other error conditions:
 * status==MEM_ALLOC_FAIL
 * status==NULL_POINTER_PASSED
 */

FreeReadMsgBuffer(readMsgPtr);

 /* status==INCOMPLETE_MSG_READ */
 /* Call ReadMsgBuffer on the next read event */
 if (status == INCOMPLETE_MSG_READ)
 client[i].buf = readMsgPtr;

 }
 }
 }
 }
}

STATUS_TYPE BuildRRQResponse(GK_READ_MSG_TYPE *ptr,
 GKAPI_SOCK_INFO_T *connectPtr)
{
 GK_WRITE_MSG_TYPE *writePtr;
 HEADER_INFO_TYPE *headerPtr;
 char buffer1[100];
 char buffer2[100];
 STATUS_TYPE status;

 headerPtr=&ptr->MESSAGE_TYPE.rrqReqMsg.headerInfo;
 /* allocate memory for writePtr, writePtr=malloc(...) */
 /* Fill in msgType and header information */
 writePtr->msgType=RRQ_RESPONSE_MSG;

 writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.headerInfo.versionId = APP_VER;
 strcpy(writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.headerInfo.from,
 headerPtr->to);
 strcpy(writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.headerInfo.to,
 headerPtr->from);
 strcpy(writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.headerInfo.
 transactionID, headerPtr->transactionID);

 /* Fill in parameters */
 strcpy(buffer1, "M:joe_smith");
 strcpy(buffer2, "1800");
 writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.terminalAlias=buffer1;
 writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.supportedPrefix=buffer2;

 /* Send message to GateKeeper */
 status= WriteResponseMsg(connectPtr, writePtr);
 /* If memory was allocated for writePtr, free(writePtr) */
 return(status);
}

STATUS_TYPE BuildRRQRegisterMsg(GKAPI_SOCK_INFO_T *ServerInfo)
{
 GK_REGISTER_MSG_TYPE *regPtr;
 STATUS_TYPE status;
 int i=0;
 char buffer1[20];

 /* Allocate memory for regPtr, regPtr=malloc(...) */
 /* After allocating memory:
 * Fill in header info and
3-24
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
Gatekeeper API Examples
 * message parameters if needed
 */

 /* Fill in message type */
 regPtr->msgType = RRQ_REGISTER_MSG;

 /* Fill in header info */
 regPtr->
 REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.versionId =
 APP_VER;
 strcpy(regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.from,
 "APPL 1");
 strcpy(regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.to,
 "GK 1");
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.notificationOnly
 =FALSE;
 /* Set priority */
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.priority=1;

 /* Specify filters for RRQ message */
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.terminalType[0] =
 VOICEGATEWAY;
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.terminalType[1] = MCU;

 for (i=2; i<MAX_NUM_ENDPOINT_TYPES; i++) {
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.terminalType[i] =
 ENDPOINT_INFO_NOT_RCVD;
 }

 strcpy(buffer1, "1#");
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.supportedPrefix[0]=buffer1;
 for (i=1; i< MAX_NUM_SUPPORTED_PREFIX; i++) {
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.supportedPrefix[i] = NULL;
 }
 /* Now gatekeeper will only send an RRQ message to the application
 * if filter conditions are satisfied.
 */
 status= WriteRegisterMessage(ServerInfo, regPtr);
 /* If memory was allocated for regPtr, free(regPtr) */
 return(status);
}

STATUS_TYPE BuildRRQUnRegisterMsg(GKAPI_SOCK_INFO_T *ServerInfo)
{
 GK_UNREGISTER_MSG_TYPE unRegMsg;
 STATUS_TYPE status;

 unRegMsg.versionId = APP_VER;
 strcpy(unRegMsg.from, "APPL 1");
 strcpy(unRegMsg.to, "GK 1");
 unRegMsg.unregisterMsg = RRQ_REGISTER_MSG;
 /* Set priority */
 unRegMsg.priority=1;

 status= WriteUnregisterMessage(ServerInfo, &unRegMsg);
 return(status);
}

void sig_int(int sigNo)
{
 switch (sigNo) {
 case SIGPIPE:
 printf("SIGPIPE received\n");
 break;
3-25
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper
Gatekeeper API Examples
 /* case ... */
 default:
 }
}

3-26
Cisco Gatekeeper External Interface Reference, Version 3.1

Cisco IOS Releases 12.2(8)T

	Implementing an External Interface to the Cisco�IOS�Gatekeeper
	How the External Interface Works
	How Gatekeeper Triggers Work
	Statically Configured Triggers
	Dynamically Configured Triggers
	API Functions
	GKTMP Messages
	Example of a Dynamic Trigger Registration Message

	Specifying Wildcards in Triggers
	Notification-Only Triggers

	How RAS Messages are Processed
	Processing of xRQ Requests
	Processing of LCF Requests
	Processing of LRJ Requests

	How Security Works
	CryptoTokens and Cisco Gateways
	Requirements for using CryptoTokens
	Validating a CryptoToken
	CryptoTokens in RAS Messages

	GKTMP Message Examples
	Populating an External Application’s Registration Database
	800 Number Lookup
	Internet Call-Waiting

	How the API Works
	Linking with the Gatekeeper API
	Guidelines for Using the Gatekeeper API

	Gatekeeper API Examples

