
A P P E N D I X
 C
Regular Expressions
This appendix explains what regular expressions are and how you use them in router configurations.
It also gives you details for composing regular expressions. This appendix has the following sections:

• General Concepts

• Using Regular Expressions

• Creating Regular Expressions

• Practical Examples

General Concepts
A regular expression is a pattern to match against an input string. You specify the pattern that a string
must match when you compose a regular expression. Matching a string to the specified pattern is
called “pattern matching.” Pattern matching either succeeds or fails.

For example, you can specify in an X.25 routing table that incoming packets with destination
addresses beginning with 3107 get routed to serial interface 0. In this example, the pattern to match
is the3107 specified in the X.25 routing table. The string is the initial portion of the destination
address of any incoming X.25 packet. When the destination address (string) matches3107(pattern),
then pattern matching succeeds, and the IOS software routes the packet to serial interface 0. When
the initial portion of the destination address does not match3107, then pattern matching fails, and
the IOS software does not route the packet to serial interface 0.

If a regular expression can match two different parts of an input string, it will match the earliest part
first.

Using Regular Expressions
There are several implementations of regular expressions in Cisco router configurations. Generally,
you use regular expressions in the following ways:

• To specify chat scripts for asynchronous lines in the dial-on-demand routing (DDR) feature

• To specify routes in a routing table for the X.25 switching feature

• To filter packets and routing information in the DECnet and BGP protocols
 Regular Expressions C-1

Creating Regular Expressions
Specifying Chat Scripts
On asynchronous lines, chat scripts send commands for modem dialing and logging in to remote
systems. You use a regular expression in themodem chat-script command to specify the name of
the chat script that the IOS software is to execute on a particular asynchronous line. You can also use
regular expressions in thedialer map command to specify a “modem” script or “system” script to
be used for a connection to one or multiple sites on an asynchronous interface.

For configuration information on chat scripts, refer to theRouter Products Configuration Guide,the
“Configuring DDR” chapter. For details on themodem chat-script anddialer map commands,
refer to the “DDR Commands” chapter of theRouter Products Command Reference publication.

Specifying Routes in a Routing Table
As described in the “General Concepts” section, you can use regular expressions to help specify
routes in an X.25 routing table. When you create entries in an X.25 routing table, you can use regular
expressions in thex25 route command to help specify routes for incoming calls. When a router
receives an incoming call that should be forwarded to its destination, the IOS software consults the
X.25 routing table to determine the route. The IOS software compares the X.121 network interface
address (or destination address) field and the Call User Data (CUD) field of the incoming packet with
the routing table to determine the route. When the destination address and the CUD of the incoming
packet match the X.121 and CUD regular expressions you specified in the routing table, the router
forwards the call.

For details on creating an X.25 routing table, refer to theRouter Products Configuration Guide, the
“Configuring X.25 and LAPB” chapter. Also see thex25 route command in the “X.25 and LAPB
Commands” chapter of theRouter Products Command Reference publication.

Filtering Packets and Routing Information
You can use regular expressions in access lists for both DECnet and BGP. In DECnet, you can use
regular expressions in theaccess-listcommand to filterconnect initiatepackets. With these packets,
you can filter packets by DECnet object type, such as MAIL. In BGP, you use regular expressions
in theip as-path access-listcommand for path filtering by neighbor. Using regular expressions, you
specify an access list filter on both incoming and outbound updates based on the BGP autonomous
system paths.

For configuration information on filtering connect initiate packets and path filtering by neighbor,
refer to theRouter Products Configuration Guide, the “Configuring DECnet” and “Configuring IP
Routing Protocols” chapters.

For detailed information on theaccess-list andip as-path access-list commands, refer to the
“DECnet Commands” and “IP Routing Protocols Commands” chapters of theRouter Products
Command Reference publication.

Creating Regular Expressions
A regular expression can be a single-character pattern or a multiple-character pattern. That is, a
regular expression can be a single character that matches the same single character in the input string
or multiple characters that match the same multiple characters in the input string. This section
describes creating both single-character patterns and multiple-character patterns. It also discusses
creating more complex regular expressions using multipliers, alternation, anchoring, and
parentheses.
C-2 Protocol Translation Configuration Gude and Command Reference

Creating Regular Expressions
Single-Character Patterns
The simplest regular expression is a single character that matches itself in the input string. For
example, the single-character regular expression3 matches a corresponding3 in the input string.
You can use any letter (A-Z, a-z) or number (0-9) as a single-character pattern. The following
examples are single-character regular expression patterns:

A

k

5

You can also use other keyboard characters (such as ! or ~) as single-character patterns, but certain
keyboard characters have special meaning when used in regular expressions. Table C-1 lists the
keyboard characters with special meaning.

Table C-1 Characters with Special Meaning

To use these special characters as single-character patterns, remove the special meaning by
preceding each character with a backslash (\). The following examples are single-character patterns
matching a dollar sign, an underscore, and a plus sign, respectively:

\$

_

\+

You can specify a range of single-character patterns to match against a string. For example, you can
create a regular expression that matches a string containing one of the following letters:a, e, i, o, and
u. One and only one of these characters must exist in the string for pattern matching to succeed. To
specify a range of single-character patterns, enclose the single-character patterns in square brackets
([]). The order of characters within the brackets is not important. For example,[aeiou] matches any
one of the five vowels of the lowercase alphabet, while[abcdABCD] matches any one of the first
four letters of the lower- or uppercase alphabet.

You can simplify ranges by typing only the end points of the range separated by a dash (-). Simplify
the previous range as follows:

[a-dA-D]

To add a dash as a single-character pattern in your range, include another dash and precede it with a
backslash:

[a-dA-D\-]

Character Special Meaning

. Matches any single character, including white space.

* Matches 0 or more sequences of the pattern.

+ Matches 1 or more sequences of the pattern.

? Matches 0 or 1 occurrences of the pattern.

^ Matches the beginning of the input string.

$ Matches the end of the input string.

_ (underscore)
Matches a comma (,), left brace ({), right brace (}), left
parenthesis, right parenthesis, the beginning of the input
string, the end of the input string, or a space.
 Regular Expressions C-3

Creating Regular Expressions
You can also include a right square bracket (]) as a single-character pattern in your range. To do so,
enter the following:

[a-dA-D\-\]]

The previous example matches any one of the first four letters of the lower- or uppercase alphabet,
a dash, or a right square bracket.

You can reverse the matching of the range by including a caret (^) at the start of the range. The
following example matches any letterexcept the ones listed.

[^a-dqsv]

The following example matches anything except a right square bracket (]) or the letterd:

[^\]d]

Multiple-Character Patterns
When creating regular expressions, you can also specify a pattern containing multiple characters.
You create multiple-character regular expressions by joining letters, numbers, or keyboard
characters that do not have special meaning. For example,a4% is a multiple-character regular
expression. Precede keyboard characters that have special meaning with a backslash when you want
to remove their special meaning.

With multiple-character patterns, order is important. The regular expressiona4% matches the
charactera followed by the number4 followed by a% sign. If the input string does not havea4%, in
that order, pattern matching fails. The multiple-character regular expressiona. uses the special
meaning of the dot key to match the lettera followed by any single character. With this example, the
stringsab, a!, ora2 are all valid matches for the regular expression.

You can remove the special meaning of the dot character by preceding it with a backslash. In the
expressiona\. only the stringa. matches the regular expression.

You can create a multiple-character regular expressions containing all letters, all digits, all keyboard
characters, or a combination of letters, digits, and other keyboard characters. The following
examples are all valid regular expressions:

telebit

3107

v32bis

Multipliers
You can create more complex regular expressions that instruct the IOS software to match multiple
occurrences of a specified regular expression. To do so, you use some special characters with your
single- and multiple-character patterns. Table C-2 lists the special characters that specify
“multiples” of a regular expression.
C-4 Protocol Translation Configuration Gude and Command Reference

Creating Regular Expressions
Table C-2 Special Characters Used as Multipliers

The following example matches any number of occurrences of the lettera, including none:

a*

The following pattern requires there to be at least one lettera in the string to be matched:

a+

The following pattern matches the stringbbor bab:

ba?b

The following string matches any number of asterisks (*):

**

To use multipliers with multiple-character patterns, enclose the pattern in parentheses. In the
following example, the pattern matches any number of the multiple-character stringab:

(ab)*

As a more complex example, the following pattern matches one or more instances of alphanumeric
pairs (but not none; that is, anempty string is not a match):

([A-Za-z][0-9])+

The order for matches using multipliers (*, +, or ?) is longest construct first. Nested constructs are
matched from outside to inside. Concatenated constructs are matched beginning at the left side of
the construct. Thus, the regular expression matchesA9b3, but not9Ab3because the alphabet is given
first in the construct.

Alternation
Alternation allows you to specify alternative patterns to match against a string. You separate the
alternative patterns with a vertical bar (|). Exactly one of the alternatives can match the input string.
For example, the regular expressioncodex|telebitmatches the stringcodexor the stringtelebit, but
not bothcodex andtelebit.

Anchoring
You can instruct the IOS software to match a regular expression pattern against the beginning or the
end of the input string. That is, you can specify that the beginning or end of an input string contain
a specific pattern. You “anchor” these regular expressions to a portion of the input string using the
special characters shown in Table C-3.

Character Description

* Matches 0 or more single- or multiple-character patterns.

+ Matches 1 or more single- or multiple-character patterns.

? Matches 0 or 1 occurrences of the single- or
multiple-character pattern.
 Regular Expressions C-5

Creating Regular Expressions
Table C-3 Special Characters Used for Anchoring

Note another use for the ^ symbol. As an example, the following regular expression matches an input
string only if the string starts withabcd:

^abcd

Whereas the following expression is a range that matches any single letter, as long as it is not the
lettersa, b, c, or d:

[^abcd]

With the following example, the regular expression matches an input string that ends with.12:

$\.12

Contrast these anchoring characters with the special character underscore (_). Underscore matches
the beginning of a string (^), the end of a string ($), parentheses (()), space (), braces ({ }), comma
(,), or underscore (_). With the underscore character, you can specify that a pattern exist anywhere
in the input string. For example,_1300_matches any string that has1300somewhere in the string.
The string’s1300 can be preceded by or end with a space, brace, comma, or underscore. So, while
{1300_ matches the regular expression,21300 and13000 do not.

Using the underscore character, you can replace long regular expression lists. For example, you can
replace the following list of regular expressions with simply_1300_:

^1300$

^1300(space)

(space)1300

{1300,

,1300,

{1300}

,1300,

(1300

Parentheses for Recall
As shown in the “Multipliers” section, you use parentheses with multiple-character regular
expressions to multiply the occurrence of a pattern. You can also use parentheses around a single-
or multiple-character pattern to instruct the IOS software to remember a pattern for use elsewhere in
the regular expression.

To create a regular expression that recalls a previous pattern, you use parentheses to instruct memory
of a specific pattern and a backslash (\) followed by an integer to reuse the remembered pattern. The
integer specifies the occurrence of a parentheses in the regular expression pattern. If you have more
than one remembered pattern in your regular expression, then \1 uses the first remembered pattern
and \2 uses the second remembered pattern, and so on.

Character Description

^ Matches the beginning of the input string.

$ Matches the end of the input string.
C-6 Protocol Translation Configuration Gude and Command Reference

Practical Examples
The following regular expression uses parentheses for recall:

a(.)bc(.)\1\2

This regular expression matches a lettera followed by any character (call it character #1) followed
by bcfollowed by any character (character #2) followed by character #1 again followed by character
#2 again. So, the regular expression can matchaZbcTZT. The software remembers that character #1
is Z and character #2 isT and then usesZ andT again later in the regular expression.

The parentheses do not change whether the pattern matches the input string or not, they only instruct
the software to recall that part of the matched string. So, the regular expression(a)b still matches the
input stringab, and(^3107)still matches a string beginning with3107, but now the IOS software
can recall thea of theab string and the starting3107 of another string for use later.

Practical Examples
This section shows you practical examples of regular expressions. The examples correspond with
the various ways you can use regular expressions in your configurations.

The following example uses regular expressions in themodem chat-scriptcommand to specify chat
scripts for lines connected to Telebit and U.S. Robotics modems. The regular expressions are
telebit.* andusr.*. When the chat script name (the string) matches the regular expression (the
pattern specified in the command), then the IOS software uses that chat script for the specified lines.
For lines 1 and 6, the IOS software uses the chat script namedtelebit followed by any number of
occurrences (*) of any character (.). For lines 7 and 12, the IOS software uses the chat script named
usr followed by any number of occurrences (*) of any character (.).

! Some lines have Telebit modems
line 1 6
modem chat-script telebit.*
! Some lines have US Robotics modems
line 7 12
modem chat-script usr.*

In the following X.25 switching feature example, thex25 route command causes all X.25 calls to
addresses whose first four DNIC digits are 1111 to be routed to serial interface 3. Note that the first
four digits (^1111) are followed by a regular expression pattern that the IOS software is to remember
for use later. The \1 in the rewrite pattern recalls the portion of the original address matched by the
digits following the 1111, but changes the first four digits (1111) to 2222.

x25 route ^1111(.*) substitute-dest 2222\1 interface serial 3

In the following DECnet example, the regular expression is^^SYSTEM$. The access list permits
access to all connect initiate packets that match the access identification of SYSTEM.

access-list 300 permit 0.0 63.1023 eq id ^SYSTEM$

The following BGP example contains the regular expression^123.*. The example specifies that
BGP neighbor with IP address 128.125.1.1 is not sent advertisements about any path through or from
the adjacent autonomous system 123:

ip as-path access-list 1 deny ^123 .*

router bgp 109
network 131.108.0.0
neighbor 129.140.6.6 remote-as 123
neighbor 128.125.1.1 remote-as 47
neighbor 18.125.1.1 filter-list 1 out
 Regular Expressions C-7

Practical Examples
C-8 Protocol Translation Configuration Gude and Command Reference

	C
	Regular Expressions
	General Concepts
	Using Regular Expressions
	Specifying Chat Scripts
	Specifying Routes in a Routing Table
	Filtering Packets and Routing Information

	Creating Regular Expressions
	Single-Character Patterns
	Table�C-1 Characters with Special Meaning

	Multiple-Character Patterns
	Multipliers
	Table�C-2 Special Characters Used as Multipliers

	Alternation
	Anchoring
	Table�C-3 Special Characters Used for Anchoring

	Parentheses for Recall

	Practical Examples

