
debug serial interface
debug serial interface
Use the debug serial interface EXEC command to display information on a serial connection
failure. Theno form of this command disables debugging output.

debug serial interface
no debug serial interface

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
If the show interface serialcommand shows that the line and protocol are down, you can use the
debug serial interfacecommand to isolate a timing problem as the cause of a connection failure. If
the keepalive values in the mineseq, yourseen, and myseen fields are not incrementing in each
subsequent line of output, there is a timing or line problem at one end of the connection.

Note While thedebug serial interface command typically does not generate a lot of output,
nevertheless use it cautiously during production hours. When SMDS is enabled, for example, it can
generate considerable output.

The output of thedebug serial interface command can vary, depending on the type of WAN
configured for an interface: Frame Relay, HDLC, HSSI, SMDS, or X.25. The output also can vary
depending on the type of encapsulation configured for that interface. The hardware platform also can
affectdebug serial interface output.

The following sections show sampledebug serial interfacedisplays for various configurations and
describe the possible output the command can generate for these configurations.

Debug Serial Interface for Frame Relay Encapsulation
The following message is displayed if the encapsulation for the interface is Frame Relay (or HDLC)
and the router attempts to send a packet containing an unknown packet type:

Illegal serial link type code xxx
 Debug Commands 2-201

debug serial interface
Debug Serial Interface for HDLC
Figure 2-110 shows sampledebug serial interfaceoutput for an HDLC connection when keepalives
are enabled.

Figure 2-110 Sample Debug Serial Interface Output for HDLC

In Figure 2-110, thedebug serial interfacedisplay shows that the remote router is not receiving all
the keepalives the router is sending. When the difference in the values in the myseq and mineseen
fields exceeds three, the line goes down and the interface is reset.

Table 2-65 describes significant fields shown in Figure 2-110.

Table 2-65 Debug Serial Interface Field Descriptions for HDLC

Field Description

Serial1 Interface through which the serial connection is taking place.

HDLC The serial connection is an HDLC connection.

myseq 636119 The myseq counter increases by one each time the router sends a
keepalive packet to the remote router.

mineseen 636119 The value of the mineseen counter reflects the last myseq sequence
number the remote router has acknowledged receiving from the router.
The remote router stores this value in its yourseen counter and sends that
value in a keepalive packet to the router.

yourseen 515032 The yourseen counter reflects the value of the myseq sequence number
the router has received in a keepalive packet from the remote router.

line up The connection between the routers is maintained. Value changes to
“line down” if the values of the myseq and myseen fields in a keepalive
packet differ by more than three. Value returns to “line up” when the
interface is reset. If the line is in loopback mode, (“looped”) appears
after this field.

router# debug serial interface

Serial1: HDLC myseq 636119, mineseen 636119, yourseen 515032, line up
Serial1: HDLC myseq 636120, mineseen 636120, yourseen 515033, line up
Serial1: HDLC myseq 636121, mineseen 636121, yourseen 515034, line up
Serial1: HDLC myseq 636122, mineseen 636122, yourseen 515035, line up
Serial1: HDLC myseq 636123, mineseen 636123, yourseen 515036, line up
Serial1: HDLC myseq 636124, mineseen 636124, yourseen 515037, line up
Serial1: HDLC myseq 636125, mineseen 636125, yourseen 515038, line up
Serial1: HDLC myseq 636126, mineseen 636126, yourseen 515039, line up

Serial1: HDLC myseq 636127, mineseen 636127, yourseen 515040, line up
Serial1: HDLC myseq 636128, mineseen 636127, yourseen 515041, line up
Serial1: HDLC myseq 636129, mineseen 636129, yourseen 515042, line up

Serial1: HDLC myseq 636130, mineseen 636130, yourseen 515043, line up
Serial1: HDLC myseq 636131, mineseen 636130, yourseen 515044, line up
Serial1: HDLC myseq 636132, mineseen 636130, yourseen 515045, line up
Serial1: HDLC myseq 636133, mineseen 636130, yourseen 515046, line down
Serial1: HDLC myseq 636127, mineseen 636127, yourseen 515040, line up
Serial1: HDLC myseq 636128, mineseen 636127, yourseen 515041, line up
Serial1: HDLC myseq 636129, mineseen 636129, yourseen 515042, line up S

25
61

1 missed
keepalive

3 missed
keepalives;
line goes
down and
interface is
reset
2-202 Debug Command Reference

debug serial interface
Table 2-66 describes additional error messages that thedebug serial interface command can
generate for HDLC.

Table 2-66 Debug Serial Interface Error Messages for HDLC

Debug Serial Interface for HSSI
On an HSSI interface, thedebug serial interface command can generate the following additional
error message:

HSSI0: Reset from 0x nnnnnnn

This message indicates that the HSSI hardware has been reset. The 0xnnnnnnn variable is the
address of the routine requesting that the hardware be reset; this value is useful only to development
engineers.

Field Description

Illegal serial link type codexxx, PC
= 0xnnnnnn

This message is displayed if the router attempts to send a packet
containing an unknown packet type.

Illegal HDLC serial type codexxx,
PC = 0xnnnnn

This message is displayed if an unknown packet type is received.

Serial 0: attempting to restart This message is displayed periodically if the interface is down. The
hardware is then reset to hopefully correct the problem.

Serial 0: Received bridge packet
sent tonnnnnnnnn

This message is displayed if a bridge packet is received over a serial
interface configured for HDLC, and bridging is not configured on
that interface.
 Debug Commands 2-203

debug serial interface
Debug Serial Interface for ISDN Basic Rate
Table 2-67 describes error messages that thedebug serial interface command can generate for
ISDN Basic Rate.

Table 2-67 Debug Serial Interface Message Descriptions for ISDN Basic Rate

Message Description

BRI: D-chan collision A collision on the ISDN D-channel has occurred; the
software will retry transmission.

Received SID Loss of Frame Alignment int. The ISDN hardware has lost frame alignment. This
usually indicates a problem with the ISDN network.

Unexpected IMP int: ipr = 0xnn The ISDN hardware received an unexpected interrupt.
The 0xnnvariable indicates the value returned by the
interrupt register.

BRI(d): RX Frame Length Violation. Length =n

BRI(d): RX Nonoctet Aligned Frame

BRI(d): RX Abort Sequence

BRI(d): RX CRC Error

BRI(d): RX Overrun Error

BRI(d): RX Carrier Detect Lost

Any of these messages can be displayed when a
receive error occurs on one of the ISDN channels. The
(d) indicates which channel it is on. These messages
can indicate a problem with the ISDN network
connection.

BRI0: Reset from 0xnnnnnnn The BRI hardware has been reset. The 0xnnnnnnn
variable is the address of the routine that requested that
the hardware be reset; it is useful only to development
engineers.

BRI(d): Bad state in SCMs scm1 = x scm2 = x
scm3 = x

BRI(d): Bad state in SCONs scon1 =x scon2 =x
scon3 =x

BRI(d): Bad state ub SCR; SCR = x

Any of these messages can be displayed if the ISDN
hardware is not in the proper state. The hardware is
then reset. If the message is displayed constantly, it
usually indicates a hardware problem.

BRI(d): Illegal packet encapsulation = n This message is displayed if a packet is received, but
the encapsulation used for the packet is not recognized.
It can indicate that the interface is misconfigured.
2-204 Debug Command Reference

debug serial interface
Debug Serial Interface for an MK5025 Device
Table 2-68 describes the additional error messages that thedebug serial interface command can
generate for an MK5025 device.

Table 2-68 Debug Serial Interface Message Descriptions for an MK5025 Device

Debug Serial Interface for SMDS Encapsulation
When encapsulation is set to SMDS,debug serial interface displays SMDS packets that are sent
and received, as well as any error messages resulting from SMDS packet transmission.

The error messages that thedebug serial interface command can generate for SMDS follow.

The following message indicates that a new protocol requested SMDS to encapsulate the data for
transmission. SMDS is not yet able to encapsulate the protocol.

SMDS: Error on Serial 0, encapsulation bad protocol = x

The following message indicates that SMDS was asked to encapsulate a packet, but no
corresponding destination E.164 SMDS address was found in any of the static SMDS tables or in
the ARP tables:

SMDS send: Error in encapsulation, no hardware address, type = x

The following message indicates that a protocol such as CLNS or IP has been enabled on an SMDS
interface, but the corresponding multicast addresses have not been configured. Then variable
displays the link type for which encapsulation was requested. This value is only significant to Cisco
as an internal protocol type value.

SMDS: Send, Error in encapsulation, type= n

The following messages can occur when a corrupted packet is received on an SMDS interface. The
router expectedx, but receivedy.

SMDS: Invalid packet, Reserved NOT ZERO, x y

Message Description

MK5(d): Reset from 0xnnnnnnnn This message indicates that the hardware has been reset. The
0xnnnnnnnvariable is the address of the routine that requested
that the hardware be reset; it is useful only to development
engineers.

MK5(d): Illegal packet encapsulation =n This message is displayed if a packet is received, but the
encapsulation used for the packet is not recognized. Possibly
an indication that the interface is misconfigured.

MK5(d): No packet available for packet
realignment

This message is displayed in cases where the serial driver
attempted to get a buffer (memory) and was unable to do so.

MK5(d): Bad state in CSR0 = (x) This message is displayed if the hardware is not in the proper
state. The hardware is then reset. If this message is displayed
constantly, it usually indicates a hardware problem.

MK5(d): New serial state =n This message is displayed to indicate that the hardware has
interrupted the software. It displays the state that the hardware
is reporting.

MK5(d): DCD is down.

MK5(d): DCD is up.

If the interrupt indicates that the state of carrier has changed,
one of these messages is displayed to indicate the current state
of DCD.
 Debug Commands 2-205

debug serial interface
SMDS: Invalid packet, TAG mismatch x y
SMDS: Invalid packet, Bad TRAILER length x y

The following messages can indicate an invalid length for an SMDS packet:

SMDS: Invalid packet, Bad BA length x
SMDS: Invalid packet, Bad header extension length x
SMDS: Invalid packet, Bad header extension type x
SMDS: Invalid packet, Bad header extension value x

The following messages are displayed when thedebug serial interface command is enabled:

Interface Serial 0 Sending SMDS L3 packet:
SMDS: dgsize: x type:0 xn src: y dst: z

If the debug serial interfacecommand is enabled, the following message can be displayed when a
packet is received on an SMDS interface, but the destination SMDS address does not match any on
that interface:

SMDS: Packet n, not addressed to us
2-206 Debug Command Reference

debug serial packet
debug serial packet
Use the debug serial packetEXEC command to display more detailed serial interface debugging
information than you can obtain usingdebug serial interface command. Theno form of this
command disables debugging output.

debug serial packet
no debug serial packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Thedebug serial packetcommand generates output that is dependent on the type of serial interface
and the encapsulation that is running on that interface. The hardware platform also can impactdebug
serial packet output.

Sample Display
Thedebug serial packet command displays output for only SMDS encapsulations.

Debug Serial Packet for SMDS Encapsulation
Figure 2-111 shows sample output when SMDS is enabled on the interface.

Figure 2-111 Sample Debug Serial Packet Output for SMDS

router# debug serial packet

Interface Serial2 Sending SMDS L3 packet:
SMDS Header : Id: 00 RSVD: 00 BEtag: EC Basize: 0044
Dest:E18009999999FFFF Src:C12015804721FFFF Xh:04030000030001000000000000000000
SMDS LLC : AA AA 03 00 00 00 80 38
SMDS Data : E1 19 01 00 00 80 00 00 0C 00 38 1F 00 0A 00 80 00 00 0C 01 2B 71
SMDS Data : 06 01 01 0F 1E 24 00 EC 00 44 00 02 00 00 83 6C 7D 00 00 00 00 00
SMDS Trailer : RSVD: 00 BEtag: EC Length: 0044

As Figure 2-111 shows, when encapsulation is set to SMDS,debug serial packetdisplays the entire
SMDS header (in hex), as well as some payload data on transmit or receive. This information is
useful only when you have an understanding of the SMDS protocol. The first line of the output
indicates either Sending or Receiving.
 Debug Commands 2-207

debug source bridge
debug source bridge
Use thedebug source bridge EXEC command to display information about packets and frames
transferred across a source-route bridge. Theno form of this command disables debugging output.

[no] debug source bridge

Sample Display
Figure 2-112 shows sampledebug source bridgeoutput for peer bridges using TCP as a transport
mechanism. The remote source-route bridging (RSRB) network configuration has ring 2 and ring 1
bridged together through remote peer bridges. The remote peer bridges are connected via a serial
line and use TCP as the transport mechanism.

Figure 2-112 Sample Debug Source Bridge Output—TCP Environment

router# debug source bridge

RSRB: remote explorer to 5/131.108.250.1/1996 srn 2 [C840.0021.0050.0000]
RSRB: Version/Ring XReq sent to peer 5/131.108.250.1/1996
RSRB: Received version reply from 5/131.108.250.1/1996 (version 2)
RSRB: DATA: 5/131.108.250.1/1996 Ring Xchg Rep, trn 2, vrn 5, off 18, len 10
RSRB: added bridge 1, ring 1 for 5/131.108.240.1/1996
RSRB: DATA: 5/131.108.250.1/1996 Explorer trn 2, vrn 5, off 18, len 69
RSRB: DATA: 5/131.108.250.1/1996 Forward trn 2, vrn 5, off 0, len 92
RSRB: DATA: forward Forward srn 2, br 1, vrn 5 to peer 5/131.108.250.1/1996

Explanations for individual lines of output in Figure 2-112 follow.

The following line indicates that a remote explorer frame has been sent to IP address 131.108.250.1
and like all RSRB TCP connections, has been assigned port 1996. The bridge belongs to ring
group 5. The explorer frame originated from ring number 2. The routing information field (RIF)
descriptor has been generated by the local station and indicates that the frame was sent out via
bridge 1 onto virtual ring 5.

RSRB: remote explorer to 5/131.108.250.1/1996 srn 2 [C840.0021.0050.0000]

The following line indicates that a request for remote peer information has been sent to IP address
131.108.250.1, TCP port 1996. The bridge belongs to ring group 5.

RSRB: Version/Ring XReq sent to peer 5/131.108.250.1/1996

The following line is the response to the version request previously sent. The response is sent from
IP address 131.108.250.1, TCP port 1996. The bridge belongs to ring group 5.

RSRB: Received version reply from 5/131.108.250.1/1996 (version 2)

The following line is the response to the ring request previously sent. The response is sent from IP
address 131.108.250.1, TCP port 1996. The target ring number is 2, virtual ring number is 5, the
offset is 18, and the length of the frame is 10 bytes.

RSRB: DATA: 5/131.108.250.1/1996 Ring Xchg Rep, trn 2, vrn 5, off 0, len 10

The following line indicates that bridge 1 and ring 1 were added to the source-bridge table for IP
address 131.108.250.1, TCP port 1996.

RSRB: added bridge 1, ring 1 for 5/131.108.250.1/1996
2-208 Debug Command Reference

debug source bridge
The following line indicates that a packet containing an explorer frame came across virtual ring 5
from IP address 131.108.250.1, TCP port 1996. The packet is 69 bytes in length. This packet is
received after the Ring Exchange information was received and updated on both sides.

RSRB: DATA: 5/131.108.250.1/1996 Explorer trn 2, vrn 5, off 18, len 69

The following line indicates that a packet containing data came across virtual ring 5 from IP address
131.108.250.1 over TCP port 1996. The packet is being placed on the local target ring 2.The packet
is 92 bytes in length.

RSRB: DATA: 5/131.108.250.1/1996 Forward trn 2, vrn 5, off 0, len 92

The following line indicates that a packet containing data is being forwarded to the peer that has IP
131.108.250.1 address belonging to local ring 2 and bridge 1. The packet is forwarded via virtual
ring 5. This packet is sent after the Ring Exchange information was received and updated on both
sides.

RSRB: DATA: forward Forward srn 2, br 1, vrn 5 to peer 5/131.108.250.1/1996

Figure 2-113 shows sampledebug source bridgeoutput for peer bridges using direct encapsulation
as a transport mechanism. The RSRB network configuration has ring 1 and ring 2 bridged together
through peer bridges. The peer bridges are connected via a serial line and use TCP as the transport
mechanism.

Figure 2-113 Sample Debug Source Bridge Output—Direct Encapsulation Environment

router# debug source bridge

RSRB: remote explorer to 5/Serial1 srn 1 [C840.0011.0050.0000]
RSRB: Version/Ring XReq sent to peer 5/Serial1
RSRB: Received version reply from 5/Serial1 (version 2)
RSRB: IFin: 5/Serial1 Ring Xchg, Rep trn 0, vrn 5, off 0, len 10
RSRB: added bridge 1, ring 1 for 5/Serial1

Explanations for individual lines of output in Figure 2-113 follow.

The following line indicates that a remote explorer frame was sent to remote peer Serial1, which
belongs to ring group 5. The explorer frame originated from ring number 1. The routing information
field (RIF) descriptor 0011.0050 was generated by the local station and indicates that the frame was
sent out via bridge 1 onto virtual ring 5.

RSRB: remote explorer to 5/Serial1 srn 1 [C840.0011.0050.0000]

The following line indicates that a request for remote peer information was sent to Serial1. The
bridge belongs to ring group 5.

RSRB: Version/Ring XReq sent to peer 5/Serial1

The following line is the response to the version request previously sent. The response is sent from
Serial 1. The bridge belongs to ring group 5 and the version is 2.

RSRB: Received version reply from 5/Serial1 (version 2)

The following line is the response to the ring request previously sent. The response is sent from
Serial1. The target ring number is 2, virtual ring number is 5, the offset is 0, and the length of the
frame is 39 bytes.

RSRB: IFin: 5/Serial1 Ring Xchg Rep, trn 2, vrn 5, off 0, len 39
 Debug Commands 2-209

debug source bridge
The following line indicates that bridge 1 and ring 1 were added to the source-bridge table for
Serial1.

RSRB: added bridge 1, ring 1 for 5/Serial1
2-210 Debug Command Reference

debug source error
debug source error
Use thedebug source errorEXEC command to display source-route bridging errors. Theno form
of this command disables debugging output.

[no] debug source error

Usage Guidelines
The debug source error command displays some output also found in thedebug source bridge
output. Refer to thedebug source bridge command for other possible output.

Sample Displays
In all of the following examples ofdebug source errorcommand messages, the variablenumberis
the Token Ring interface. For example, if the line of output starts with SRB1, the output relates to
the Token Ring 1 interface. SRB indicates a source-route bridging message. RSRB indicates a
remote source-route bridging message. SRTLB indicates a source-route translational bridging
message.

In the following example, a packet of protocolprotocol-type was dropped:

SRBnumber drop: Routed protocol protocol-type

In the following example, an Address Resolution Protocol (ARP) packet was dropped. ARP is
defined in RFC 826.

SRBnumber drop:TYPE_RFC826_ARP

In the following example, the current Cisco IOS version does not support Qualified Logical Link
Control (QLLC). Reconfigure the router with an image that has the IBM feature set.

RSRB: QLLC not supported in version version
Please reconfigure.

In the following example, the packet was dropped because the outgoing interface of the router was
down:

RSRB IF: outgoing interface not up, dropping packet

In the following example, the router received an out-of-sequence IP sequence number in a Fast
Sequenced Transport (FST) packet. FST has no recovery for this problem like TCP encapsulation
does.

RSRB FST: bad sequence number dropping.

In the following example, the router was unable to locate the virtual interface:

RSRB: couldn't find virtual interface

In the following example, the peer router’s TCP queue is full. TCPD indicates that this is a TCP
debug.

RSRB TCPD: tcp queue full for peer

In the following example, the router was unable to send data to thepeerrouter. Aresultof 1 indicates
that the TCP queue is full. Aresult of -1 indicates that the RSRB peer is closed.

RSRB TCPD: tcp send failed for peer result
 Debug Commands 2-211

debug source error
In the following example, the Routing Information Identifier was not set in the explorer packet going
forward. The packet will not support SRB, so it is dropped.

vrforward_explorer - RII not set

In the following example, a packet sent to a virtual bridge in the router did not include a routing
information field (RIF) to tell the router which route to use:

RSRB: no RIF on packet sent to virtual bridge

The following example indicates that the RIF did not contain any information or the length field was
set to zero:

RSRB: RIF length of zero sent to virtual bridge

The following message occurs when the local service access point (LSAP) is out of range. The
variablelsap-outis the value,typeis the type of RSRB peer, andstateis the state of the RSRB peer.

VRP: rsrb_lsap_out = lsap-out, type = type, state = state

In the following message, the router is unable to find another router with which to exchange bridge
protocol data units (BPDU’s). BPDU’s are exchanged to set up the spanning tree and determine the
forwarding path.

RSRB(span): BPDU's peer not found

Related Commands
debug source bridge
debug source event
2-212 Debug Command Reference

debug source event
debug source event
Use thedebug source event EXEC command to display information on source-route bridging
activity. Theno form of this command disables debugging output.

[no] debug source event

Usage Guidelines
Some of the output from thedebug source bridgeanddebug source errorcommands is identical
to the output of this command.

Note In order to use thedebug source eventcommand to display traffic source-routed through an
interface, you first must disable fast switching of SRB frames with theno source bridge
route-cache interface configuration command.

Sample Display
Figure 2-204 shows sampledebug source event output.

Figure 2-114 Sample Debug Source Event Output

router# debug source event

RSRB0: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9
[0800.3201.00A1.0050]
RSRB0: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9
[0800.3201.00A1.0050]
RSRB0: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9
[0800.3201.00A1.0050]
RSRB0: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9
[0800.3201.00A1.0050]
RSRB0: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9
[0800.3201.00A1.0050]

Table 2-107 describes significant fields shown in Figure 2-204.

Table 2-69 Debug Source Event Field Descriptions

Field Description

RSRB0: Indication that this RIF cache entry is for the Token Ring 0 interface, which
has been configured for remote source-route bridging. (SRB1, in contrast,
would indicate that this RIF cache entry is for Token Ring 1, configured for
source-route bridging.)

forward Forward (normal data) packet, in contrast to a control packet containing
proprietary Cisco bridging information.

srn 5 Ring number of the packet’s source ring.

bn 1 Bridge number of the bridge this packet traverses.

trn 10 Ring number of the packet’s target ring.

src: 8110.2222.33c1 Source address of the route in this RIF cache entry.

dst: 1000.5a59.04f9 Destination address of the route in this RIF cache entry.
 Debug Commands 2-213

debug source event
Examples of otherdebug source event messages follow.

In the following example messages, SRBnumber or RSRBnumberdenotes a message associated
with interface Token Ringnumber. A numberof 99 denotes the remote side of the network.

SRBnumber : no path, s: source-MAC-addr d: dst-MAC-addr rif: rif

In the preceding example, a bridgeable packet came in on interface Token Ringnumberbut there
was nowhere to send it. This is most likely a configuration error. For example, an interface has source
bridging turned on, but it is not connected to another source bridging interface or a ring group.

In the following example, a bridgeable packet has been forwarded from Token Ringnumber to the
target ring. The two interfaces are directly linked.

SRBnumber : direct forward (srn ring bn bridge trn ring)

In the following examples, a proxy explorer reply was not generated because there was no way to
get to the address from this interface. The packet came from the node with the firstaddress.

SRBnumber : br dropped proxy XID, address for address , wrong vring (rem)
SRBnumber : br dropped proxy TEST, address for address , wrong vring (rem)
SRBnumber : br dropped proxy XID, address for address , wrong vring (local)
SRBnumber : br dropped proxy TEST, address for address , wrong vring (local)
SRBnumber : br dropped proxy XID, address for address , no path
SRBnumber : br dropped proxy TEST, address for address , no path

In the following example, an appropriate proxy explorer reply was generated on behalf of the second
address. It is sent to the firstaddress.

SRBnumber : br sent proxy XID, address for address [rif]
SRBnumber : br sent proxy TEST, address for address [rif]

The following example indicates that the broadcast bits were not set, or that the routing information
indicator on the packet was not set:

SRBnumber : illegal explorer, s: source-MAC-addr d: dst-MAC-addr rif: rif

The following example indicates that the direction bit in the RIF field was set, or that an odd packet
length was encountered. Such packets are dropped.

SRBnumber : bad explorer control, D set or odd

The following example indicates that a spanning explorer was dropped because the spanning option
was not configured on the interface:

SRBnumber : span dropped, input off, s: source-MAC-addr d: dst-MAC-addr rif: rif

The following example indicates that a spanning explorer was dropped because it had traversed the
ring previously:

SRBnumber : span violation, s: source-MAC-addr d: dst-MAC-addr rif: rif

The following example indicates that an explorer was dropped because the maximum hop count
limit was reached on that interface:

SRBnumber : max hops reached - hop-cnt , s: source-MAC-addr d: dst-MAC-addr rif: rif

[0800.3201.00A1.0050] RIF string in this RIF cache entry.

Table 2-69 Debug Source Event Field Descriptions (Continued)

Field Description
2-214 Debug Command Reference

debug source event
The following example indicates that the ring exchange request was sent to the indicated peer. This
request tells the remote side which rings this node has and asks for a reply indicating which rings
that side has.

RSRB: sent RingXreq to ring-group / ip-addr

The following example indicates that a message was sent to the remote peer. Thelabelvariable can
be AHDR (active header), PHDR (passive header), HDR (normal header), or DATA (data exchange),
andop can be Forward, Explorer, Ring Xchg, Req, Ring Xchg, Rep, Unknown Ring Group,
Unknown Peer, or Unknown Target Ring.

RSRB: label : sent op to ring-group / ip-addr

The following example indicates that the remote bridge and ring pair were removed from or added
to the local ring group table because the remote peer changed:

RSRB: removing bn bridge rn ring from ring-group / ip-addr
RSRB: added bridge bridge , ring ring for ring-group / ip-addr

The following example shows miscellaneous remote peer connection establishment messages:

RSRB: peer ring-group / ip-addr closed [last state n]
RSRB: passive open ip-addr (remote port) -> local port
RSRB: CONN: opening peer ring-group / ip-addr , attempt n
RSRB: CONN: Remote closed ring-group / ip-addr on open
RSRB: CONN: peer ring-group / ip-addr open failed, reason [code]

The following example shows that an explorer packet was propagated onto the local ring from the
remote ring group:

RSRBn: sent local explorer, bridge bridge trn ring , [rif]

The following messages indicate that the remote source-route bridging code found the packet was
in error:

RSRBn: ring group ring-group not found
RSRBn: explorer rif [rif] not long enough

The following example indicates that a buffer could not be obtained for a ring exchange packet; this
is an internal error.

RSRB: couldn’t get pak for ringXchg

The following example indicates that a ring exchange packet was received that had an incorrect
length; this is an internal error.

RSRB: XCHG: req/reply badly formed, length pak-length , peer peer-id

The following example indicates that a ring entry was removed for the peer; the ring was possibly
disconnected from the network, causing the remote router to send an update to all its peers.

RSRB: removing bridge bridge ring ring from peer-id ring-type

The following example indicates that a ring entry was added for the specified peer; the ring was
possibly added to the network, causing the other router to send an update to all its peers.

RSRB: added bridge bridge , ring ring for peer-id

The following example indicates that no memory was available to add a ring number to the ring
group specified; this is an internal error.

RSRB: no memory for ring element ring-group
 Debug Commands 2-215

debug source event
The following example indicates that memory was corrupted for a connection block; this is an
internal error.

RSRB: CONN: corrupt connection block

The following example indicates that a connector process started, but that there was no packet to
process; this is an internal error.

RSRB: CONN: warning, no initial packet, peer: ip-addr peer-pointer

The following example indicates that a packet was received with a version number different from
the one present on the router:

RSRB: IF New version. local= local-version , remote= remote-version , pak-op-code peer-id

The following example indicates that a packet with a bad op code was received for a direct
encapsulation peer; this is an internal error.

RSRB: IFin: bad op op-code (op code string) from peer-id

The following example indicates that the virtual ring header will not fit on the packet to be sent to
the peer; this is an internal error:

RSRB: vrif_sender, hdr won't fit

The following example indicates that the specified peer is being opened. The retry count specifies
the number of times the opening operation is attempted.

RSRB: CONN: opening peer peer-id retry-count

The following example indicates that the router, configured for FST encapsulation, received a
version reply to the version request packet it had sent previously:

RSRB: FST Rcvd version reply from peer-id (version version-number)

The following example indicates that the router, configured for FST encapsulation, sent a version
request packet to the specified peer:

RSRB: FST Version Request. op = opcode , peer-id

The following example indicates that the router received a packet with a bad op code from the
specified peer; this is an internal error.

RSRB: FSTin: bad op opcode (op code string) from peer-id

The following example indicates that the TCP connection between the router and the specified peer
is being aborted:

RSRB: aborting ring-group / peer-id (vrtcpd_abort called)

The following example indicates that an attempt to establish a TCP connection to a remote peer
timed out:

RSRB: CONN: attempt timed out

The following example indicates that a packet was dropped because the ring group number in the
packet did not correlate with the ring groups configured on the router:

RSRBnumber : ring group ring-group not found
2-216 Debug Command Reference

debug span
debug span
Use thedebug span EXEC command to display information on changes in the spanning-tree
topology when debugging a transparent bridge. Theno form of this command disables debugging
output.

debug span
no debug span

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is useful for tracking and verifying that the spanning-tree protocol is operating
correctly.

Sample Display—IEEE Spanning Tree
Sampledebug span output for an IEEE BPDU packet follows:

ST: Ether4 0000000000000A080002A02D6700000000000A080002A02D6780010000140002000F00

Figure 2-115 shows the precedingdebug span output broken up by fields and labeled to aid
documentation.

Figure 2-115 Sample Debug Span Output for an IEEE BPDU Packet

Table 2-70 describes significant fields shown in Figure 2-115.

Table 2-70 Debug Span Field Descriptions for an IEEE BPDU Packet

Field Description

ST: Indication that this is a spanning tree packet.

Ether4 Interface receiving the packet.

(A) 0000 Indication that this is an IEEE BPDU packet.

(B) 00 Version.

(C) 00 Command mode:

00 indicates config BPDU.

80 indicates the Topology Change Notification (TCN) BPDU.

(D) 00 Topology change acknowledgment:

00 indicates no change.

80 indicates a change notification.

ST: Ether4 0000 00 00 00 000A 080002A02D67 00000000 000A 080002A02D67 80 01 0000 1400 0200 0F00
 A B C D E F G H I J K L M N O S

25
75
 Debug Commands 2-217

debug span
Sample Display—DEC Spanning Tree
Sampledebug span output for a DEC BPDU packet follows:

ST: Ethernet4 E1190100000200000C01A2C90064008000000C0106CE0A01050F1E6A

Figure 2-116 shows the precedingdebug span output broken up by fields and labeled to aid
documentation.

Figure 2-116 Sample Debug Span Output

Table 2-71 describes significant fields shown in Figure 2-116.

Table 2-71 Debug Span Field Descriptions for a DEC BPDU Packet

(E) 000A Root priority.

(F) 080002A02D67 Root ID.

(G) 00000000 Root path cost (0 means the sender of this BPDU packet is the root
bridge).

(H) 000A Bridge priority.

(I) 080002A02D67 Bridge ID.

(J) 80 Port priority.

(K) 01 Port No. 1.

(L) 0000 Message age in 256ths of a second (0 seconds, in this case).

(M) 1400 Maximum age in 256ths of a second (20 seconds, in this case).

(N) 0200 Hello time in 256ths of a second (2 seconds, in this case).

(O) 0F00 Forward delay in 256ths of a second (15 seconds, in this case).

Field Description

ST: Indication that this is a spanning tree packet.

Ethernet4 Interface receiving the packet.

(A) E1 Indication that this is a DEC BPDU packet.

(B) 19 Indication that this is a DEC Hello packet. Possible values are as
follows:

0x19—DEC Hello

0x02—Topology change notification (TCN)

(C) 01 DEC version.

(D) 00 Flag that is a bit field with the following mapping:

1—TCN

2—TCN acknowledgment

8—Use short timers

(E) 0002 Root priority.

Field Description

E1 19 01 00 0002 00000C01A2C9 0064 0080 00000C0106CE 0A 01 05 0F 1E 6A
A B C D E F G H I J K L M N O S

25
76
2-218 Debug Command Reference

debug span
(F) 00000C01A2C9 Root ID (MAC address).

(G) 0064 Root path cost (translated as 100 in decimal notation).

(H) 0080 Bridge priority.

(I) 00000C0106CE Bridge ID.

(J) 0A Port ID (in contrast to interface number).

(K) 01 Message age (in seconds).

(L) 05 Hello time (in seconds).

(M) 0F Maximum age (in seconds).

(N) 1E Forward delay (in seconds).

(O) 6A Not applicable.

Field Description
 Debug Commands 2-219

debug sse
debug sse
Use thedebug sseEXEC command to display information for the Silicon Switching Engine (SSE)
processor. Theno form of this command disables debugging output.

debug sse
no debug sse

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
By using thedebug sse command, you can observe statistics and counters maintained by the SSE.

Sample Display
Figure 2-117 shows sampledebug sse output.

Figure 2-117 Sample Debug SSE Output

router# debug sse
SSE: IP number of cache entries changed 273 274
SSE: IP number of cache entries changed 273 274
SSE: bridging enabled
SSE: interface Ethernet0/0 icb 0x30 addr 0x29 status 0x21A040 protos 0x11
SSE: interface Ethernet0/1 icb 0x33 addr 0x29 status 0x21A040 protos 0x11
SSE: interface Ethernet0/2 icb 0x36 addr 0x29 status 0x21A040 protos 0x10
SSE: interface Ethernet0/3 icb 0x39 addr 0x29 status 0x21A040 protos 0x11
SSE: interface Ethernet0/4 icb 0x3C addr 0x29 status 0x21A040 protos 0x10
SSE: interface Ethernet0/5 icb 0x3F addr 0x29 status 0x21A040 protos 0x11
SSE: interface Hssi1/0 icb 0x48 addr 0x122 status 0x421E080 protos 0x11
SSE: cache update took 316ms, elapsed 320ms

Explanations for representative lines of output in Figure 2-117 follow.

The following line indicates that the SSE cache is being updated due to a change in the IP fast
switching cache:

SSE: IP number of cache entries changed 273 274

The following line indicates that bridging functions were enabled on the SSE:

SSE: bridging enabled

The following lines indicate that the SSE is now loaded with information about the interfaces:

SSE: interface Ethernet0/0 icb 0x30 addr 0x29 status 0x21A040 protos 0x11
SSE: interface Ethernet0/1 icb 0x33 addr 0x29 status 0x21A040 protos 0x11
SSE: interface Ethernet0/2 icb 0x36 addr 0x29 status 0x21A040 protos 0x10
SSE: interface Ethernet0/3 icb 0x39 addr 0x29 status 0x21A040 protos 0x11
SSE: interface Ethernet0/4 icb 0x3C addr 0x29 status 0x21A040 protos 0x10
SSE: interface Ethernet0/5 icb 0x3F addr 0x29 status 0x21A040 protos 0x11
SSE: interface Hssi1/0 icb 0x48 addr 0x122 status 0x421E080 protos 0x11
2-220 Debug Command Reference

debug sse
The following line indicates that the SSE took 316 ms of processor time to update the SSE cache.
The value of 320 ms represents the total time elapsed while the cache updates were performed.

SSE: cache update took 316ms, elapsed 320ms
 Debug Commands 2-221

debug standby
debug standby
Use thedebug standbyEXEC command to display hot standby protocol state changes. Theno form
of this command disables debugging output.

debug standby
no debug standby

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Thedebug standby command displays hot standby protocol state changes and debugging
information regarding transmission and receipt of hot standby protocol packets. Use this command
to determine whether hot standby routers recognize one another and take the proper actions.

Sample Display
Figure 2-118 shows sampledebug standby output.

Figure 2-118 Sample Debug Standby Output

router# debug standby

SB: Ethernet0 state Virgin -> Listen
SB: Starting up hot standby process
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB: Ethernet0 state Listen -> Speak
SB:Ethernet0 Hello out 198.92.72.20 Speak pri 100 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello out 198.92.72.20 Speak pri 100 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello out 198.92.72.20 Speak pri 100 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB: Ethernet0 state Speak -> Standby
SB:Ethernet0 Hello out 198.92.72.20 Standby pri 100 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello out 198.92.72.20 Standby pri 100 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello out 198.92.72.20 Standby pri 100 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB: Ethernet0 Coup out 198.92.72.20 Standby pri 100 hel 3 hol 10 ip 198.92.72.29
SB: Ethernet0 state Standby -> Active
SB:Ethernet0 Hello out 198.92.72.20 Active pri 100 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Speak pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello out 198.92.72.20 Active pri 100 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Speak pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello out 198.92.72.20 Active pri 100 hel 3 hol 10 ip 198.92.72.29
2-222 Debug Command Reference

debug standby
Table 2-72 describes significant fields shown in Figure 2-118.

Table 2-72 Debug Standby Field Descriptions

Explanations for representative lines of output in Figure 2-118 follow.

The following line indicates that the router is initiating the hot standby protocol. Thestandby ip
interface configuration command enables hot standby.

SB: Starting up hot standby process

The following line indicates that a state transition occurred on the interface:

SB: Ethernet0 state Listen -> Speak

Field Description

SB An abbreviation for “standby.”

Ethernet0 The interface on which a hot standby packet was sent or received.

Hello in Hello packet received from the specified IP address.

Hello out Hello packet sent from the specified IP address.

pri Priority advertised in the hello packet.

hel Hello interval advertised in the hello packet.

hol Holddown interval advertised in the hello packet.

ip address Hot standby group IP address advertised in the hello packet.

state Transition from one state to another.

Coup outaddress Coup packet sent by the router from the specified IP address.
 Debug Commands 2-223

debug stun packet
debug stun packet
Use thedebug stun packet EXEC command to display information on packets traveling through
the serial tunnel (STUN) links. Use theno form of this command to disable debugging output.

debug stun packet[group] [address]
no debug stun packet[group] [address]

Syntax Description

Command Mode
EXEC

Usage Guidelines
Because using this command is processor intensive, it is best to use it after hours, rather than in a
production environment. It is also best to turn this command on by itself, rather than use it in
conjunction with other debug commands.

Sample Display
Figure 2-119 shows sampledebug stun packet output.

 group (Optional) Decimal integer assigned to a group. Using this
option limits output to packets associated with the specified
STUN group.

address (Optional) Output is further limited to only those packets
containing the specified STUN address. Theaddress
argument is in the appropriate format for the STUN
protocol running for the specified group.
2-224 Debug Command Reference

debug stun packet
Figure 2-119 Sample Debug STUN Packet Output

Explanations for individual lines of output from Figure 2-119 follow.

The following line describes an X1 type of packet:

STUN sdlc: 0:00:04 Serial3 NDI: (0C2/008) U: SNRM PF:1

Table 2-73 describes significant fields shown in this line ofdebug stun packet output.

Table 2-73 Debug STUN Packet Field Descriptions

Field Description

STUN sdlc: Indication that the STUN feature is providing the
information.

0:00:04 Time elapsed since receipt of previous packet.

Serial3 Interface type and unit number reporting the event.

NDI: The type of cloud separating the SDLC end nodes.
Possible values follow:

NDI—Network input

SDI—Serial link

0C2 SDLC address of the SDLC connection.

008 A modulo value of 8.

router# debug stun packet

STUN sdlc: 0:00:04 Serial3 NDI: (0C2/008) U: SNRM PF:1
STUN sdlc: 0:00:04 Serial3 NDI: (0C2/008) U: SNRM PF:1
STUN sdlc: 0:00:01 Serial3 SDI: (0C2/008) U: UA PF:1
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 NDI: (0C2/008) I: PF:1 NR:000 NS:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) I: PF:1 NR:001 NS:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:001
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:001
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:001
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:001 S

25
63

X3 type
of packet

X1 type
of packet

X2 type
of packet
 Debug Commands 2-225

debug stun packet
The following line of output describes an X2 type of packet:

STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000

All the fields in the previous line of output match those for an X1 type of packet, except the last field,
which is additional. NR:000 indicates a receive count of 0; the range for the receive count is 0 to 7.

The following line of output describes an X3 type of packet:

STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S:I PF:1 NR:000 NS:000

All fields in the previous line of output match those for an X2 type of packet, except the last field,
which is additional. NS:000 indicates a send count of 0; the range for the send count is 0 to 7.

U:SNRM The frame type followed by the command or
response type. In this case it is an Unnumbered
frame that contains an SNRM (Set Normal
Response Mode) command. The possible frame
types are as follows:

I—Information frame

S—Supervisory frame. The possible commands
and responses are: RR (Receive Ready), RNR
(Receive Not Ready), and REJ (Reject).

U—Unnumbered frame. The possible commands
are: UI (Unnumbered Information), SNRM,
DISC/RD (Disconnect/Request Disconnect),
SIM/RIM, XID Exchange Identification), TEST.
The possible responses are UA (unnumbered
acknowledgment), DM (Disconnected Mode), and
FRMR (Frame Reject Mode)

PF:1 Poll/Final bit.

0—Off

1—On

Field Description
2-226 Debug Command Reference

debug tftp
debug tftp
Use thedebug tftp EXEC command to display Trivial File Transfer Protocol (TFTP) debugging
information when encountering problems netbooting or using theconfigure network or write
network commands. Theno form of this command disables debugging output.

debug tftp
no debug tftp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-120 shows sampledebug tftp output from the EXEC commandwrite network .

Figure 2-120 Sample Debug TFTP Output

router# debug tftp

TFTP: msclock 0x292B4; Sending write request (retry 0), socket_id 0x301DA8
TFTP: msclock 0x2A63C; Sending write request (retry 1), socket_id 0x301DA8
TFTP: msclock 0x2A6DC; Received ACK for block 0, socket_id 0x301DA8
TFTP: msclock 0x2A6DC; Received ACK for block 0, socket_id 0x301DA8
TFTP: msclock 0x2A6DC; Sending block 1 (retry 0), socket_id 0x301DA8
TFTP: msclock 0x2A6E4; Received ACK for block 1, socket_id 0x301DA8

Table 2-74 describes significant fields shown in the first line of output from Figure 2-120.

Table 2-74 Debug TFTP Field Descriptions

Message Description

TFTP: This entry describes a TFTP packet.

msclock 0x292B4; Internal timekeeping clock (in milliseconds).

Sending write request
(retry 0)

The TFTP operation.

socket_id 0x301DA8 Unique memory address for the socket for the TFTP connection.
 Debug Commands 2-227

debug token ring
debug token ring
Use thedebug token ringEXEC command to display messages about Token Ring interface activity.
Theno form of this command disables debugging output.

debug token ring
no debug token ring

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command reports several lines of information for each packet sent or received and is intended
for low traffic, detailed debugging.

The Token Ring interface records provide information regarding the current state of the ring. These
messages are only displayed when thedebug token events command is enabled.

Thedebug token ring command invokes verbose Token Ring hardware debugging. This includes
detailed displays as traffic arrives and departs the unit.

Note It is best to use this command only on router/bridges with light loads.

Sample Display
Figure 2-121 shows sampledebug token ring output.

Figure 2-121 Sample Debug Token Ring Output

router# debug token ring

TR0: Interface is alive, phys. addr 5000.1234.5678
TR0: in: MAC: acfc: 0x1105 Dst: c000.ffff.ffff Src: 5000.1234.5678 bf: 0x45
TR0: in: riflen 0, rd_offset 0, llc_offset 40
TR0: out: MAC: acfc: 0x0040 Dst: 5000.1234.5678 Src: 5000.1234.5678 bf: 0x00
TR0: out: LLC: AAAA0300 00009000 00000100 AAC00000 00000802 50001234 ln: 28
TR0: in: MAC: acfc: 0x1140 Dst: 5000.1234.5678 Src: 5000.1234.5678 bf: 0x09
TR0: in: LLC: AAAA0300 00009000 00000100 AAC0B24A 4B4A6768 74732072 ln: 28
TR0: in: riflen 0, rd_offset 0, llc_offset 14
TR0: out: MAC: acfc: 0x0040 Dst: 5000.1234.5678 Src: 5000.1234.5678 bf: 0x00
TR0: out: LLC: AAAA0300 00009000 00000100 D1D00000 FE11E636 96884006 ln: 28
TR0: in: MAC: acfc: 0x1140 Dst: 5000.1234.5678 Src: 5000.1234.5678 bf: 0x09
TR0: in: LLC: AAAA0300 00009000 00000100 D1D0774C 4DC2078B 3D000160 ln: 28
TR0: in: riflen 0, rd_offset 0, llc_offset 14
TR0: out: MAC: acfc: 0x0040 Dst: 5000.1234.5678 Src: 5000.1234.5678 bf: 0x00
TR0: out: LLC: AAAA0300 00009000 00000100 F8E00000 FE11E636 96884006 ln: 28

Table 2-75 describes significant fields shown in the second line of output from Figure 2-121.
2-228 Debug Command Reference

debug token ring
Table 2-75 Debug Token Ring Field Descriptions—Part 1

Table 2-76 describes significant fields shown in the third line of output from Figure 2-121.

Table 2-76 Debug Token Ring Field Descriptions—Part 2

Table 2-77 describes significant fields shown in the fifth line of output from Figure 2-121.

Table 2-77 Debug Token Ring Field Descriptions—Part 3

Message Description

TR0: Name of the interface associated with the Token Ring event.

in: Indication of whether the packet was input to the interface (in) or output from
the interface (out).

MAC: The type of packet, as follows:

MAC—Media Access Control

LLC—Link Level Control

acfc: 0x1105 Access Control, Frame Control bytes, as defined by the IEEE 802.5 standard.

Dst: c000.ffff.ffff Destination address of the frame.

Src: 5000.1234.5678 Source address of the frame.

bf: 0x45 Bridge flags for internal use by technical support staff.

Message Description

TR0: Name of the interface associated with the Token Ring event.

in: Indication of whether the packet was input to the interface (in) or output from
the interface (out).

riflen 0 Length of the RIF field (in bytes).

rd_offset 0 Offset (in bytes) of the frame pointing to the start of the RIF field.

llc_offset 40 Offset in the frame pointing to the start of the LLC field.

Message Description

TR0: Name of the interface associated with the Token Ring event.

out: Indication of whether the packet was input to the interface (in) or output from
the interface (out).

LLC: The type of frame, as follows:

MAC—Media Access Control

LLC—Link Level Control

AAAA0300 This and the octets that follow it indicate the contents (hex) of the frame.

ln: 28 The length of the information field (in bytes).
 Debug Commands 2-229

debug vines arp
debug vines arp
Use thedebug vines arp EXEC command to display debugging information on all Virtual
Integrated Network Service (VINES) Address Resolution Protocol (ARP) packets that the router
sends or receives. Theno form of this command disables debugging output.

debug vines arp
no debug vines arp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-122 shows sampledebug vines arp output.

Figure 2-122 Sample Debug VINES ARP Output

router# debug vines arp

VNSARP: received ARP type 0 from 0260.8c43.a7e4
VNSARP: sending ARP type 1 to 0260.8c43.a7e4
VNSARP: received ARP type 2 from 0260.8c43.a7e4
VNSARP: sending ARP type 3 to 0260.8c43.a7e4 assigning address 3001153C:8004
VSARP: received ARP type 0 from 0260.8342.1501
VSARP: sending ARP type 1 to 0260.8342.1501
VSARP: received ARP type 2 from 0260.8342.1501
VSARP: sending ARP type 3 to 0260.8342.1501 assigning address 3001153C:8005,
 sequence 143C, metric 2

In Figure 2-122, the first four lines show a non-sequenced ARP transaction and the second four lines
show a sequenced ARP transaction. Within the first group of four lines, the first line shows that the
router received an ARP request (type 0) from indicated station address 0260.8c43.a7e4. The second
line shows that the router is sending back the ARP service response (type 1), indicating that it is
willing to assign VINES Internet addresses. The third line shows that the router received a VINES
Internet address assignment request (type 2) from address 0260.8c43.a7e4. The fourth line shows
that the router is responding (type 3) to the address assignment request from the client and assigning
it the address 3001153C:8004.

Within the second group of four lines, the sequenced ARP packet also includes the router’ current
sequence number and the metric value between the router and the client.

Table 2-78 describes significant fields shown in Figure 2-122.
2-230 Debug Command Reference

debug vines arp
Table 2-78 Debug VINES ARP Field Descriptions

Field Description

VNSARP: Indicates that this is a Banyan VINES nonsequenced ARP message.

VSARP: Indicates that this is a Banyan VINES sequenced ARP message.

received ARP type 0 Indicates that an ARP request of type 0 was received. Possible type
values follow:

0—Query request. The ARP client broadcasts a type 0 message to
request an ARP service to respond.

1—Service response. The ARP service responds with a type 1 message
to an ARP client’s query request.

2—Assignment request. The ARP client responds to a service response
with a type 2 message to request a Banyan VINES Internet address.

3—Assignment response. The ARP service responds to an assignment
request with a type 3 message that includes the assigned Banyan VINES
Internet address.

from 0260.8c43.a7e4 Indicates the source address of the packet.
 Debug Commands 2-231

debug vines echo
debug vines echo
Use thedebug vines echo EXEC command to display information on all MAC-level echo packets
that the router sends or receives. Banyan VINES interface testing programs make use of these echo
packets. Theno form of this command disables debugging output.

debug vines echo
no debug vines echo

Syntax Description
This command has no arguments or keywords.

Note These echo packets do not include network layer addresses.

Command Mode
EXEC

Sample Display
Figure 2-123 shows sampledebug vines echo output.

Figure 2-123 Sample Debug VINES Echo Output

router# debug vines echo

VINESECHO: 100 byte packet from 0260.8c43.a7e4

Table 2-79 describes the fields shown in Figure 2-123.

Table 2-79 Debug VINES Echo Field Descriptions

Field Description

VINESECHO Indication that this is adebug vines echo message.

100 byte packet Packet size in bytes.

from 0260.8c43.a7e4 Source address of the echo packet.
2-232 Debug Command Reference

debug vines ipc
debug vines ipc
Use thedebug vines ipcEXEC command to display information on all transactions that occur at the
VINES IPC layer, which is one of the two VINES transport layers. Theno form of this command
disables debugging output.

debug vines ipc
no debug vines ipc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
You can use thedebug vines ipccommand to discover why an IPC layer process on the router is not
communicating with another IPC layer process on another router or Banyan VINES server.

Sample Display
Figure 2-124 shows sampledebug vines ipc output for three pairs of transactions. For more
information about these fields or their values, refer to Banyan VINES documentation.

Figure 2-124 Sample Debug VINES IPC Output

router# debug vines ipc

VIPC: sending IPC Data to Townsaver port 7 from port 7
 r_cid 0, l_cid 1, seq 1, ack 0, length 12
VIPC: received IPC Data from Townsaver port 7 to port 7
 r_cid 51, l_cid 1, seq 1, ack 1, length 32
VIPC: sending IPC Ack to Townsaver port 0 from port 0
 r_cid 51, l_cid 1, seq 1, ack 1, length 0

Table 2-80 describes the fields shown in Figure 2-124.
 Debug Commands 2-233

debug vines ipc
Table 2-80 VINES IPC Field Descriptions

Field Description

VIPC: Indicates that this is output from the debug vines ipccommand.

sending Indicates that the router is either sending an IPC packet to another router
or has received an IPC packet from another router.

IPC Data to Indicates the type of IPC frame:

Acknowledgment

Data

Datagram

Disconnect

Error

Probe

Townsaver port 7 Indicates the machine name as assigned using the VINEShost
command, or IP address of the other router. Also indicates the port on
that machine through which the packet has been transmitted.

from port 7 Indicates the port on the router through which the packet has been
transmitted.

r_cid 0, l_cid 1, seq 1, ack 0,
length 12

Indicates the values for various fields in the IPC layer header of this
packet. Refer to Banyan VINES documentation for more information.
2-234 Debug Command Reference

debug vines netrpc
debug vines netrpc
Use thedebug vines netrpc EXEC command to display information on all transactions that occur
at the VINES NetRPC layer, which is the VINES Session/Presentation layer. Theno form of this
command disables debugging output.

debug vines netrpc
no debug vines netrpc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
You can use thedebug vines netrpccommand to discover why a NetRPC layer process on the router
is not communicating with another NetRPC layer process on another router or Banyan server.

Sample Display
Figure 2-125 shows sampledebug vines netrpcoutput. For more information about these fields or
their values, refer to Banyan VINES documentation.

Figure 2-125 Sample Debug VINES NetRPC Output

router# debug vines netrpc

VRPC: sending RPC call to Townsaver
VRPC: received RPC return from Townsaver

Table 2-81 describes the fields shown in the first line of output in Figure 2-125.
 Debug Commands 2-235

debug vines netrpc
Table 2-81 Debug VINES NetRPC Field Descriptions

Field Description

VRPC: Indicates that this is output from thedebug vines netrpc command.

sending RPC Indicates that the router is either sending a NetRPC packet to another
router or has received a NetRPC packet from another router.

call Indicates the transaction type:

abort

call

reject

return

return address

search

search all

Townsaver Indicates the machine name as assigned using the VINEShostcommand
or IP address of the other router.
2-236 Debug Command Reference

debug vines packet
debug vines packet
Use thedebug vines packet EXEC command to display general VINES debugging information.
This information includes packets received, generated, and forwarded, as well as failed access
checks and other operations. Theno form of this command disables debugging output.

debug vines packet
no debug vines packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-126 shows sampledebug vines packet output.

Figure 2-126 Sample Debug VINES Packet Output

router# debug vines packet

VINES: s=30028CF9:1 (Ether2), d=FFFFFFFF:FFFF, rcvd w/ hops 0
VINES: s=3000CBD4:1 (Ether1), d=3002ABEA:1 (Ether2), g=3002ABEA:1, sent
VINES: s=3000CBD4:1 (Ether1), d=3000B959:1, rcvd by gw
VINES: s=3000B959:1 (local), d=3000CBD4:1 (Ether1), g=3000CBD4:1, sent

The following information describes selected lines of output from Figure 2-126.

Table 2-82 describes the fields shown in the first line of output.

Table 2-82 Debug VINES Packet Field Descriptions

Field Description

VINES: Indicates that this is a Banyan VINES packet.

s = 30028CF9:1 Indicates source address of the packet.

(Ether2) Indicates the interface through which the packet was received.

d = FFFFFFFF:FFFF Indicates that the destination is a broadcast address.

rcvd w/ hops 0 Indicates that the packet was received because it was a local broadcast packet.
The remaining hop count in the packet was zero (0).
 Debug Commands 2-237

debug vines packet
In the following line, the destination is the address 3002ABEA:1 associated with interface Ether2.
Source address 3000CBD4:1 sent a packet to this destination through the gateway at address
3000ABEA:1.

VINES: s=3000CBD4:1 (Ether1), d=3002ABEA:1 (Ethernet2), g=3002ABEA:1, sent

In the following line, the router being debugged is the destination address (3000B959:1):

VINES: s=3000CBD4:1 (Ether1), d=3000B959:1, rcvd by gw

In the following line, (local) indicates that the router being debugged generated the packet:

VINES: s=3000B959:1 (local), d=3000CBD4:1 (Ether1), g=3000CBD4:1, sent
2-238 Debug Command Reference

debug vines routing
debug vines routing
Use thedebug vines routing EXEC command to display information on all VINES RTP update
messages sent or received and all routing table activities that occur in the router. Theno form of this
command disables debugging output.

debug vines routing[verbose]
no debug vines routing

Syntax Description

Command Mode
EXEC

Sample Displays
Figure 2-127 shows sampledebug vines routing output.

Figure 2-127 Sample Debug VINES Routing Output

Figure 2-128 shows sampledebug vines routing verboseoutput.

Figure 2-128 Sample Debug VINES Routing Verbose Output

router# debug vines routing verbose

VRTP: sending update to Broadcast on Ethernet0
 network 30011E7E, metric 0020 (0.4000 seconds)
 network 30015800, metric 0010 (0.2000 seconds)
 network 3003148A, metric 0020 (0.4000 seconds)
VSRTP: generating change update, sequence number 0002C795
 network Router9 metric 0010, seq 00000000, flags 09
 network RouterZZ metric 0230, seq 00052194, flags 02
VSRTP: sent update to Broadcast on Hssi0
VSRTP: received update from LabRouter on Hssi0
 update: type 00, flags 07, id 000E, ofst 0000, seq 15DFC, met 0010
 network LabRouter from the server
 network Router9 metric 0020, seq 00000000, flags 09
VSRTP: LabRouter-Hs0-HDLC up -> up, change update, onemore

Figure 2-128 describes two VINES routing updates; the first includes two entries and the second
includes three entries. The following information describes selected lines of output.

verbose (Optional) Provides detailed information about the contents
of each update.

router# debug vines routing

VSRTP: generating change update, sequence number 0002C791
VSRTP: sent update to Broadcast on Hssi0
VSRTP: received update from LabRouter on Hssi0
VSRTP: LabRouter-Hs0-HDLC up -> up, change update, onemore
VRTP: sending update to Broadcast on Ethernet0
VSRTP: generating null update
VSRTP: Sending update to Aloe on Hssi0 S

28
54

Update sent

Update received
 Debug Commands 2-239

debug vines routing
The following line shows that the router sent a periodic routing update to the broadcast address
FFFFFFFF:FFFF through the Ethernet0 interface:

VRTP: sending update to Broadcast on Ethernet0

The following line indicates that the router knows how to reach network 30011E7E, which is a
metric of 0020 away from the router. The value that follows the metric (0.4000 seconds) interprets
the metric in seconds.

network 30011E7E, metric 0020 (0.4000 seconds)

The following lines show that the router sent a change routing update to the Broadcast addresses on
the Hssi0 interface using the Sequenced Routing Update Protocol (SRTP) routing protocol:

VSRTP: generating change update, sequence number 0002C795
VSRTP: Sending update to Broadcast on Hssi0

The lines in between the previous two indicate that the router knows how to reach network Router9,
which is a metric of 0010 (0.2000 seconds) away from the router. The sequence number for Router9
is zero, and according to the 0x08 bit in the flags field, is invalid. The 0x01 bit of the flags field
indicates that Router9 is attached via a LAN interface.

network Router9 metric 0010, seq 00000000, flags 09

The next lines indicate that the router can reach network RouterZZ, which is a metric of 0230
(7.0000 seconds) away from the router. The sequence number for RouterZZ is 0052194. The 0x02
bit of the flags field indicates that RouterZZ is attached via a WAN interface.

network RouterZZ metric 0230, seq 00052194, flags 02

The following line indicates that the router received a routing update from the router LabRouter
through the Hssi0 interface:

VINESRTP: received update from LabRouter on Hssi0

The following line displays all SRTP values contained in the header of the SRTP packet. This is a
type 00 packet, which is a routing update, and the flags field is set to 07, indicating that this is a
change update (0x04) and contains both the beginning (0x01) and end (0x02) of the update. This
overall update is update number 000E from the router, and this fragment of the update contains the
routes beginning at offset 0000 of the update. The sending router’s sequence number is currently
00015DFC, and its configured metric for this interface is 0010.

update: type 00, flags 07, id 000E, ofst 0000, seq 00015DFC, met 0010

The following line implies that the server sending this update is directly accessible to the router
(even though VINES servers do not explicitly list themselves in routing updates). Because this is an
implicit entry in the table, the other information for this entry is taken from the previous line.

network LabRouter from the server

As the first actual entry in the routing update from LabRouter, the following line indicates that
Router9 can be reached by sending to this server. This network is a metric of 0020 away from the
sending server.

network Router9 metric 0020, seq 00000000, flags 09
2-240 Debug Command Reference

debug vines service
debug vines service
Use thedebug vines serviceEXEC command to display information on all transactions that occur
at the VINES Service (or applications) layer. Theno form of this command disables debugging
output.

debug vines service
no debug vines service

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
You can use thedebug vines servicecommand to discover why a VINES Service layer process on
the router is not communicating with another Service layer process on another router or Banyan
server.

Note Because thedebug vines service command provides the highest level overview of VINES
traffic through the router, it is best to begin debugging using this command, and then proceed to use
lower-level VINESdebug commands as necessary.

Sample Display
Figure 2-129 shows sampledebug vines service output.

Figure 2-129 Sample Debug VINES Service Output

As Figure 2-129 suggests,debug vines service lines of output appear as activity pairs—either a
sent/response pair as shown, or as a received/sent pair.

Table 2-83 describes the fields shown in the second line of output in Figure 2-129. For more
information about these fields or their values, refer to Banyan VINES documentation.

router# debug vines service

VSRV: Get Time Info sent to Townsaver
VSRV: Get Time Info response from Townsaver, time: 01:47:54 PDT Apr 29 1993
VSRV: epoch SS@Aloe@Servers-10, age: 0:15:15

S
25

65

Sent/
Response
pair
 Debug Commands 2-241

debug vines service
Table 2-83 Debug VINES Service Field Descriptions—Part 1

Table 2-84 describes the fields shown in the third line of output in Figure 2-129. This line is an
extension of the first two lines of output. For more information about these fields or their values, refer
to Banyan VINES documentation.

Table 2-84 Debug VINES Service Field Descriptions—Part 2

Field Description

VSRV: Indicates that this is output from thedebug vines service command.

Get Time Info Indicates one of three packet types:

Get Time Info

Time Set

Time Sync

response from Indicates whether the packet was sent to another router, a response from
another router, or received from another router.

Townsaver Indicates the machine name as assigned using the VINEShost
command, or IP address of the other router.

time: 01:47:54 PDT Apr 29 1993 Indicates the current time in hours:minutes:seconds and current date.

Field Description

VSRV: Output from thedebug vines service command.

epoch Line of output that describes a VINES epoch.

SS@Aloe@Servers-10 Epoch name.

age: 0:15:15 Epoch—elapsed time since the time was last set in the network.
2-242 Debug Command Reference

debug vines state
debug vines state
Use thedebug vines state EXEC command to display information on the VINES SRTP state
machine transactions. Theno form of this command disables debugging output.

debug vines state
no debug vines state

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command provides a subset of the information provided by thedebug vines routingcommand,
showing only the transactions made by the SRTP state machine. Refer to thedebug vines routing
command for descriptions of output from thedebug vines state command.
 Debug Commands 2-243

debug vines table
debug vines table
Use thedebug vines table EXEC command to display information on all modifications to the
VINES routing table. Theno form of this command disables debugging output.

debug vines table
no debug vines table

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command provides a subset of the information produced by thedebug vines routingcommand,
as well as some more detailed information on table additions and deletions.

Sample Display
Figure 2-130 shows sampledebug vines table output.

Figure 2-130 Sample Debug VINES Table Output

router# debug vines table

VINESRTP: create neighbor 3001153C:8004, interface Ethernet0

Table 2-85 describes significant fields shown in Figure 2-130.

Table 2-85 Debug VINES Table Field Descriptions

Field Description

VINESRTP: Indicates that this is adebug vines routing or debug vines table
message.

create neighbor 3001153C:8004 Indicates that the client at address 3001153C:8004 has been added to the
Banyan VINES neighbor table.

interface Ethernet 0 Indicates that this neighbor can be reached through the router interface
named Ethernet0.
2-244 Debug Command Reference

debug x25 all
debug x25 all
Use thedebug x25 all EXEC command to display information on all X.25 traffic, including data,
control messages, and flow control (RR and RNR) packets. Theno form of this command disables
debugging output.

debug x25 all
no debug x25 all

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is particularly useful for diagnosing problems encountered when placing calls.

Thedebug x25 all output includes data, control messages, and flow control packets for all of the
router’s virtual circuits. Thedebug x25 eventsanddebug x25 vccommands provide a subset of this
output.

Caution Becausedebug x25 all displays all X.25 traffic, it is processor intensive and can render
the router useless. Only usedebug x25 all when the aggregate of all X.25 traffic is fewer than five
packets per second.

Sample Display
Figure 2-131 shows sampledebug x25 all output.
 Debug Commands 2-245

debug x25 all
Figure 2-131 Sample Debug X25 All Output

router# debug x25 all

Serial2: X25 O R3 RESTART (5) 8 lci 0 cause 7 diag 0
Serial2: X25 I R3 RESTART (5) 8 lci 0 cause 0 diag 0
Serial2: X25 I P1 CALL REQUEST (11) 8 lci 1024
From (2): 49 To(2): 46
 Facilities: (0)
 Call User Data (4): 0xCC 00 00 00 (ip)
Serial2: X25 O P4 CALL CONNECTED (3) 8 lci 1024
Serial2: X25 I P4 DATA (103) 8 lci 1024 PS 0 PR 0
Serial2: X25 O D1 DATA (103) 8 lci 1024 PS 0 PR 1
Serial2: X25 I D1 DATA (103) 8 lci 1024 PS 1 PR 0
Serial2: X25 O D1 DATA (103) 8 lci 1024 PS 1 PR 2
Serial2: X25 I D1 RR (3) 8 lci 1024 PR 2
Serial2: X25 I D1 DATA (103) 8 lci 1024 PS 2 PR 2
Serial2: X25 O D1 DATA (103) 8 lci 1024 PS 2 PR 3
Serial2: X25 I D1 CLEAR REQUEST (5) 8 lci 1024 cause 0 diag 122
Serial2: X25 O D1 CLEAR CONFIRMATION (3) 8 lci 1024
XOT: X25 O D1 PVC-SETUP, waiting to connect (29) <Serial2 pvc 3><Serial2 pvc 1> 2/1 128/64
XOT: X25 I D1 PVC-SETUP, connected (29) <Serial2 pvc 3><Serial2 pvc 1> 2/1 128/64
Serial2: X25 O D1 RESET REQUEST (5) 8 lci 3 cause 15 diag 0
Serial2: X25 I D1 RESET CONFIRMATION (3) 8 lci 3

Figure 2-131 shows a typical exchange of packets between two X.25 devices on a network. The first
line of output in Figure 2-131 describes a RESTART packet. Table 2-86 describes the fields in this
line of output.

Table 2-86 Debug X25 All Field Descriptions

Field Description

Serial2 The interface on which the X.25 event occured. Events that occur on an
X.25-over-TCP connection report XOT.

X25 That this message describes an X.25 event.

O Indication of whether the X.25 message was input (I) or output (O)
through the interface.

R3 State of the virtual circuit. Possible values follow:

D1—Flow control ready

D2—DTE reset request

D3—DCE reset indication

P1—Idle

P2—DTE waiting for DCE to connect CALL

P3—DCE waiting for DTE to accept CALL

P4—Data transfer

P5—CALL collision
2-246 Debug Command Reference

debug x25 all
R3 (Continued) P6—DTE clear request

P7—DCE clear indication

R1—Packet level ready

R2—DTE restart request

R3—DCE restart indication

X1—Nonstandard state for a virtual circuit in hold-down

See Annex B of the 1984 ITU-T X.25 Recommendation for more
information on these states.

RESTART The type of X.25 packet. Possible values follow:

CALL CONNECTED

CALL REQUEST

CLEAR CONFIRMATION

CLEAR REQUEST

DATA

DIAGNOSTIC

ILLEGAL

INTR CONFIRMATION

INTR (interrupt)

PVC-SETUP

REGISTRATION

REGISTRATION CONFIRMATION

RESET CONFIRMATION

RESET REQUEST

RESTART

RESTART CONFIRMATION

RNR (Receiver Not Ready)

RR (Receiver Ready)

(5) Number of bytes in the packet.

8 Modulo of the virtual circuit. Possible values are 8 or 128.

lci 0 Virtual circuit number. See Annex A of the 1984 ITU-T X.25
Recommendation for information on VC assignment.

cause 7 Code indicating the event that triggered the packet. The cause field can
only appear in entries for CLEAR REQUEST, RESET REQUEST, and
RESTART packets. Possible values for the cause field can vary,
depending on the type of packet. Refer to the “X.25 Cause and
Diagnostic Codes” appendix for explanations of these codes.

diag 0 Code providing an additional hint as to what, if anything, went wrong.
The diag field can only appear in entries for CLEAR REQUEST,
DIAGNOSTIC (as “error 0”), RESET REQUEST and RESTART
packets. Because of the large number of possible values, they are listed
in the “X.25 Cause and Diagnostic Codes” appendix.

Field Description
 Debug Commands 2-247

debug x25 all
Table 2-87 describes the PS and PR fields that can appear in adebug x25 all display.

Table 2-87 Debug X25 All PS and PR Field Descriptions

In Figure 2-131, notice also that the CALL REQUEST packet precedes three other lines of output
that have a unique format.

Serial2: X25 I P1 CALL REQUEST (11) 8 lci 1024
From (2): 49 To(2): 46
 Facilities: (0)
 Call User Data (4): 0xCC 00 00 00 (ip)
Serial2: X25 O P4 CALL CONNECTED (3) 8 lci 1024

These lines indicate that the CALL REQUEST packet has a two-digit source address, 49, and a
two-digit destination address, 46. These are X.121 addresses that can be from 0 to 15 digits in length.
The Facilities field is (0) bytes in length, indicating that no X.25 facilities are being requested. The
optional call user data field is 4 bytes in length. Any encapsulation protocol identification (PID) in
the Call User Data will have the encoding values printed and identified. Multiprotocol Virtual
Circuits can also have PID information in Data packets; the debug output for these packets will also
describe the PID.

The two lines of output in Figure 2-131 that begin with XOT are shown below.

XOT: X25 O D1 PVC-SETUP, waiting to connect (29) <Serial2 pvc 3><Serial2 pvc 1> 2/1 128/64
XOT: X25 I D1 PVC-SETUP, connected (29) <Serial2 pvc 3><Serial2 pvc 1> 2/1 128/64

These lines of output do not describe standard X.25 packets. Instead, they describe messages that
represent a tunneled PVC setup between two routers. Table 2-88 describes the fields these two lines
of output.

Table 2-88 Debug X25 All Field Descriptions for Packets Representing Tunneled PVC
Activity

Field Description

PS 0 Packet send sequence number; used for flow control of the outgoing
packet stream. Present only in DATA packets.

PR 0 Packet receive sequence number used for flow control of the incoming
packet stream by indicating the PS value that the sender next expects to
see.

Field Description

XOT This message travels over a TCP connection.

X25 This message describes an X.25 event.

O Indication of whether the X.25 message was input (I) or output (O)
through the connection.

D1 State of the permanent virtual circuit. Possible values follow.

D1—Flow control ready

D2—DTE reset request

D3—DCE reset indication

See Annex B of the 1984 ITU-T X.25 Recommendation for more
information on these states.
2-248 Debug Command Reference

debug x25 all
wait to connect State of the PVC. Some of these strings only apply to PVCs that are
remotely tunneled over a TCP connection. The %X25-3-PVCBAD
system error message (as documented in theSystem Error Messages
publication), and theshow x25 vc command (as documented in the
Router Products Command Reference publication) also use these PVC
state strings. Possible values follow:

awaiting PVC-SETUP reply

can’t support flow control values

connected

dest. disconnected

dest. interface is not up

dest. PVC configuration mismatch

mismatched flow control values

no such dest. interface

no such dest. PVC

non-X.25 dest. interface

PVC setup protocol error

PVC/TCP connect timed out

PVC/TCP connection refused

PVC/TCP routing error

trying to connect via TCP

waiting to connect

(29) Incoming/outgoing message size (in bytes).

<Serial2 pvc 3> Interface and PVC number that originated the message (originator).

<Serial2 pvc 1> Interface and PVC number that responded to that message (responder).

2/1 Window sizes (in packets).

128/64 Maximum packet sizes (in bytes).

Field Description
 Debug Commands 2-249

debug x25 events
debug x25 events
Use thedebug x25 events EXEC command to display information on all X.25 traffic except X.25
data or acknowledgment packets. Theno form of this command disables debugging output.

debug x25 events
no debug x25 events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Thedebug x25 eventscommand is useful for debugging X.25 problems, because it shows changes
that occur in the virtual circuits handled by the router. Because most X.25 connectivity problems
stem from errors that CLEAR or RESET virtual circuits, you can usedebug x25 eventsto identify
these errors.

While debug x25 all output includes both data and control messages for all of the router’s virtual
circuits,debug x25 events output includes only control messages for all of the router’s VCs. In
contrast,debug x25 vc output filters the output for a single VC number. Thus,debug x25 events
output is a subset ofdebug x25 all output, anddebug x25 vc output modifies either of them to
further limit the output.

Note Becausedebug x25 events displays a subset of all X.25 traffic, it is safer to use thandebug
x25 all during production hours.

Sample Display
Figure 2-132 shows sampledebug x25 events output.

Figure 2-132 Sample Debug X25 Events Output

router# debug x25 events

Serial2: X25 I R3 RESTART (5) 8 lci 0 cause 0 diag 0
Serial2: X25 I P1 CALL REQUEST (11) 8 lci 1024
From (2): 49 To(2): 46
 Facilities: (0)
 Call User Data (4): 0xCC 00 00 00 (ip)
Serial2: X25 O P4 CALL CONNECTED (3) 8 lci 1024
Serial2: X25 I D1 CLEAR REQUEST (5) 8 lci 1024 cause 0 diag 122
Serial2: X25 O D1 CLEAR CONFIRMATION (3) 8 lci 1024
Serial2: X25 O D1 RESET REQUEST (5) 8 lci 1 cause 0 diag 122
Serial2: X25 I D1 RESET CONFIRMATION (3) 8 lci 1

See thedebug x25 all command description for information on the fields indebug x25 events
output.
2-250 Debug Command Reference

debug x25 vc
debug x25 vc
Use thedebug x25 vc EXEC command to display information on traffic for a particular virtual
circuit in order to solve any connectivity or performance problems it is exhibiting. Theno form of
this command removes the filter for a particular virtual circuit from thedebug x25 allor debug x25
events output.

debug x25 vc number
no debug x25 vc number

Syntax Description

Command Mode
EXEC

Usage Guidelines
Because no interface is specified, traffic on any VC that has the specifiednumber is reported.

Thedebug x25 vc command limits the output ofdebug x25 all or debug x25 events output to the
packets occurring on a particular VC number. This command modifies the operation of the
debug x25 allor debug x25 events commands, so one of those commands must be used with
debug x25 vc to produce output.

VC 0 cannot be specified. It is used for X.25 service messages, such as RESTART packets, not VC
traffic. VC0 can be monitored only when no VC filter is used.

Note Becausedebug x25 vc only displays traffic for a small subset of virtual circuits, it is safe to
use even under heavy traffic conditions, as long as events for that virtual circuit are fewer than
25 packets per second.

Sample Display
Figure 2-133 shows sampledebug x25 vc output.

Figure 2-133 Sample Debug X25 VC Output

router# debug x25 vc 1
X25 debugging output restricted to VC1
router# debug x25 events
X25 special event debugging is on
router# show debug
X.25 (debugging restricted to VC number 1):
 X25 special event debugging is on

Serial0: X25 0 P2 CALL REQUEST (19) 8 lci 1
 From(14): 31250000000101 To(14): 31109090096101
 Facilities (0)
Serial0: X25 I P2 CLEAR REQUEST (5) 8 lci 1 cause diag 122

See thedebug x25 all command description for information on the fields indebug x25 vc output.

number VC number associated with the virtual circuit(s) you want to monitor
 Debug Commands 2-251

debug xns packet
debug xns packet
Use thedebug xns packetEXEC command to display information on XNS packet traffic, including
the addresses for source, destination, and next hop router of each packet. Theno form of this
command disables debugging output.

debug xns packet
no debug xns packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
To gain the fullest understanding of XNS routing activity, you should enabledebug xns routingand
debug xns packet together.

Sample Display
Figure 2-134 shows sampledebug xns packet output.

Figure 2-134 Sample Debug XNS Packet Output.

router# debug xns packet

XNS: src=5.0000.0c02.6d04, dst=5.ffff.ffff.ffff, packet sent
XNS: src=1.0000.0c00.440f, dst=1.ffff.ffff.ffff, rcvd. on Ethernet0
XNS: src=1.0000.0c00.440f, dst=1.ffff.ffff.ffff, local processing

Table 2-89 describes significant fields shown in Figure 2-134.

Table 2-89 Debug XNS Packet Field Descriptions

Field Description

XNS: Indicates that this is an XNS packet.

src = 5.0000.0c02.6d04 Indicates that the source address for this message is 0000.0c02.6d04 on
network 5.

dst = 5.ffff.ffff.ffff Indicates that the destination address for this message is the broadcast
address ffff.ffff.ffff on network 5.

packet sent Indicates that the packet to destination address 5.ffff.ffff.ffff in
Figure 2-134, as displayed using thedebug xns packet command, was
queued on the output interface.

rcvd. on Ethernet0 Indicates that the router just received this packet through the Ethernet0
interface.

local processing Indicates that the router has examined the packet and determined that it
must process it, rather than forwarding it.
2-252 Debug Command Reference

debug xns routing
debug xns routing
Use thedebug xns routing EXEC command to display information on XNS routing transactions.
Theno form of this command disables debugging output.

debug xns routing
no debug xns routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
To gain the fullest understanding of XNS routing activity, enabledebug xns routinganddebug xns
packet together.

Sample Display
Figure 2-135 shows sampledebug xns routing output.

Figure 2-135 Sample Debug XNS Routing Output

router# debug xns routing

XNSRIP: sending standard periodic update to 5.ffff.ffff.ffff via Ethernet2
 network 1, hop count 1
 network 2, hop count 2

XNSRIP: got standard update from 1.0000.0c00.440f socket 1 via Ethernet0
 net 2: 1 hops

Table 2-90 describes significant fields shown in Figure 2-135.
 Debug Commands 2-253

debug xns routing
Table 2-90 Debug XNS Routing Field Descriptions

Field Description

XNSRIP: This is an XNS routing packet.

sending standard periodic update Router indicates that this is a periodic XNS routing information update.

to 5.ffff.ffff.ffff Destination address is ffff.ffff.ffff on network 5.

via Ethernet2 Name of the output interface.

network 1, hop count 1 Network 1 is one hop away from this router.

got standard update from
1.0000.0c00.440f

Router indicates that it has received an XNS routing information update
from address 0000.0c00.440f on network 1.

socket 1 The socket number is a well-known port for XNS. Possible values
include

1—routing information

2—echo

3—router error
2-254 Debug Command Reference

	debug serial interface
	Syntax Description
	Command Mode
	Usage Guidelines
	Debug Serial Interface for Frame Relay Encapsulation
	Debug Serial Interface for HDLC
	Figure�2-110 Sample Debug Serial Interface Output for HDLC
	Table�2-65 Debug Serial Interface Field Descriptions for HDLC
	Table�2-66 Debug Serial Interface Error Messages for HDLC

	Debug Serial Interface for HSSI
	Debug Serial Interface for ISDN Basic Rate
	Table�2-67 Debug Serial Interface Message Descriptions for ISDN Basic Rate

	Debug Serial Interface for an MK5025 Device
	Table�2-68 Debug Serial Interface Message Descriptions for an MK5025 Device

	Debug Serial Interface for SMDS Encapsulation

	debug serial packet
	Syntax Description
	Command Mode
	Usage Guidelines
	Sample Display
	Debug Serial Packet for SMDS Encapsulation
	Figure�2-111 Sample Debug Serial Packet Output for SMDS

	debug source bridge
	Sample Display
	Figure�2-112 Sample Debug Source Bridge Output—TCP Environment
	Figure�2-113 Sample Debug Source Bridge Output—Direct Encapsulation Environment

	debug source error
	Usage Guidelines
	Sample Displays
	Related Commands

	debug source event
	Usage Guidelines
	Sample Display
	Figure�2-114 Sample Debug Source Event Output
	Table�2-69 Debug Source Event Field Descriptions�

	debug span
	Syntax Description
	Command Mode
	Usage Guidelines
	Sample Display—IEEE Spanning Tree
	Figure�2-115 Sample Debug Span Output for an IEEE BPDU Packet
	Table�2-70 Debug Span Field Descriptions for an IEEE BPDU Packet

	Sample Display—DEC Spanning Tree
	Figure�2-116 Sample Debug Span Output
	Table�2-71 Debug Span Field Descriptions for a DEC BPDU Packet

	debug sse
	Syntax Description
	Command Mode
	Usage Guidelines
	Sample Display
	Figure�2-117 Sample Debug SSE Output

	debug standby
	Syntax Description
	Command Mode
	Usage Guidelines
	Sample Display
	Figure�2-118 Sample Debug Standby Output
	Table�2-72 Debug Standby Field Descriptions

	debug stun packet
	Syntax Description
	Command Mode
	Usage Guidelines
	Sample Display
	Figure�2-119 Sample Debug STUN Packet Output
	Table�2-73 Debug STUN Packet Field Descriptions

	debug tftp
	Syntax Description
	Command Mode
	Sample Display
	Figure�2-120 Sample Debug TFTP Output
	Table�2-74 Debug TFTP Field Descriptions

	debug token ring
	Syntax Description
	Command Mode
	Usage Guidelines
	Sample Display
	Figure�2-121 Sample Debug Token Ring Output
	Table�2-75 Debug Token Ring Field Descriptions—Part 1
	Table�2-76 Debug Token Ring Field Descriptions—Part 2
	Table�2-77 Debug Token Ring Field Descriptions—Part 3

	debug vines arp
	Syntax Description
	Command Mode
	Sample Display
	Figure�2-122 Sample Debug VINES ARP Output
	Table�2-78 Debug VINES ARP Field Descriptions

	debug vines echo
	Syntax Description
	Command Mode
	Sample Display
	Figure�2-123 Sample Debug VINES Echo Output
	Table�2-79 Debug VINES Echo Field Descriptions

	debug vines ipc
	Syntax Description
	Command Mode
	Usage Guidelines
	Sample Display
	Figure�2-124 Sample Debug VINES IPC Output
	Table�2-80 VINES IPC Field Descriptions

	debug vines netrpc
	Syntax Description
	Command Mode
	Usage Guidelines
	Sample Display
	Figure�2-125 Sample Debug VINES NetRPC Output
	Table�2-81 Debug VINES NetRPC Field Descriptions

	debug vines packet
	Syntax Description
	Command Mode
	Sample Display
	Figure�2-126 Sample Debug VINES Packet Output
	Table�2-82 Debug VINES Packet Field Descriptions

	debug vines routing
	Syntax Description
	Command Mode
	Sample Displays
	Figure�2-127 Sample Debug VINES Routing Output
	Figure�2-128 Sample Debug VINES Routing Verbose Output

	debug vines service
	Syntax Description
	Command Mode
	Usage Guidelines
	Sample Display
	Figure�2-129 Sample Debug VINES Service Output
	Table�2-83 Debug VINES Service Field Descriptions—Part 1
	Table�2-84 Debug VINES Service Field Descriptions—Part 2

	debug vines state
	Syntax Description
	Command Mode
	Usage Guidelines

	debug vines table
	Syntax Description
	Command Mode
	Usage Guidelines
	Sample Display
	Figure�2-130 Sample Debug VINES Table Output
	Table�2-85 Debug VINES Table Field Descriptions

	debug x25 all
	Syntax Description
	Command Mode
	Usage Guidelines
	Sample Display
	Figure�2-131 Sample Debug X25 All Output
	Table�2-86 Debug X25 All Field Descriptions
	Table�2-87 Debug X25 All PS and PR Field Descriptions
	Table�2-88 Debug X25 All Field Descriptions for Packets Representing Tunneled PVC Activity

	debug x25 events
	Syntax Description
	Command Mode
	Usage Guidelines
	Sample Display
	Figure�2-132 Sample Debug X25 Events Output

	debug x25 vc
	Syntax Description
	Command Mode
	Usage Guidelines
	Sample Display
	Figure�2-133 Sample Debug X25 VC Output

	debug xns packet
	Syntax Description
	Command Mode
	Usage Guidelines
	Sample Display
	Figure�2-134 Sample Debug XNS Packet Output.
	Table�2-89 Debug XNS Packet Field Descriptions

	debug xns routing
	Syntax Description
	Command Mode
	Usage Guidelines
	Sample Display
	Figure�2-135 Sample Debug XNS Routing Output
	Table�2-90 Debug XNS Routing Field Descriptions

