
C H A P T E R

Debug Commands 2-1

Debug Commands

2

This chapter contains an alphabetical listing of thedebug commands. Documentation for each
command includes a brief description of its use, command syntax, usage guidelines, sample output,
and a description of that output.

Output formats vary with eachdebug command. Some generate a single line of output per packet,
whereas others generate multiple lines of output per packet. Some generate large amounts of output;
others generate only occasional output. Some generate lines of text, and others generate information
in field format. Thus, the way thedebug commands are documented also varies. For example, for
debug commands that generate lines of text, the output is described line by line. Fordebug
commands that generate output in field format, tables are used to describe the fields.

By default, the network server sends the output from thedebug commands to the console terminal.
Sending output to a terminal (virtual console) produces less overhead than sending it to the console.
Use the privileged EXEC commandterminal monitor to send output to a terminal. For more
information about redirecting output, see the “Using Debug Commands” chapter.

2-2 Debug Command Reference

debug apple arp

debug apple arp
Use thedebug apple arp EXEC command to enable debugging of the AppleTalk Address
Resolution Protocol (AARP). Theno form of this command disables debugging output.

debug apple arp[type number]
no debug apple arp[type number]

Syntax Description

Command Mode
EXEC

Usage Guidelines
This command is helpful when you experience problems communicating with a node on the network
you control (a neighbor). If thedebug apple arp display indicates that the router is receiving AARP
probes, you can assume that the problem does not reside at the physical layer.

Sample Display
Figure 2-1 shows sampledebug apple arp output.

router# debug apple arp

Ether0: AARP: Sent resolve for 4160.26
Ether0: AARP: Reply from 4160.26(0000.0c00.0453) for 4160.154(0000.0c00.8ea9)
Ether0: AARP: Resolved waiting request for 4160.26(0000.0c00.0453)
Ether0: AARP: Reply from 4160.19(0000.0c00.0082) for 4160.154(0000.0c00.8ea9)
Ether0: AARP: Resolved waiting request for 4160.19(0000.0c00.0082)
Ether0: AARP: Reply from 4160.19(0000.0c00.0082) for 4160.154(0000.0c00.8ea9)

Figure 2-1 Sample Debug Apple ARP Output

Explanations for representative lines of output in Figure 2-1 follow.

type (Optional) Interface type

number (Optional) Interface number

Debug Commands 2-3

debug apple arp

The following line indicates that the router has requested the hardware MAC address of the host at
network address 4160.26:

Ether0: AARP: Sent resolve for 4160.26

The following line indicates that the host at network address 4160.26 has replied, giving its MAC
address (0000.0c00.0453). For completeness, the message also shows the network address to which
the reply was sent and its hardware MAC address (also in parentheses).

Ether0: AARP: Reply from 4160.26(0000.0c00.0453) for 4160.154(0000.0c00.8ea9)

The following line indicates that the MAC address request is complete:

Ether0: AARP: Resolved waiting request for 4160.26(0000.0c00.0453)

2-4 Debug Command Reference

debug apple errors

debug apple errors
Use thedebug apple errors EXEC command to display errors occurring in the AppleTalk network.
Theno form of this command disables debugging output.

debug apple errors[type number]
no debug apple errors[type number]

Syntax Description

Command Mode
EXEC

Usage Guidelines
In a stable AppleTalk network, thedebug apple errors command produces little output.

To solve encapsulation problems, enabledebug apple errors anddebug apple packet together.

Sample Display
Figure 2-2 shows sampledebug apple errors output when a router is brought up with a zone that
does not agree with the zone list of other routers on the network.

router# debug apple errors

%AT-3-ZONEDISAGREES: Ethernet0: AppleTalk port disabled; zone list incompatible with
4160.19
%AT-3-ZONEDISAGREES: Ethernet0: AppleTalk port disabled; zone list incompatible with
4160.19
%AT-3-ZONEDISAGREES: Ethernet0: AppleTalk port disabled; zone list incompatible with
4160.19

Figure 2-2 Debug Apple Errors Output

As Figure 2-2 suggests, a single error message indicates zone list incompatibility; this message is
sent out periodically until the condition is corrected ordebug apple errors is turned off.

Most of the other messages thatdebug apple errors can generate are obscure or indicate a serious
problem with the AppleTalk network. Some of these other messages follow.

type (Optional) Interface type

number (Optional) Interface number

Debug Commands 2-5

debug apple errors

In the following message, RTMPRsp, RTMPReq, ATP, AEP, ZIP, ADSP, or SNMP could replace
NBP, and “llap dest not for us” could replace “wrong encapsulation”:

Packet discarded, src 4160.12-254,dst 4160.19-254,NBP,wrong encapsulation

In the following message, in addition to invalid echo packet, other possible errors are unsolicited
AEP echo reply, unknown echo function, invalid ping packet, unknown ping function, and bad
responder packet type.

Ethernet0: AppleTalk packet error; no source address available
AT: pak_reply: dubious reply creation, dst 4160.19
AT: Unable to get a buffer for reply to 4160.19

Processing error, src 4160.12-254,dst 4160.19-254,AEP, invalid echo packet

Thedebug apple errors command can print out additional messages when other debugging
commands are also turned on. When you turn on bothdebug apple errors anddebug apple events,
the following message can be generated:

Proc err, src 4160.12-254,dst 4160.19-254,ZIP,NetInfo Reply format is invalid

In the preceding message, in addition to NetInfo Reply format is invalid, other possible errors are
NetInfoReply not for me, NetInfoReply ignored, NetInfoReply for operational net ignored,
NetInfoReply from invalid port, unexpected NetInfoReply ignored, cannot establish primary zone,
no primary has been set up, primary zone invalid, net information mismatch, multicast mismatch,
and zones disagree.

When you turn on bothdebug apple errors anddebug apple nbp, the following message can be
generated:

Processing error, ...,NBP,NBP name invalid

In the preceding message, in addition to NBP name invalid, other possible errors are NBP type
invalid, NBP zone invalid, not operational, error handling brrq, error handling proxy, NBP fwdreq
unexpected, No route to srcnet, Proxy to “*” zone, Zone “*” from extended net, No zone info for
“*”, and NBP zone unknown.

When you turn on bothdebug apple errors anddebug apple routing, the following message can
be generated:

Processing error, ...,RTMPReq, unknown RTMP request

In the preceding message, in addition to unknown RTMP request, other possible errors are RTMP
packet header bad, RTMP cable mismatch, routed RTMP data, RTMP bad tuple, and Not Req or Rsp.

2-6 Debug Command Reference

debug apple events

debug apple events
Use thedebug apple events EXEC command to display information about AppleTalk special
events, neighbors becoming reachable/unreachable, and interfaces going up/down. Only significant
events (for example, neighbor and route changes) are logged. Theno form of this command disables
debugging output.

debug apple events[type number]
no debug apple events[type number]

Syntax Description

Command Mode
EXEC

Usage Guidelines
Thedebug apple events command is useful for solving AppleTalk network problems because it
provides an overall picture of the stability of the network. In a stable network, thedebug apple
events command does not return any information. If the command generates numerous messages,
those messages can indicate possible sources of the problems.

When configuring or making changes to a router or interface for AppleTalk, enabledebug apple
events. Doing so alerts you to the progress of the changes or to any errors that might result. Also use
this command periodically when you suspect network problems.

Thedebug apple events command is also useful to determine whether network flapping (nodes
toggling online and offline) is occurring. If flapping is excessive, look for routers that only support
254 networks.

When you enabledebug apple events, you will see any messages that the configuration command
apple event-logging normally displays. Turning ondebug apple events, however, does not cause
apple event-logging to be maintained in nonvolatile memory. Only turning onapple event-logging
explicitly stores it in nonvolatile memory. Furthermore, ifapple event-logging is already enabled,
turning on or offdebug apple events does not affectapple event-logging.

Sample Display
Figure 2-3 shows sampledebug apple events output that describes a nonseed router coming up in
discovery mode.

type (Optional) Interface type

number (Optional) Interface number

Debug Commands 2-7

debug apple events

Figure 2-3 Sample Debug Apple Events Output with Discovery Mode State Changes

As Figure 2-3 shows, thedebug apple events command is useful in tracking the discovery mode
state changes through which an interface progresses. When no problems are encountered, the state
changes progress as follows:

1 Line down

2 Restarting

3 Probing (for its own address [node ID] using AARP)

4 Acquiring (sending out GetNetInfo requests)

5 Requesting zones (the list of zones for its cable)

6 Verifying (that the router’s configuration is correct. If not, a port configuration mismatch is
declared.)

7 Checking zones (to make sure its list of zones is correct)

8 Operational (participating in routing)

Explanations for individual lines of output in Figure 2-3 follow.

The following message indicates that a port is set. In this case, the zone multicast address is being
reset:

Ether0: AT: Resetting interface address filters

The following messages indicate that the router is changing to restarting mode:

%AT-5-INTRESTART: Ether0: AppleTalk port restarting; protocol restarted
Ether0: AppleTalk state changed; unknown -> restarting

router# debug apple events

Ether0: AT: Resetting interface address filters
%AT-5-INTRESTART: Ether0: AppleTalk port restarting; protocol restarted
Ether0: AppleTalk state changed; unknown -> restarting
Ether0: AppleTalk state changed; restarting -> probing
%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 65401.148
Ether0: AppleTalk state changed; probing -> acquiring
%AT-6-ACQUIREMODE: Ether0: AT port initializing; acquiring net configuration
Ether0: AppleTalk state changed; acquiring -> restarting
Ether0: AppleTalk state changed; restarting -> line down
Ether0: AppleTalk state changed; line down -> restarting
Ether0: AppleTalk state changed; restarting -> probing
%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 4160.148
Ether0: AppleTalk state changed; probing -> acquiring
%AT-6-ACQUIREMODE: Ether0: AT port initializing; acquiring net configuration
Ether0: AppleTalk state changed; acquiring -> requesting zones
Ether0: AT: Resetting interface address filters
%AT-5-INTRESTART: Ether0: AppleTalk port restarting; protocol restarted
Ether0: AppleTalk state changed; requesting zones -> verifying
AT: Sent GetNetInfo request broadcast on Ethernet0
Ether0: AppleTalk state changed; verifying -> checking zones
Ether0: AppleTalk state changed; checking zones -> operational

Discovery
mode state
changes

S
25

42

2-8 Debug Command Reference

debug apple events

The following message indicates that the router is probing in the startup range of network numbers
(65280-65534) to discover its network number:

Ether0: AppleTalk state changed; restarting -> probing

The following message indicates that the router is enabled as a nonrouting node using a provisional
network number within its startup range of network numbers. This type of message only appears if
the network address the router will use differs from its configured address. This is always the case
for a discovery-enabled router; it is rarely the case for a nondiscovery-enabled router.

%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 65401.148

The following messages indicate that the router is sending out GetNetInfo requests to discover the
default zone name and the actual network number range in which its network number can be chosen:

Ether0: AppleTalk state changed; probing -> acquiring
%AT-6-ACQUIREMODE: Ether0: AT port initializing; acquiring net configuration

Now that the router has acquired the cable configuration information, the following message
indicates that it restarts using that information:

Ether0: AppleTalk state changed; acquiring -> restarting

The following messages indicate that the router is probing for its actual network address:

Ether0: AppleTalk state changed; restarting -> line down
Ether0: AppleTalk state changed; line down -> restarting
Ether0: AppleTalk state changed; restarting -> probing

The following message indicates that the router has found an actual network address to use:

%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 4160.148

The following messages indicate that the router is sending out GetNetInfo requests to verify the
default zone name and the actual network number range from which its network number can be
chosen:

Ether0: AppleTalk state changed; probing -> acquiring
%AT-6-ACQUIREMODE: Ether0: AT port initializing; acquiring net configuration

The following message indicates that the router is requesting the list of zones for its cable:

Ether0: AppleTalk state changed; acquiring -> requesting zones

The following messages indicate that the router is sending out GetNetInfo requests to make sure its
understanding of the configuration is correct:

Ether0: AppleTalk state changed; requesting zones -> verifying
AT: Sent GetNetInfo request broadcast on Ethernet0

The following message indicates that the router is rechecking its list of zones for its cable:

Ether0: AppleTalk state changed; verifying -> checking zones

The following message indicates that the router is now fully operational as a routing node and can
begin routing:

Ether0: AppleTalk state changed; checking zones -> operational

Figure 2-4 shows sampledebug apple events output that describes a nondiscovery-enabled router
coming up when no other router is on the wire.

Debug Commands 2-9

debug apple events

Figure 2-4 Sample Debug Apple Events Output Showing Seed Coming Up by Itself

As Figure 2-4 shows, a nondiscovery-enabled router can come up when no other router is on the
wire; however, it must assume that its configuration (if accurate syntactically) is correct, because no
other router can verify it. Notice that the last line in Figure 2-4 indicates this situation.

Figure 2-5 shows sampledebug apple events output that describes a discovery-enabled router
coming up when there is no seed router on the wire.

router# debug apple events

Ether0: AT: Resetting interface address filters
%AT-5-INTRESTART: Ether0: AppleTalk port restarting; protocol restarted
Ether0: AppleTalk state changed; unknown -> restarting
Ether0: AppleTalk state changed; restarting -> probing
%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 65401.148
Ether0: AppleTalk state changed; probing -> acquiring
AT: Sent GetNetInfo request broadcast on Ether0
AT: Sent GetNetInfo request broadcast on Ether0
AT: Sent GetNetInfo request broadcast on Ether0
AT: Sent GetNetInfo request broadcast on Ether0
AT: Sent GetNetInfo request broadcast on Ether0

Figure 2-5 Debug Apple Events Output Showing Nonseed with No Seed

As Figure 2-5 shows, when you attempt to bring up a nonseed router without a seed router on the
wire, it never becomes operational; instead, it hangs in the acquiring mode and continues to send out
periodic GetNetInfo requests.

Figure 2-6 shows sampledebug apple events output when a nondiscovery-enabled router is brought
up on an AppleTalk internetwork that is in compatibility mode (set up to accommodate extended as
well as nonextended AppleTalk) and the router has violated internetwork compatibility.

Figure 2-6 Sample Debug Apple Events Output Showing Compatibility Conflict

router# debug apple events

Ethernet1: AT: Resetting interface address filters
%AT-5-INTRESTART: Ethernet1: AppleTalk port restarting; protocol restarted
Ethernet1: AppleTalk state changed; unknown -> restarting
Ethernet1: AppleTalk state changed; restarting -> probing
%AT-6-ADDRUSED: Ethernet1: AppleTalk node up; using address 4165.204
Ethernet1: AppleTalk state changed; probing -> verifying
AT: Sent GetNetInfo request broadcast on Ethernet1
Ethernet1: AppleTalk state changed; verifying -> operational
%AT-6-ONLYROUTER: Ethernet1: AppleTalk port enabled; no neighbors found

S
2
5
4
3

Indicates a nondiscovery-
enabled router with no
other router on the wire

router# debug apple events

E0: AT: Resetting interface address filters
%AT-5-INTRESTART: E0: AppleTalk port restarting; protocol restarted
E0: AppleTalk state changed; restarting -> probing
%AT-6-ADDRUSED: E0: AppleTalk node up; using address 41.19
E0: AppleTalk state changed; probing -> verifying
AT: Sent GetNetInfo request broadcast on Ethernet0
%AT-3-ZONEDISAGREES: E0: AT port disabled; zone list incompatible with 41.19
AT: Config error for E0, primary zone invalid
E0: AppleTalk state changed; verifying -> config mismatch S

25
45

Indicates
configuration
mismatch

2-10 Debug Command Reference

debug apple events

The three configuration command lines that follow indicate the part of the router’s configuration that
caused the configuration mismatch shown in Figure 2-6:

lestat(config)#int e 0
lestat(config-if)#apple cab 41-41
lestat(config-if)#apple zone Marketign

The router shown in Figure 2-6 had been configured with a cable range of 41-41 instead of 40-40,
which would have been accurate. Additionally, the zone name was configured incorrectly; it should
have been “Marketing,” rather than being misspelled as “Marketign.”

Debug Commands 2-11

debug apple nbp

debug apple nbp
Use thedebug apple nbp EXEC command to display debugging output from the Name Binding
Protocol (NBP) routines. Theno form of this command disables debugging output.

debug apple nbp[type number]
no debug apple nbp[type number]

Syntax Description

Command Mode
EXEC

Usage Guidelines
To determine whether the router is receiving NBP lookups from a node on the AppleTalk network,
enabledebug apple nbp at each node between the router and the node in question to determine
where the problem lies.

Note Because thedebug apple nbp command can generate many messages, use it only when the
router’s CPU utilization is less than 50 percent.

type (Optional) Interface type

number (Optional) Interface number

2-12 Debug Command Reference

debug apple nbp

Sample Display
Figure 2-7 shows sampledebug apple nbp output.

router# debug apple nbp

AT: NBP ctrl = LkUp, ntuples = 1, id = 77
AT: 4160.19, skt 2, enum 0, name: =:ciscoRouter@Low End SW Lab
AT: LkUp =:ciscoRouter@Low End SW Lab

AT: NBP ctrl = LkUp-Reply, ntuples = 1, id = 77
AT: 4160.154, skt 254, enum 1, name: lestat.Ether0:ciscoRouter@Low End SW Lab

AT: NBP ctrl = LkUp, ntuples = 1, id = 78
AT: 4160.19, skt 2, enum 0, name: =:IPADDRESS@Low End SW Lab
AT: NBP ctrl = LkUp, ntuples = 1, id = 79
AT: 4160.19, skt 2, enum 0, name: =:IPGATEWAY@Low End SW Lab
AT: NBP ctrl = LkUp, ntuples = 1, id = 83
AT: 4160.19, skt 2, enum 0, name: =:ciscoRouter@Low End SW Lab
AT: LkUp =:ciscoRouter@Low End SW Lab

AT: NBP ctrl = LkUp, ntuples = 1, id = 84
AT: 4160.19, skt 2, enum 0, name: =:IPADDRESS@Low End SW Lab

AT: NBP ctrl = LkUp, ntuples = 1, id = 85
AT: 4160.19, skt 2, enum 0, name: =:IPGATEWAY@Low End SW Lab
AT: NBP ctrl = LkUp, ntuples = 1, id = 85
AT: 4160.19, skt 2, enum 0, name: =:IPGATEWAY@Low End SW Lab

Figure 2-7 Sample Debug Apple NBP Output

The first three lines in Figure 2-7 describe an NBP lookup request:

AT: NBP ctrl = LkUp, ntuples = 1, id = 77
AT: 4160.19, skt 2, enum 0, name: =:ciscoRouter@Low End SW Lab
AT: LkUp =:ciscoRouter@Low End SW Lab

Table 2-1 describes the fields in the first line of output shown in Figure 2-7.

Table 2-1 Debug Apple NBP Field Descriptions—Part 1

Table 2-2 describes the fields in the second line of output shown in Figure 2-7.

Field Description

AT: NBP Indicates that this message describes an AppleTalk NBP packet.

ctrl = LkUp Identifies the type of NBP packet. Possible values include

LkUp—NBP lookup request.

LkUp-Reply—NBP lookup reply.

ntuples = 1 Indicates the number of name-address pairs in the lookup request packet.
Range: 1-31 tuples.

id = 77 Identifies an NBP lookup request value.

Debug Commands 2-13

debug apple nbp

Table 2-2 Debug Apple NBP Field Descriptions—Part 2

The third line in Figure 2-7 essentially reiterates the information in the two lines above it, indicating
that a lookup request has been made regarding name-address pairs for all objects of the ciscoRouter
type in the Low End SW Lab zone.

Because the router is defined as an object of type ciscoRouter in zone Low End SW Lab, the router
sends an NBP lookup reply in response to this NBP lookup request. The following two lines of
output from Figure 2-7 show the router’s response:

AT: NBP ctrl = LkUp-Reply, ntuples = 1, id = 77
AT: 4160.154, skt 254, enum 1, name: lestat.Ether0:ciscoRouter@Low End SW Lab

In the first line, ctrl = LkUp-Reply identifies this NBP packet as an NBP lookup request. The same
value in the id field (id = 77) associates this lookup reply with the previous lookup request. The
second line indicates that the network address associated with the router’s entity name
(lestat.Ether0:ciscoRouter@Low End SW Lab) is 4160.154. The fact that no other entity
name/network address is listed indicates that the responder only knows about itself as an object of
type ciscoRouter in zone Low End SW Lab.

Field Description

AT: Indicates that this message describes an AppleTalk packet.

4160.19 Indicates the network address of the requester.

skt 2 Indicates the internet socket address of the requester. The responder will
send the NBP lookup reply to this socket address.

enum 0 Indicates the enumerator field. Used to identify multiple names
registered on a single socket. Each tuple is assigned its own enumerator,
incrementing from 0 for the first tuple.

name: =:ciscoRouter@Low End
SW Lab

Indicates the entity name for which a network address has been
requested. The AppleTalk entity name includes three components:

Object (in this case, a wildcard character (=), indicating that the
requester is requesting name-address pairs for all objects of the specified
type in the specified zone)

Type (in this case, ciscoRouter)

Zone (in this case, Low End SW Lab)

2-14 Debug Command Reference

debug apple packet

debug apple packet
Use thedebug apple packet EXEC command to display per-packet debugging output. The output
reports information online when a packet is received or a transmit is attempted. Theno form of this
command disables debugging output.

debug apple packet[type number]
no debug apple packet[type number]

Syntax Description

Command Mode
EXEC

Usage Guidelines
With this command, you can monitor the types of packets being slow switched. It displays at least
one line of debugging output per AppleTalk packet processed.

When invoked in conjunction with thedebug apple routing, debug apple zip, anddebug apple
nbp commands, the debug apple packet command adds protocol processing information in
addition to generic packet details. It also reports successful completion or failure information.

When invoked in conjunction with thedebug apple errors command, thedebug apple packet
command reports packet-level problems, such as those concerning encapsulation.

Note Because thedebug apple packet command can generate many messages, use it only when
the router’s CPU utilization is less than 50 percent.

Sample Display
Figure 2-8 shows sampledebug apple packet output.

router# debug apple packet

Ether0: AppleTalk packet: enctype SNAP, size 60, encaps000000000000000000000000
AT: src=Ethernet0:4160.47, dst=4160-4160, size=10, 2 rtes, RTMP pkt sent
AT: ZIP Extended reply rcvd from 4160.19
AT: ZIP Extended reply rcvd from 4160.19
AT: src=Ethernet0:4160.47, dst=4160-4160, size=10, 2 rtes, RTMP pkt sent
Ether0: AppleTalk packet: enctype SNAP, size 60, encaps000000000000000000000000
Ether0: AppleTalk packet: enctype SNAP, size 60, encaps000000000000000000000000

Figure 2-8 Sample Debug Apple Packet Output

Table 2-3 describes the fields in the first line of output shown in Figure 2-8.

type (Optional) Interface type

number (Optional) Interface number

Debug Commands 2-15

debug apple packet

Table 2-3 Debug Apple Packet Field Descriptions—Part 1

Table 2-4 describes the fields in the second line of output shown in Figure 2-8.

Table 2-4 Debug Apple Packet Field Descriptions—Part 2

The third line in Figure 2-8 indicates the type of packet received and its source AppleTalk address.
This message is repeated in the fourth line because AppleTalk hosts can send multiple replies to a
given GetNetInfo request.

Field Description

Ether0: Name of the interface through which the router received the
packet

AppleTalk packet Indication that this is an AppleTalk packet

enctype SNAP Encapsulation type for the packet

size 60 Size of the packet (in bytes)

encaps000000000000000000000000 Encapsulation

Field Description

AT: Indication that this is an AppleTalk packet

src = Ethernet0:4160.47 Name of the interface sending the packet and its AppleTalk address

dst = 4160-4160 Cable range of the packet’s destination

size = 10 Size of the packet (in bytes)

2 rtes Indication that two routes in the routing table link these two addresses

RTMP pkt sent The type of packet sent

2-16 Debug Command Reference

debug apple routing

debug apple routing
Use thedebug apple routing EXEC command to enable debugging output from the Routing Table
Maintenance Protocol (RTMP) routines. Theno form of this command disables debugging output.

debug apple routing[type number]
no debug apple routing[type number]

Syntax Description

Command Mode
EXEC

Usage Guidelines
This command can be used to monitor acquisition of routes, aging of routing table entries, and
advertisement of known routes. It also reports conflicting network numbers on the same network if
the network is misconfigured.

Note Because thedebug apple routing command can generate many messages, use it only when
the router’s CPU utilization is less than 50 percent.

Sample Display
Figure 2-9 shows sampledebug apple routing output.

router# debug apple routing

AT: src=Ethernet0:4160.41, dst=4160-4160, size=19, 2 rtes, RTMP pkt sent
AT: src=Ethernet1:41069.25, dst=41069, size=427, 96 rtes, RTMP pkt sent
AT: src=Ethernet2:4161.23, dst=4161-4161, size=427, 96 rtes, RTMP pkt sent
AT: Route ager starting (97 routes)
AT: Route ager finished (97 routes)
AT: RTMP from 4160.19 (new 0,old 94,bad 0,ign 0, dwn 0)
AT: RTMP from 4160.250 (new 0,old 0,bad 0,ign 2, dwn 0)
AT: RTMP from 4161.236 (new 0,old 94,bad 0,ign 1, dwn 0)
AT: src=Ethernet0:4160.41, dst=4160-4160, size=19, 2 rtes, RTMP pkt sent

Figure 2-9 Sample Debug Apple Routing Output

Explanations for representative lines of thedebug apple routing output in Figure 2-9 follow.

Table 2-5 describes the fields in the first line of sampledebug apple routing output.

type (Optional) Interface type

number (Optional) Interface number

Debug Commands 2-17

debug apple routing

Table 2-5 Debug Apple Routing Field Descriptions—Part 1

The following two messages indicate that the ager has started and finished the aging process for the
routing table and that this table contains 97 entries.

AT: Route ager starting (97 routes)
AT: Route ager finished (97 routes)

Table 2-6 describes the fields in the following line ofdebug apple routing output.

AT: RTMP from 4160.19 (new 0,old 94,bad 0,ign 0, dwn 0)

Table 2-6 Debug Apple Routing Field Descriptions—Part 2

Field Description

AT: Indicates that this is AppleTalk debugging output

src = Ethernet0:4160.41 Indicates the source router interface and network address for the RTMP
update packet

dst = 4160-4160 Indicates the destination network address for the RTMP update packet

size = 19 Shows the size of this RTMP packet (in bytes)

2 rtes Indicates that this RTMP update packet includes information on two
routes

RTMP pkt sent Indicates that this type of message describes an RTMP update packet
that the router has sent (rather than one that it has received)

Field Description

AT: Indicates that this is AppleTalk debugging output

RTMP from 4160.19 Indicates the source address of the RTMP update the router received

new 0 Shows the number of routes in this RTMP update packet that the router did
not already know about

old 94 Shows the number of routes in this RTMP update packet that the router
already knew about

bad 0 Shows the number of routes the other router indicates have gone bad

ign 0 Shows the number of routes the other router ignores

dwn 0 Shows the number of poisoned tuples included in this packet

2-18 Debug Command Reference

debug apple zip

debug apple zip
Use thedebug apple zip EXEC command to display debugging output from the Zone Information
Protocol (ZIP) routines. Theno form of this command disables debugging output.

debug apple zip[type number]
no debug apple zip[type number]

Syntax Description

Command Mode
EXEC

Usage Guidelines
This command reports significant events such as the discovery of new zones and zone list queries. It
generates information similar to that generated bydebug apple routing, but generates it for ZIP
packets instead of RTMP packets.

You can use hedebug apple zip command to determine whether a ZIP storm is taking place in the
AppleTalk network. You can detect the existence of a ZIP storm when you see that no router on a
cable has the zone name corresponding to a network number that all the routers have in their routing
tables.

Sample Display
Figure 2-10 shows sampledebug apple zip output.

router# debug apple zip

AT: Sent GetNetInfo request broadcast on Ether0
AT: Recvd ZIP cmd 6 from 4160.19-6
AT: 3 query packets sent to neighbor 4160.19
AT: 1 zones for 31902, ZIP XReply, src 4160.19
AT: net 31902, zonelen 10, name US-Florida

Figure 2-10 Sample Debug Apple ZIP Output

Explanations of the lines of output shown in Figure 2-10 follow.

type (Optional) Interface type

number (Optional) Interface number

Debug Commands 2-19

debug apple zip

The first line indicates that the router has received an RTMP update that includes a new network
number and is now requesting zone information:

AT: Sent GetNetInfo request broadcast on Ether0

The second line indicates that the neighbor at address 4160.19 replies to the zone request with a
default zone:

AT: Recvd ZIP cmd 6 from 4160.19-6

The third line indicates that the router responds with three queries to the neighbor at network address
4160.19 for other zones on the network:

AT: 3 query packets sent to neighbor 4160.19

The fourth line indicates that the neighbor at network address 4160.19 responds with a ZIP extended
reply, indicating that one zone has been assigned to network 31902:

AT: 1 zones for 31902, ZIP XReply, src 4160.19

The fifth line indicates that the router responds that the zone name of network 31902 is US-Florida,
and the zone length of that zone name is 10:

AT: net 31902, zonelen 10, name US-Florida

2-20 Debug Command Reference

debug arp

debug arp
Use thedebug arp EXEC command to display information on Address Resolution Protocol (ARP)
transactions. Theno form of this command disables debugging output.

debug arp
no debug arp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Use this command when some nodes on a TCP/IP network are responding, but others are not. It
shows whether the router is sending ARPs and whether it is receiving ARPs.

Sample Display
Figure 2-11 shows sampledebug arp output.

router# debug arp

IP ARP: sent req src 131.108.22.7 0000.0c01.e117, dst 131.108.22.96 0000.0000.0000
IP ARP: rcvd rep src 131.108.22.96 0800.2010.b908, dst 131.108.22.7
IP ARP: rcvd req src 131.108.6.10 0000.0c00.6fa2, dst 131.108.6.62
IP ARP: rep filtered src 131.108.22.7 aa92.1b36.a456, dst 255.255.255.255 ffff.ffff.ffff
IP ARP: rep filtered src 131.108.9.7 0000.0c00.6b31, dst 131.108.22.7 0800.2010.b908

Figure 2-11 Sample Debug ARP Output

In Figure 2-11, each line of output represents an ARP packet that the router sent or received.
Explanations for the individual lines of output follow.

The first line indicates that the router at IP address 131.108.22.7 and MAC address 0000.0c01.e117
sent an ARP request for the MAC address of the host at 131.108.22.96. The series of zeros
(0000.0000.0000) following this address indicate that the router is currently unaware of the MAC
address.

IP ARP: sent req src 131.108.22.7 0000.0c01.e117, dst 131.108.22.96 \
0000.0000.0000

The second line indicates that the router at IP address 131.108.22.7 receives a reply from the host at
131.108.22.96 indicating that its MAC address is 0800.2010.b908:

IP ARP: rcvd rep src 131.108.22.96 0800.2010.b908, dst 131.108.22.7

The third line indicates that the router receives an ARP request from the host at 131.108.6.10
requesting the MAC address for the host at 131.108.6.62:

IP ARP: rcvd req src 131.108.6.10 0000.0c00.6fa2, dst 131.108.6.62

Debug Commands 2-21

debug arp

The fourth line indicates that another host on the network attempted to send the router an ARP reply
for the router’s own address. The router ignores such bogus replies. Usually, this can happen if
someone is running a bridge in parallel with the router and is allowing ARP to be bridged. It
indicates a network misconfiguration.

IP ARP: rep filtered src 131.108.22.7 aa92.1b36.a456, dst 255.255.255.255 \
ffff.ffff.ffff

The fifth line indicates that another host on the network attempted to inform the router that it is on
network 131.108.9.7, but the router does not know that that network is attached to a different router
interface. The remote host (probably a PC or an X terminal) is misconfigured. If the router were to
install this entry, it would deny service to the real machine on the proper cable.

IP ARP: rep filtered src 131.108.9.7 0000.0c00.6b31, dst 131.108.22.7 \
0800.2010.b908

2-22 Debug Command Reference

debug atm errors

debug atm errors
Use thedebug atm errors EXEC command to display Asynchronous Transfer Mode (ATM) errors.
Theno form of this command disables debugging output.

debug atm errors
no debug atm errors

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-12 shows sampledebug atm errors output.

router# debug atm errors
ATM(ATM2/0): Encapsulation error, link=7, host=836CA86D.

Figure 2-12 Sample Debug ATM Errors Output

The line of output in Figure 2-12 indicates that a packet was routed to the ATM interface, but no
static map was set up to route that packet to the proper virtual circuit.

Debug Commands 2-23

debug atm events

debug atm events
Use thedebug atm events EXEC command to display ATM events. Theno form of this command
disables debugging output.

debug atm events
no debug atm events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command displays ATM events that occur on the ATM interface processor and is useful for
diagnosing problems in an ATM network. It provides an overall picture of the stability of the
network. In a stable network, thedebug atm events command does not return any information. If
the command generates numerous messages, the messages can indicate the possible source of
problems.

When configuring or making changes to a router or interface for ATM, enabledebug atm events.
Doing so alerts you to the progress of the changes or to any errors that might result. Also use this
command periodically when you suspect network problems.

Sample Display
Figure 2-13 shows sampledebug atm events output.

router# debug atm events
ATM events debugging is on
RESET(ATM4/0): PLIM type is 1, Rate is 100Mbps
aip_disable(ATM4/0): state=1
config(ATM4/0)
aip_love_note(ATM4/0): asr=0x201
aip_enable(ATM4/0)
aip_love_note(ATM4/0): asr=0x4000
aip_enable(ATM4/0): restarting VCs: 7
aip_setup_vc(ATM4/0): vc:1 vpi:1 vci:1
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:2 vpi:2 vci:2
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:3 vpi:3 vci:3
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:4 vpi:4 vci:4
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:6 vpi:6 vci:6
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:7 vpi:7 vci:7
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:11 vpi:11 vci:11
aip_love_note(ATM4/0): asr=0x200

Figure 2-13 Sample Debug ATM Events Output

2-24 Debug Command Reference

debug atm events

Table 2-7 describes significant fields in the output shown in Figure 2-13.

Table 2-7 Debug ATM Events Field Descriptions

Explanations for representative lines of output in Figure 2-13 follow.

The following line indicates that the AIP was reset. The PLIM TYPE detected was 1, so the
maximum rate is set to 100 Mbps.

RESET(ATM4/0): PLIM type is 1, Rate is 100Mbps

The following line indicates that the ATM Interface Processor (AIP) was given ashutdown
command, but the current configuration indicates that the AIP should be up:

aip_disable(ATM4/0): state=1

The following line indicates that a configuration command has been completed by the AIP:

aip_love_note(ATM4/0): asr=0x201

The following line indicates that the AIP was given ano shutdown command to take it out of
shutdown:

aip_enable(ATM4/0)

The following line indicates that the AIP detected a carrier state change. It does not indicate that the
carrier is down or up, only that it has changed:

aip_love_note(ATM4/0): asr=0x4000

The following line of output indicates that the AIP enable function is restarting all PVCs
automatically:

aip_enable(ATM4/0): restarting VCs: 7

The following lines of output indicate that PVC 1 was set up and a successful completion code was
returned:

aip_setup_vc(ATM4/0): vc:1 vpi:1 vci:1
aip_love_note(ATM4/0): asr=0x200

Field Description

PLIM type Indicates the interface rate in Mbps. Possible values are
 1 = TAXI(4B5B) 100 Mbps
 2 = SONET 155 Mbps
 3 = E3 34 Mbps

state Indicates current state of the AIP. Possible values are
 1 = An ENABLE will be issued soon
 0 = The AIP will remain shut down

asr Defines a bitmask, which indicates actions or completions to commands. Valid
bitmask values are
 0x0800 = AIP crashed, reload may be required
 0x0400 = AIP detected a carrier state change
 0x0n00 = Command completion status. Command completion status codes are

n = 8 Invalid PLIM detected
n = 4 Command failed
n = 2 Command completed successfully
n = 1 CONFIG request failed
n = 0 Invalid value

Debug Commands 2-25

debug atm packet

debug atm packet
Use thedebug atm packetEXEC command to display per-packet debugging output. The output
reports information online when a packet is received or a transmit is attempted. Theno form of this
command disables debugging output.

debug atm packet
no debug atm packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Thedebug atm packet command displays all process-level ATM packets for both outbound and
inbound packets. This command is useful for determining whether packets are being received and
transmitted correctly.

For transmitted packets, the information is displayed only after the protocol data unit (PDU) is
entirely encapsulated and a next hop virtual circuit (VC) is found. If information is not displayed,
the address translation probably failed during encapsulation. When a next hop VC is found, the
packet is displayed exactly as it will be presented on the wire. Having a display indicates the packets
are properly encapsulated for transmission.

For received packets, information is displayed for all incoming frames. The display can show
whether the transmitting station properly encapsulates the frames. Because all incoming frames are
displayed, this information is useful when performing back-to-back testing and corrupted frames
cannot be dropped by an intermediary ATM switch.

Thedebug atm packet command also displays the initial bytes of the actual PDU in hexadecimal.
This information can be decoded only by qualified support or engineering personnel.

Note Because thedebug atm packet command generates a significant amount of output for every
packet processed, use it only when traffic on the network is low, so other activity on the system is
not adversely affected.

Sample Display
Figure 2-14 shows sampledebug atm packet output.

router# debug atm packets
ATM packets debugging is on
router#
ATM2/0(O): VCD: 0x1,DM: 1C00, MUX, ETYPE: 0800,Length: 32
4500 002E 0000 0000 0209 92ED 836C A26E FFFF FFFF 1108 006D 0001 0000 0000
A5CC 6CA2 0000 000A 0000 6411 76FF 0100 6C08 00FF FFFF 0003 E805 DCFF 0105

Figure 2-14 Sample Debug ATM Packet Output

2-26 Debug Command Reference

debug atm packet

Table 2-8 describes significant fields shown in Figure 2-14.

Table 2-8 Debug ATM Packet Field Descriptions

The following two lines of output are the binary data, which are the contents of the protocol PDU
before encapsulation at the ATM:

4500 002E 0000 0000 0209 92ED 836C A26E FFFF FFFF 1108 006D 0001 0000 0000
A5CC 6CA2 0000 000A 0000 6411 76FF 0100 6C08 00FF FFFF 0003 E805 DCFF 0105

Field Description

ATM2/0 Indicates the interface that generated this packet.

(O) Indicates an output packet. (I) would mean receive packet.

VCD: 0xn Indicates the virtual circuit associated with this packet, wheren is some value.

DM: 0xnnnn Indicates the descriptor mode bits on output only, wherennnn is a hexadecimal
value.

ETYPE:n Shows the Ethernet type for this packet.

Length:n Shows the total length of the packet including the ATM header(s).

Debug Commands 2-27

debug bri

debug bri
Use the debug bri EXEC command to display debugging information on Integrated Services Digital
Networks (ISDN) Basic Rate Interface (BRI) routing activity. Theno form of this command disables
debugging output.

debug bri
no debug bri

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The debug bri command indicates whether the ISDN code is enabling and disabling the B-channels
when attempting an outgoing call. This command is available for the low-end router products that
have a multi-BRI network interface module installed.

Note Because thedebug bri command generates a significant amount of output, use it only when
traffic on the IP network is low, so other activity on the system is not adversely affected.

2-28 Debug Command Reference

debug bri

Sample Display
Figure 2-15 shows sampledebug bri output.

Router# debug bri

Basic Rate network interface debugging is on
BRI: write_sid: wrote 1B for subunit 0, slot 1.
BRI: write_sid: wrote 15 for subunit 0, slot 1.
BRI: write_sid: wrote 17 for subunit 0, slot 1.
BRI: write_sid: wrote 6 for subunit 0, slot 1.
BRI: write_sid: wrote 8 for subunit 0, slot 1.
BRI: write_sid: wrote 11 for subunit 0, slot 1.
BRI: write_sid: wrote 13 for subunit 0, slot 1.
BRI: write_sid: wrote 29 for subunit 0, slot 1.
BRI: write_sid: wrote 1B for subunit 0, slot 1.
BRI: write_sid: wrote 15 for subunit 0, slot 1.
BRI: write_sid: wrote 17 for subunit 0, slot 1.
BRI: write_sid: wrote 20 for subunit 0, slot 1.
BRI: Starting Power Up timer for unit = 0.
BRI: write_sid: wrote 3 for subunit 0, slot 1.
BRI: Starting T3 timer after expiry of PUP timeout for unit = 0, current state is F4.
BRI: write_sid: wrote FF for subunit 0, slot 1.
BRI: Activation for unit = 0, current state is F7.
BRI: enable channel B1
BRI: write_sid: wrote 14 for subunit 0, slot 1.

%LINK-3-UPDOWN: Interface BRI0: B-Channel 1, changed state to up
%LINK-5-CHANGED: Interface BRI0: B-Channel 1, changed state to up.!!!
BRI: disable channel B1
BRI: write_sid: wrote 15 for subunit 0, slot 1.

%LINK-3-UPDOWN: Interface BRI0: B-Channel 1, changed state to down
%LINK-5-CHANGED: Interface BRI0: B-Channel 1, changed state to down
%LINEPROTO-5-UPDOWN: Line protocol on Interface BRI0: B-Channel 1, changed state to down

Figure 2-15 Sample Debug BRI Packets Output

Explanations for individual lines of output from Figure 2-15 follow.

The following line indicates that an internal command was written to the interface controller. The
subunit identifies the first interface in the slot:

BRI: write_sid: wrote 1B for subunit 0, slot 1.

The following line indicates that the power-up timer was started for the named unit:

BRI: Starting Power Up timer for unit = 0.

The following lines indicate that the channel or the protocol on the interface changed state:

%LINK-3-UPDOWN: Interface BRI0: B-Channel 1, changed state to up
%LINK-5-CHANGED: Interface BRI0: B-Channel 1, changed state to up.!!!
%LINEPROTO-5-UPDOWN: Line protocol on Interface BRI0: B-Channel 1, changed state to down

The following line indicates that the channel was disabled:

BRI: disable channel B1

Lines of output not described are for use by support staff only.

Debug Commands 2-29

debug bri

Related Commands
debug isdn-event

debug isdn-q921

debug isdn-q931

2-30 Debug Command Reference

debug broadcast

debug broadcast
Use thedebug broadcast EXEC command to display information on MAC broadcast packets. The
no form of this command disables debugging output.

debug broadcast
no debug broadcast

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Depending on the type of interface and the type of encapsulation used on that interface, thedebug
broadcast command can produce a wide range of messages.

Sample Display
Figure 2-16 shows sampledebug broadcast output. Notice how similar it is to thedebug packet
output.

router# debug broadcast

Ethernet0: Broadcast ARPA, src 0000.0c00.6fa4, dst ffff.ffff.ffff, type 0x0800,
data 4500002800000000FF11EA7B, len 60
Serial3: Broadcast HDLC, size 64, type 0x800, flags 0x8F00
Serial2: Broadcast PPP, size 128
Serial7: Broadcast FRAME-RELAY, size 174, type 0x800, DLCI 7a

Figure 2-16 Sample Debug Broadcast Output

Table 2-9 describes significant fields shown in Figure 2-16.

Debug Commands 2-31

debug broadcast

Table 2-9 Debug Broadcast Field Descriptions

Field Description

Ethernet0 Name of Ethernet interface that received the packet.

Broadcast Indication that this packet was a broadcast packet.

ARPA Indication that this packet uses ARPA-style encapsulation. Possible
encapsulation styles vary depending on the media command mode
(MCM) and encapsulation style, as follows:

Ethernet (MCM)

Encapsulation Style
APOLLO
ARP
ETHERTALK
ISO1
ISO3
LLC2
NOVELL-ETHER
SNAP

FDDI (MCM)

Encapsulation Style
APOLLO
ISO1
ISO3
LLC2
SNAP

Serial (MCM)

Encapsulation Style
BFEX25
BRIDGE
DDN-X25
DDNX25-DCE
ETHERTALK
FRAME-RELAY
HDLC
HDH
LAPB
LAPBDCE
MULTI-LAPB
PPP
SDLC-PRIMARY
SDLC-SECONDARY
SLIP
SMDS
STUN
X25
X25-DCE

2-32 Debug Command Reference

debug broadcast

Token Ring (MCM)

Encapsulation Style
3COM-TR
ISO1
ISO3
MAC
LLC2
NOVELL-TR
SNAP
VINES-TR

src 0000.0c00.6fa4 MAC address of the node generating the packet.

dst ffff.ffff.ffff. ffff MAC address of the destination node for the packet. This address is
always the MAC broadcast address.

type 0x0800 Packet type (IP in this case).

data ... First 12 bytes of the datagram following the MAC header.

len 60 Length of the message that the interface received from the wire (in
bytes).

size 128 Length of the message that the interface received from the wire (in
bytes).

flags 0x8F00 HDLC or PPP flags field.

DLCI 7a The DLCI number on Frame Relay.

Field Description

Debug Commands 2-33

debug channel events

debug channel events
Thedebug channel events EXEC command displays processing events that occur on the channel
adapter interfaces of all installed adapters. This command is valid for the Cisco 7000 series routers
only. Theno form of this command disables debugging output.

debug channel events
no debug channel events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command displays Channel Interface Processor (CIP) events that occur on the CIP interface
processor and is useful for diagnosing problems in an IBM channel attach network. It provides an
overall picture of the stability of the network. In a stable network, thedebug channel events
command does not return any information except for a statistic message (cip_love_letter)
transmitted every ten seconds. If the command generates numerous messages, they can indicate the
possible source of the problems.

When configuring or making changes to a router or interface that supports IBM channel attach,
enable debug channel events. Doing so alerts you to the progress of the changes or to any errors
that might result. Also use this command periodically when you suspect network problems.

Sample Display
Figure 2-17 shows sampledebug channel events output.

Router# debug channel events
Channel3/1: love letter received, bytes 3308
Channel3/0: love letter received, bytes 3336
cip_love_letter: recieved ll, but no cip_info
Channel3/0: cip_reset(), state administratively down
Channel3/0: cip_reset(), state up
Channel3/0: sending nodeid
Channel3/0: sending command for vc 0, CLAW path C700, device C0

Figure 2-17 Sample Debug Channel Events Output

Explanations for individual lines of output from Figure 2-17 follow.

The following line indicates that data was received on the CIP:

Channel3/1: love letter received, bytes 3308

The following line indicates that interface is enabled, but there is no configuration for it. It does not
normally indicate a problem, just that the RP got statistics from the CIP but has no place to store
them.

cip_love_letter: recieved ll, but no cip_info

2-34 Debug Command Reference

debug channel events

The following line indicates that the CIP is being reset to an administrative down state:

Channel3/0: cip_reset(), state administratively down

The following line indicates that the CIP is being reset to an administrative up state:

Channel3/0: cip_reset(), state up

The following line indicates that the nodeid being sent to the CIP. This is same as the "Local Node"
information undershow extended channel slot/port subchannels command. The CIP needs this
information to send to the host mainframe.

Channel3/0: sending nodeid

The following line indicates that a CLAW subchannel command is being sent from the RP to the
CIP. The value vc 0 indicates that the CIP will use virual circuit number 0 with this device. The
virual circuit number will also show up when using thedebug channel packets command.

Channel3/0: sending command for vc 0, CLAW path C700, device C0

Debug Commands 2-35

debug channel packets

debug channel packets
Use thedebug channel packets EXEC command to display per-packet debugging output. The
output reports information when a packet is received or a transmit is attempted. Theno form of this
command disables debugging output.

debug channel packets
no debug channel packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Thedebug channel packets command displays all process-level Channel Interface Processor (CIP)
packets for both outbound and and inbound packets. You will need to disable fast switching and
autonomous switching to obtain debugging output. This command is useful for determining whether
packets are received or transmitted correctly.

This command is valid for the Cisco 7000 series routers only.

Sample Display
Figure 2-18 shows sampledebug channel packets output.

Router# debug channel packets

Channel packets debugging is on
(Channel3/0)-out size = 104, vc = 0000, type = 0800, src 198.92.0.11, dst 198.92.1.58
(Channel3/0)-in size = 48, vc = 0000, type = 0800, src 198.92.1.58, dst 198.92.15.197
(Channel3/0)-in size = 48, vc = 0000, type = 0800, src 198.92.1.58, dst 198.92.15.197
(Channel3/0)-out size = 71, vc = 0000, type = 0800, src 198.92.15.197, dst 198.92.1.58
(Channel3/0)-in size = 44, vc = 0000, type = 0800, src 198.92.1.58, dst 198.92.15.197

Figure 2-18 Sample Debug Channel Packets Output

Table 2-10 provides explanations for individual lines of output from Figure 2-18.

Table 2-10 Channel Packets Field Descriptions

Field Description

(Channel3/0) The interface slot and port.

in / out In is a packet from the mainframe to the router.

Out is a packet from the router to the mainframe.

size = The number of bytes in the packet, including internal overhead.

vc = A value from 0–511 that maps to theclaw interface configuration
command. This information is from the MAC layer.

2-36 Debug Command Reference

debug channel packets

type = The encapsulation type in the MAC layer. The value 0800 indicates an
IP datagram.

src The origin, or source, of the packet, as opposed to the previous hop
address.

dst The destination of the packet, as opposed to the next hop address.

Field Description

Debug Commands 2-37

debug clns esis events

debug clns esis events
Use thedebug clns esis events EXEC command to display uncommon End System-to-Intermediate
System (ES-IS) events, including previously unknown neighbors, neighbors that have aged out, and
neighbors that have changed roles (ES to IS, for example). Theno form of this command disables
debugging output.

debug clns esis events
no debug clns esis events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-19 shows sampledebug clns esis events output.

router# debug clns esis events

ES-IS: ISH from aa00.0400.2c05 (Ethernet1), HT 30
ES-IS: ESH from aa00.0400.9105 (Ethernet1), HT 150
ES-IS: ISH sent to All ESs (Ethernet1): NET 49.0001.AA00.0400.6904.00, HT 299, HLEN 20

Figure 2-19 Sample Debug CLNS ESIS Events Output

Explanations for individual lines of output from Figure 2-19 follow.

The following line indicates that the router received a hello packet (ISH) from the IS at MAC address
aa00.0400.2c05 on the Ethernet1 interface. The hold time (or number of seconds to consider this
packet valid before deleting it) for this packet is 30 seconds.

ES-IS: ISH from aa00.0400.2c05 (Ethernet1), HT 30

The following line indicates that the router received a hello packet (ESH) from the ES at MAC
address aa00.0400.9105 on the Ethernet1 interface. The hold time is 150 seconds.

ES-IS: ESH from aa00.0400.9105 (Ethernet1), HT 150

The following line indicates that the router sent an IS hello packet on the Ethernet0 interface to all
ESs on the network. The router’s NET address is 49.0001.AA00.6904.00, the hold time for this
packet is 299 seconds, and the header length of this packet is 20 bytes.

ES-IS: ISH sent to All ESs (Ethernet1): NET 49.0001.AA00.0400.6904.00, HT 299, HLEN 20

2-38 Debug Command Reference

debug clns esis packets

debug clns esis packets
Use thedebug clns esis packets EXEC command to enable display information on End System-to-
Intermediate System (ES-IS) packets that the router has received and sent. Theno form of this
command disables debugging output.

debug clns esis packets
no debug clns esis packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-20 shows sampledebug clns esis packets output.

router# debug clns esis packets

ES-IS: ISH sent to All ESs (Ethernet0): NET
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 33
ES-IS: ISH sent to All ESs (Ethernet1): NET
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 34
ES-IS: ISH from aa00.0400.6408 (Ethernet0), HT 299
ES-IS: ISH sent to All ESs (Tunnel0): NET
47.0005.80ff.ef00.0000.0001.5940.1600.O906.4023.00, HT 299, HLEN 34
IS-IS: ESH from 0000.0c00.bda8 (Ethernet0), HT 300

Figure 2-20 Sample Debug CLNS ESIS Packets Output

Explanations for individual lines of output from Figure 2-20 follow.

The following line indicates that the router has sent an IS hello packet on Ethernet0 to all ESs on the
network. This hello packet indicates that the router’s NET is
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00. The hold time for this packet is
299 seconds. The packet header is 33 bytes in length.

ES-IS: ISH sent to All ESs (Ethernet0): NET
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 33

The following line indicates that the router has sent an IS hello packet on Ethernet1 to all ESs on the
network. This hello packet indicates that the router’s NET is
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00. The hold time for this packet is
299 seconds. The packet header is 33 bytes in length.

ES-IS: ISH sent to All ESs (Ethernet1): NET
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 34

The following line indicates that the router received a hello packet on Ethernet0 from an intermediate
system, aa00.0400.6408. The hold time for this packet is 299 seconds.

ES-IS: ISH from aa00.0400.6408 (Ethernet0), HT 299

Debug Commands 2-39

debug clns esis packets

The following line indicates that the router has sent an IS hello packet on Tunnel0 to all ESs on the
network. This hello packet indicates that the router’s NET is
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00. The hold time for this packet is
299 seconds. The packet header is 33 bytes in length.

ES-IS: ISH sent to All ESs (Tunnel0): NET
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 34

The following line indicates that on Ethernet0, the router received a hello packet from an end system
with an SNPA of 0000.0c00.bda8. The hold time for this packet is 300 seconds.

IS-IS: ESH from 0000.0c00.bda8 (Ethernet0), HT 300

2-40 Debug Command Reference

debug clns events

debug clns events
Use thedebug clns events EXEC command to display CLNS events that are occurring at the router.
Theno form of this command disables debugging output.

debug clns events
no debug clns events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-21 shows sampledebug clns events output.

router# debug clns events

CLNS: Echo PDU received on Ethernet3 from 39.0001.2222.2222.2222.00!
CLNS: Sending from 39.0001.3333.3333.3333.00 to 39.0001.2222.2222.2222.00
 via 2222.2222.2222 (Ethernet3 0000.0c00.3a18)
CLNS: Forwarding packet size 117
 from 39.0001.2222.2222.2222.00
 to 49.0002.0001.AAAA.AAAA.AAAA.00
 via 49.0002 (Ethernet3 0000.0c00.b5a3)
CLNS: RD Sent on Ethernet3 to 39.0001.2222.2222.2222.00 @ 0000.0c00.3a18,
 redirecting 49.0002.0001.AAAA.AAAA.AAAA.00 to 0000.0c00.b5a3

Figure 2-21 Sample Debug CLNS Events Output

Explanations for individual lines of output from Figure 2-21 follow.

The following line indicates that the router received an echo PDU on Ethernet3 from source NSAP
39.0001.2222.2222.2222.00. The exclamation point at the end of the line has no significance.

CLNS: Echo PDU received on Ethernet3 from 39.0001.2222.2222.2222.00!

The following lines indicate that the router at source NSAP 39.0001.3333.3333.3333.00 is sending
a CLNS echo packet to destination NSAP 39.0001.2222.2222.2222.00 via an IS with system ID
2222.2222.2222. The packet is being sent on the Ethernet3 interface, with a MAC address of
0000.0c00.3a18.

CLNS: Sending from 39.0001.3333.3333.3333.00 to 39.0001.2222.2222.2222.00
 via 2222.2222.2222 (Ethernet3 0000.0c00.3a18)

The following lines indicate that a CLNS echo packet 117 bytes in size is being sent from source
NSAP 39.0001.2222.2222.2222.00 to destination NSAP 49.0002.0001.AAAA.AAAA.AAAA.00
via the router at NSAP 49.0002. The packet is being forwarded on the Ethernet3 interface, with a
MAC address of 0000.0c00.b5a3.

CLNS: Forwarding packet size 117
 from 39.0001.2222.2222.2222.00
 to 49.0002.0001.AAAA.AAAA.AAAA.00
 via 49.0002 (Ethernet3 0000.0c00.b5a3)

Debug Commands 2-41

debug clns events

The following lines indicate that the router sent a redirect packet on the Ethernet3 interface to the
NSAP 39.0001.2222.2222.2222.00 at MAC address 0000.0c00.3a18 to indicate that NSAP
49.0002.0001.AAAA.AAAA.AAAA.00 can be reached at MAC address 0000.0c00.b5a3.

CLNS: RD Sent on Ethernet3 to 39.0001.2222.2222.2222.00 @ 0000.0c00.3a18,
 redirecting 49.0002.0001.AAAA.AAAA.AAAA.00 to 0000.0c00.b5a3

2-42 Debug Command Reference

debug clns igrp packets

debug clns igrp packets
Use thedebug clns igrp packets EXEC command to display debugging information on all
ISO-IGRP routing activity. Theno form of this command disables debugging output.

debug clns igrp packets
no debug clns igrp packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-22 shows sampledebug clns igrp packets output.

router# debug clns igrp packets

ISO-IGRP: Hello sent on Ethernet3 for DOMAIN_green1
ISO-IGRP: Received hello from 39.0001.3333.3333.3333.00, (Ethernet3), ht 51
ISO-IGRP: Originating level 1 periodic update
ISO-IGRP: Advertise dest: 2222.2222.2222
ISO-IGRP: Sending update on interface: Ethernet3
ISO-IGRP: Originating level 2 periodic update
ISO-IGRP: Advertise dest: 0001
ISO-IGRP: Sending update on interface: Ethernet3
ISO-IGRP: Received update from 3333.3333.3333 (Ethernet3)
ISO-IGRP: Opcode: area
ISO-IGRP: Received level 2 adv for 0001 metric 1100
ISO-IGRP: Opcode: station
ISO-IGRP: Received level 1 adv for 3333.3333.3333 metric 1100

Figure 2-22 Sample Debug CLNS IGRP Packets Output

Explanations for individual lines of output from Figure 2-22 follow.

The following line indicates that the router is sending a hello packet to advertise its existence in the
DOMAIN_green1 domain:

ISO-IGRP: Hello sent on Ethernet3 for DOMAIN_green1

The following line indicates that the router received a hello packet from a certain NSAP on the
Ethernet3 interface. The hold time for this information is 51 seconds.

ISO-IGRP: Received hello from 39.0001.3333.3333.3333.00, (Ethernet3), ht 51

The following lines indicate that the router is generating a Level 1 update to advertise reachability
to destination NSAP 2222.2222.2222 and that it is sending that update to all systems that can be
reached through the Ethernet3 interface:

ISO-IGRP: Originating level 1 periodic update
ISO-IGRP: Advertise dest: 2222.2222.2222
ISO-IGRP: Sending update on interface: Ethernet3

Debug Commands 2-43

debug clns igrp packets

The following lines indicate that the router is generating a Level 2 update to advertise reachability
to destination area 1 and that it is sending that update to all systems that can be reached through the
Ethernet3 interface:

ISO-IGRP: Originating level 2 periodic update
ISO-IGRP: Advertise dest: 0001
ISO-IGRP: Sending update on interface: Ethernet3

The following lines indicate that the router received an update from NSAP 3333.3333.3333 on
Ethernet3. This update indicated the area the router at this NSAP could reach.

ISO-IGRP: Received update from 3333.3333.3333 (Ethernet3)
ISO-IGRP: Opcode: area

The following lines indicate that the router received an update advertising that the source of that
update can reach area 1 with a metric of 1100. A station opcode indicates that the update included
system addresses.

ISO-IGRP: Received level 2 adv for 0001 metric 1100
ISO-IGRP: Opcode: station

2-44 Debug Command Reference

debug clns packet

debug clns packet
Use thedebug clns packet EXEC command to display information about packet receipt and
forwarding to the next interface. Theno form of this command disables debugging output.

debug clns packet
no debug clns packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-23 shows sampledebug clns packet output.

router# debug clns packet

CLNS: Forwarding packet size 157
 from 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.00 STUPI-RBS
 to 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00
 via 1600.8906.4017 (Ethernet0 0000.0c00.bda8)
CLNS: Echo PDU received on Ethernet0 from 4
7.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00!
CLNS: Sending from 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00 to
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00
 via 1600.8906.4017 (Ethernet0 0000.0c00.bda8)

Figure 2-23 Sample Debug CLNS Packet Output

Explanations for individual lines of output from Figure 2-23 follow.

In the following lines, the first line indicates that a CLNS packet of size 157 bytes is being
forwarded. The second line indicates the NSAP and system name of the source of the packet. The
third line indicates the destination NSAP for this packet. The fourth line indicates the next-hop
system ID, interface, and SNPA of the router interface used to forward this packet.

CLNS: Forwarding packet size 157
 from 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.00 STUPI-RBS
 to 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00
 via 1600.8906.4017 (Ethernet0 0000.0c00.bda8)

In the following lines, the first line indicates that the router received an Echo PDU on the specified
interface from the source NSAP. The second line indicates which source NSAP is used to send a
CLNS packet to the destination NSAP, as shown on the third line. The fourth line indicates the next-
hop system ID, interface, and SNPA of the router interface used to forward this packet.

CLNS: Echo PDU received on Ethernet0 from
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00!
CLNS: Sending from 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00 to
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00
via 1600.8906.4017 (Ethernet0 0000.0c00.bda8)

Debug Commands 2-45

debug clns routing

debug clns routing
Use thedebug clns routing EXEC command to display debugging information of all CLNS routing
cache updates and activities involving the CLNS routing table. Theno form of this command
disables debugging output.

debug clns routing
no debug clns routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-24 shows sampledebug clns routing output.

router# debug clns routing

CLNS-RT: cache increment:17
CLNS-RT: Add 47.0023.0001.0000.0000.0003.0001 to prefix table, next hop 1920.3614.3002
CLNS-RT: Aging cache entry for: 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.06
CLNS-RT: Deleting cache entry for: 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.06

Figure 2-24 Sample Debug CLNS Routing Output

Explanations for individual lines of output from Figure 2-24 follow.

The following line indicates that a change to the routing table has resulted in an addition to the fast-
switching cache:

CLNS-RT: cache increment:17

The following line indicates that a specific prefix route was added to the routing table, and indicates
the next-hop system ID to that prefix route. In other words, when the router receives a packet with
the prefix 47.0023.0001.0000.0000.0003.0001 in that packet’s destination address, it forwards that
packet to the router with the MAC address 1920.3614.3002.

CLNS-RT: Add 47.0023.0001.0000.0000.0003.0001 to prefix table, next hop 1920.3614.3002

The following lines indicate that the fast-switching cache entry for a certain NSAP has been
invalidated and then deleted:

CLNS-RT: Aging cache entry for: 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.06
CLNS-RT: Deleting cache entry for: 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.06

2-46 Debug Command Reference

debug compress

debug compress
Use thedebug compress EXEC command to display compression information. Theno form of this
command disables debugging output.

debug compress
no debug compress

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-25 shows sampledebug compress output.

router# debug compress
 DECOMPRESS xmt_paks 5 rcv_sync 5
 COMPRESS xmt_paks 10 version 1
 COMPRESS xmt_paks 11 version 1
 DECOMPRESS xmt_paks 6 rcv_sync 6
 COMPRESS xmt_paks 12 version 1
 COMPRESS xmt_paks 13 version 1
 DECOMPRESS xmt_paks 7 rcv_sync 7
 COMPRESS xmt_paks 14 version 1
 COMPRESS xmt_paks 15 version 1

Figure 2-25 Sample Debug Compress Output

Table 2-11 describes significant fields shown in Figure 2-25.

Table 2-11 Debug Compress Field Descriptions

Field Description

COMPRESS xmt_paks The sequence count of this frame is modulo 256 (except zero only occurs on
initialization). This value is part of the compression header sent with each frame.

DECOMPRESS xmt_paks The sequence count in the compression header received with this frame.

DECOMPRESS rcv_sync The received internal sequence count, which is verified against the DECOMPRESS
xmt_paks count. If these counts do not match, a Link Access Procedure, Balanced
(LAPB) reset will occur. On LAPB reset, a compression reinitialization occurs.
Compression reinitialization initializes the dictionaries and xmt_paks and rcv_sync
counts.

Debug Commands 2-47

debug decnet adj

debug decnet adj
Use thedebug decnet adjEXEC command to display debugging information on DECnet
adjacencies. Theno form of this command disables debugging output.

debug decnet adj
no debug decnet adj

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-26 shows sampledebug decnet adj output.

router# debug decnet adj
DECnet adjacencies debugging is on
router#
DNET-ADJ: Level 1 hello from 1.3
DNET-ADJ: sending hellos
DNET-ADJ: Sending hellos to all routers on interface Ethernet0, blksize 1498
DNET-ADJ: Level 1 hello from 1.3
DNET-ADJ: 1.5 adjacency initializing
DNET-ADJ: sending triggered hellos
DNET-ADJ: Sending hellos to all routers on interface Ethernet0, blksize 1498
DNET-ADJ: Level 1 hello from 1.3
DNET-ADJ: 1.5 adjacency up
DNET-ADJ: Level 1 hello from 1.5
DNET-ADJ: 1.5 adjacency down, listener timeout

Figure 2-26 Sample Debug DECnet Adj Output

Explanations for representative lines of output in Figure 2-26 follow.

The following line indicates that the router is sending hellos to all routers on this segment, which in
this case is Ethernet 0:

DNET-ADJ: Sending hellos to all routers on interface Ethernet0, blksize 1498

The following line indicates that the router has heard a hello from 1.5 and is creating an adjacency
entry in its table. The initial state of this adjacency will beinitializing.

DNET-ADJ: 1.5 adjacency initializing

The following line indicates that the router is sending an unscheduled (triggered) hello as a result of
some event, such as new adjacency being heard:

DNET-ADJ: sending triggered hellos

The following line indicates that the adjacency with 1.5 is now up, or active:

DNET-ADJ: 1.5 adjacency up

2-48 Debug Command Reference

debug decnet adj

The following line indicates that the adjacency with 1.5 has timed out, because no hello has been
heard from adjacency 1.5 in the time interval originally specified in the hello from 1.5:

DNET-ADJ: 1.5 adjacency down, listener timeout

The following line indicates that the router is sending an unscheduled hello, as a result of some event,
such as the adjacency state changing:

DNET-ADJ: hello update triggered by state changed in dn_add_adjacency

Debug Commands 2-49

debug decnet connects

debug decnet connects
Use thedebug decnet connects EXEC command to display debugging information of all connect
packets that are filtered (permitted or denied) by DECnet access lists. Theno form of this command
disables debugging output.

debug decnet connects
no debug decnet connects

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
When using connect packet filtering, it may be helpful to use thedecnet access-group configuration
command to apply the following basic access list:

access-list 300 permit 0.0 63.1023
access-list 300 permit 0.0 63.1023 eq any

You can then log all connect packets transmitted on interfaces to which you applied this list, in order
to determine those elements on which your connect packets must be filtered.

Sample Display
Figure 2-27 shows sampledebug decnet connects output.

router# debug decnet connects

DNET-CON: list 300 item #2 matched src=19.403 dst=19.309 on Ethernet0: permitted
 srcname="RICK" srcuic=[0,017]
 dstobj=42 id="USER"

Figure 2-27 Sample Debug DECnet Connects Output

Table 2-12 describes significant fields shown in Figure 2-27.

2-50 Debug Command Reference

debug decnet connects

Table 2-12 Debug DECnet Connects Field Descriptions

Note Packet password and account information is not logged in thedebug decnet connects
message, nor is it displayed by theshow access EXEC command. If you specifypassword or
account information in your access list, they can be viewed by anyone with access to your router’s
configuration.

Field Description

DNET-CON: Indicates that this is adebug decnet connects packet

list 300 item #2 matched Indicates that a packet matched the second item in access list 300

src = 19.403 Indicates the source DECnet address for the packet

dst = 19.309 Indicates the destination DECnet address for the packet

on Ethernet0: Indicates the router interface on which the access list filtering the
packet was applied

permitted Indicates that the access list permitted the packet

srcname = “RICK” Indicates the originator user of the packet

srcuic = [0,017] Indicates the source UIC of the packet

dstobj = 42 Indicates that DECnet object 42 is the destination

id=“USER” Indicates the access user

Debug Commands 2-51

debug decnet events

debug decnet events
Use thedebug decnet eventsEXEC command to display debugging information on DECnet events.
Theno form of this command disables debugging output.

debug decnet events
no debug decnet events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-28 shows sampledebug decnet events output.

router# debug decnet events

DNET: Hello from area 50 rejected - exceeded ‘max area' parameter (45)
DNET: Hello from area 50 rejected - exceeded ‘max area' parameter (45)

Figure 2-28 Sample Debug DECnet Events Output

Explanations for representative lines of output in Figure 2-28 follow.

The following line indicates that the router received a hello from a router whose area was greater
than the max-area parameter with which this router was configured:

DNET: Hello from area 50 rejected - exceeded 'max area' parameter (45)

The following line indicates that the router received a hello from a router whose node ID was greater
than the max-node parameter with which this router was configured:

DNET: Hello from node 1002 rejected - exceeded 'max node' parameter (1000)

2-52 Debug Command Reference

debug decnet packet

debug decnet packet
Use thedebug decnet packet EXEC command to display debugging information on DECnet packet
events. Theno form of this command disables debugging output.

debug decnet packet
no debug decnet packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-29 shows sampledebug decnet packet output.

router# debug decnet packet

DNET-PKT: src 1.4 dst 1.5 sending to PHASEV
DNET-PKT: Packet fwded from 1.4 to 1.5, via 1.5, snpa 0000.3080.cf90, TokenRing0

Figure 2-29 Sample Debug DECnet Packet Output

Explanations for individual lines of output from Figure 2-29 follow.

The following line indicates that the router is sending a converted packet addressed to node 1.5 to
Phase V:

DNET-PKT: src 1.4 dst 1.5 sending to PHASEV

The following line indicates that the router forwarded a packet from node 1.4 to node 1.5. The packet
is being sent to the next hop of 1.5 whose SNPA (MAC address) on that interface is 0000.3080.cf90.

DNET-PKT: Packet fwded from 1.4 to 1.5, via 1.5, snpa 0000.3080.cf90, TokenRing0

Debug Commands 2-53

debug decnet routing

debug decnet routing
Use thedebug decnet routing EXEC command to display all DECnet routing-related events
occurring at the router. Theno form of this command disables debugging output.

debug decnet routing
no debug decnet routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-30 shows sampledebug decnet routing output.

router# debug decnet routing

DNET-RT: Received level 1 routing from 1.3 on Ethernet0 at 1:16:34
DNET-RT: Sending routes
DNET-RT: Sending normal routing updates on Ethernet0
DNET-RT: Sending level 1 routing updates on interface Ethernet0
DNET-RT: Level1 routes from 1.5 on Ethernet0: entry for node 5 created
DNET-RT: route update triggered by after split route pointers in dn_rt_input
DNET-RT: Received level 1 routing from 1.5 on Ethernet 0 at 1:18:35
DNET-RT: Sending L1 triggered routes
DNET-RT: Sending L1 triggered routing updates on Ethernet0
DNET-RT: removing route to node 5

Figure 2-30 Sample Debug DECnet Routing Output

Explanations for individual lines of output from Figure 2-30 follow.

The following line indicates that the router has received a level 1 update on interface Ethernet 0:

DNET-RT: Received level 1 routing from 1.3 on Ethernet0 at 1:16:34

The following line indicates that the router is sending its scheduled updates on interface Ethernet 0:

DNET-RT: Sending normal routing updates on Ethernet0

The following line indicates that the route will send an unscheduled update on this interface as a
result of some event. In this case, the unscheduled update is a result of a new entry created in the
interface’s routing table.

DNET-RT: route update triggered by after split route pointers in dn_rt_input

2-54 Debug Command Reference

debug decnet routing

The following line indicates that the router sent the unscheduled update on Ethernet 0:

DNET-RT: Sending L1 triggered routes
DNET-RT: Sending L1 triggered routing updates on Ethernet0

The following line indicates that the router removed the entry for node 5 because the adjacency with
node 5 timed out, or the route to node 5 through a next-hop router went away:

DNET-RT: removing route to node 5

Debug Commands 2-55

debug dialer

debug dialer
Use thedebug dialer EXEC command to display debugging information about the packets that are
received on a Frame Relay interface. Theno form of this command disables debugging output.

debug dialer
no debug dialer

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Table 2-13 describes the error messages that thedebug dialer command can generate for a serial
interface being used as a V.25bis dialer for dial-on-demand routing (DDR).

Table 2-13 Debug Dialer Message Descriptions for DDR

When DDR is enabled on the interface, information concerning the cause of any calls (called Dialing
cause) may be displayed.

Message Description

Serial 0: Dialer result =xxxxxxxxxx This message displays the result returned from the V.25bis
dialer. It is useful in debugging if calls are failing. On some
hardware platforms, this message cannot be displayed due to
hardware limitations. Possible values for thexxxxxxxxxx variable
depend on the V.25bis device with which the router is
communicating.

Serial 0: No dialer string defined.
Dialing cannot occur.

This message is displayed when a packet is received that should
cause a call to be placed. However, there is no dialer string
configured, so dialing cannot occur. This message usually
indicates a configuration problem.

Serial 0: Attempting to dialxxxxxxxxxx This message indicates that a packet has been received that
passes the dial-on-demand access lists. That packet causes
dialing of a phone number. Thexxxxxxxxxx variable is the
number being called.

Serial 0: Unable to dialxxxxxxxxxx This message is displayed if for some reason, the phone call
could not be placed. This might be due to a lack of memory, full
output queues, or other problems.

Serial 0: disconnecting call This message is displayed when the router attempts to hang up a
call.

Serial 0: idle timeout

Serial 0: re-enable timeout

Serial 0: wait for carrier timeout

One of these three messages is displayed when their
corresponding dialer timer expires. They are mostly
informational, but are useful when debugging a disconnected
call or call failure.

2-56 Debug Command Reference

debug dialer

The following line of output for an IP packet lists the name of the DDR interface and the source and
destination addresses of the packet:

Dialing cause: Serial0: ip (s=131.108.1.111 d=131.108.2.22)

The following line of output for a bridged packet lists the DDR interface and the type of packet (in
hexadecimal). For information on these packet types, see the “Ethernet Type Codes,” appendix of
theRouter Products Command Reference publication.

Dialing cause: Serial1: Bridge (0x6005)

Debug Commands 2-57

debug eigrp fsm

debug eigrp fsm
Use thedebug eigrp fsm EXEC command to display debugging information about enhanced IGRP
feasible successor metrics (FSM). Theno form of this command disables debugging output.

debug eigrp fsm
no debug eigrp fsm

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command helps you observe enhanced IGRP feasible successor activity and to determine
whether route updates are being installed and deleted by the routing process.

Sample Display
Figure 2-31 shows sampledebug eigrp fsm output.

router# debug eigrp fsm

DUAL: dual_rcvupdate(): 198.93.166.0 255.255.255.0 via 0.0.0.0 metric 750080/0
DUAL: Find FS for dest 198.93.166.0 255.255.255.0. FD is 4294967295, RD is 42949
67295 found
DUAL: RT installed 198.93.166.0 255.255.255.0 via 0.0.0.0
DUAL: dual_rcvupdate(): 192.168.4.0 255.255.255.0 via 0.0.0.0 metric 4294967295/
4294967295
DUAL: Find FS for dest 192.168.4.0 255.255.255.0. FD is 2249216, RD is 2249216
DUAL: 0.0.0.0 metric 4294967295/4294967295not found Dmin is 4294967295
DUAL: Dest 192.168.4.0 255.255.255.0 not entering active state.
DUAL: Removing dest 192.168.4.0 255.255.255.0, nexthop 0.0.0.0
DUAL: No routes. Flushing dest 192.168.4.0 255.255.255.0

Figure 2-31 Sample Debug EIGRP FSM Output

Explanations for individual lines of output from Figure 2-31 follow.

In the first line of Figure 2-31, DUAL stands for Diffusing Update ALgorithm. It is the basic
mechanism within enhanced IGRP that makes the routing decisions.The next three fields are the
Internet address and mask of the destination network and the address through which the update was
received. The metric field shows the metric stored in the routing table and the metric advertised by
the neighbor sending the information. “Metric ... inaccessible” usually means that the neighbor
router no longer has a route to the destination, or the destination is in holddown.

In the following output, enhanced IGRP is attempting to find a feasible successor for the destination.
Feasible successors are part of the DUAL loop avoidance methods. The FD field contains more loop
avoidance state information. The RD field is the reported distance, which is the metric used in
update, query or reply packets.

2-58 Debug Command Reference

debug eigrp fsm

The indented line with the “not found” message means a feasible successor (FS) was not found for
192.168.4.0 and EIGRP must start a diffusing computation. This means it begins to actively probe
(sends query packets about destination 192.168.4.0) the network looking for alternate paths to
192.164.4.0.

DUAL: Find FS for dest 192.168.4.0 255.255.255.0. FD is 2249216, RD is 2249216
DUAL: 0.0.0.0 metric 4294967295/4294967295not found Dmin is 4294967295

The following output indicates the route DUAL successfully installed into the routing table.

DUAL: RT installed 198.93.166.0 255.255.255.0 via 0.0.0.0

The following output shows that no routes were discovered to the destination and the route
information is being removed from the topology table.

DUAL: Dest 192.168.4.0 255.255.255.0 not entering active state.
DUAL: Removing dest 192.168.4.0 255.255.255.0, nexthop 0.0.0.0
DUAL: No routes. Flushing dest 192.168.4.0 255.255.255.0

Debug Commands 2-59

debug eigrp packet

debug eigrp packet
Use thedebug eigrp packet EXEC command to display general debugging information. Theno
form of this command disables debugging output.

debug eigrp packet
no debug eigrp packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
If a communication session is closing when it should not be, an end-to-end connection problem can
be the cause. Thedebug eigrp packet command is useful for analyzing the messages traveling
between the local and remote hosts.

Sample Display
Figure 2-32 shows sampledebug eigrp packet output.

router# debug eigrp packet

EIGRP: Sending HELLO on Ethernet0/1
 AS 109, Flags 0x0, Seq 0, Ack 0
EIGRP: Sending HELLO on Ethernet0/1
 AS 109, Flags 0x0, Seq 0, Ack 0
EIGRP: Sending HELLO on Ethernet0/1
 AS 109, Flags 0x0, Seq 0, Ack 0
EIGRP: Received UPDATE on Ethernet0/1 from 192.195.78.24,
 AS 109, Flags 0x1, Seq 1, Ack 0
EIGRP: Sending HELLO/ACK on Ethernet0/1 to 192.195.78.24,
 AS 109, Flags 0x0, Seq 0, Ack 1
EIGRP: Sending HELLO/ACK on Ethernet0/1 to 192.195.78.24,
 AS 109, Flags 0x0, Seq 0, Ack 1
EIGRP: Received UPDATE on Ethernet0/1 from 192.195.78.24,
 AS 109, Flags 0x0, Seq 2, Ack 0

Figure 2-32 Sample Debug EIGRP Packet Output

The output shows transmission and receipt of EIGRP packets. These packet types may be HELLO,
UPDATE, REQUEST, QUERY, or REPLY packets. The sequence and acknowledgement numbers
used by the EIGRP reliable transport algorithm are shown in the output. Where applicable, the
network layer address of the neighboring router is also included.

Table 2-14 describes significant fields in the output shown in Figure 2-32.

2-60 Debug Command Reference

debug eigrp packet

Table 2-14 Debug EIGRP Packet Field Descriptions

Field Description

EIGRP: An EIGRP packet.

AS n Autonomous System number.

Flagsnxn A flag of 1 means the sending router is indicating to the receiving router
that this is the first packet it has sent to the receiver.

A flag of 2 is a multicast that should be conditionally received by routers
that have the contitionally-receive (CR) bit set. This bit gets set when
the sender of the multicast has previously sent a sequence packet
explicitly telling it to set the CR bit.

HELLO The hello packets are the neighbor discovery packets. They are used to
determine if neighbors are still alive. As long as neighbors receive the
hello packets the router is sending, the neighbors validate the router and
any routing information sent. If neighbors lose the hello packets, the
receiving neighbors invalidate any routing information previously sent.
Neighbors also transmit hello packets.

Debug Commands 2-61

debug frame-relay

debug frame-relay
Use thedebug frame-relay EXEC command to display debugging information about the packets
that are received on a Frame Relay interface. Theno form of this command disables debugging
output.

debug frame-relay
no debug frame-relay

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command helps you analyze the packets that have been received. However, because thedebug
frame-relay command generates a lot of output, only use it when traffic on the Frame Relay network
is less than 25 packets per second.

To analyze the packets that have beensent on a Frame Relay interface, use thedebug frame-relay
packets command.

Sample Display
Figure 2-33 shows sampledebug frame-relay output.

router# debug frame-relay

Serial0(i): dlci 500(0x7C41), pkt type 0x809B, datagramsize 24
Serial1(i): dlci 1023(0xFCF1), pkt type 0x309, datagramsize 13
Serial0(i): dlci 500(0x7C41), pkt type 0x809B, datagramsize 24
Serial1(i): dlci 1023(0xFCF1), pkt type 0x309, datagramsize 13
Serial0(i): dlci 500(0x7C41), pkt type 0x809B, datagramsize 24

Figure 2-33 Sample Debug Frame-Relay Output

Table 2-15 describes significant fields shown in Figure 2-33.

Table 2-15 Debug Frame-Relay Field Descriptions

Field Description

Serial0(i): Indication that the Serial0 interface has received this Frame Relay
datagram as input.

dlci 500(0x7C41) Indicates the value of the data link connection identifier (DLCI) for this
packet in decimal (and q922). In this case, 500 has been configured as
the multicast DLCI.

2-62 Debug Command Reference

debug frame-relay

pkt type 0x809B Indicates the packet type code.

Possible supported signaling message codes follow:

0x308—Signaling message; valid only with a DLCI of 0.

0x309—LMI message; valid only with a DLCI of 1023

Possible supported Ethernet type codes follow:

0x0201—IP on 3MB net

0x0201—Xerox ARP on 10MB nets

0xCC—RFC 1294 (only for IP)

0x0600—XNS

0x0800—IP on 10 MB net

0x0806—IP ARP

0x0808—Frame Relay ARP

0x0BAD—VINES IP

0x0BAE—VINES loopback protocol

0x0BAF—VINES Echo

0x6001—DEC MOP booting protocol

0x6002—DEC MOP console protocol

0x6003—DECnet Phase IV on Ethernet

0x6004—DEC LAT on Ethernet

0x8005—HP Probe

0x8035—RARP

0x8038—DEC spanning tree

0x809b—Apple EtherTalk

0x80f3—AppleTalk ARP

0x8019—Apollo domain

0x80C4—VINES IP

0x80C5— VINES ECHO

0x8137—IPX

0x9000—Ethernet loopback packet IP

Field Description

Debug Commands 2-63

debug frame-relay

pkt type 0x809B (continued) Possible HDLC type codes follow:

0x1A58— IPX, standard form

0xFEFE—CLNS

0xEFEF—ES-IS

0x1998—Uncompressed TCP

0x1999—Compressed TCP

0x6558—Serial line bridging

datagramsize 24 Indicates size of this datagram in bytes

Field Description

2-64 Debug Command Reference

debug frame-relay events

debug frame-relay events
Use thedebug frame-relay events EXEC command to display debugging information about Frame
Relay ARP replies on networks that support a multicast channel and use dynamic addressing. The
no form of this command disables debugging output.

debug frame-relay events
no debug frame-relay events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is useful for identifying the cause of end-to-end connection problems during the
installation of a Frame Relay network or node.

Note Because thedebug frame-relay events command does not generate much output, you can use
it at any time, even during periods of heavy traffic, without adversely affecting other users on the
system.

Sample Display
Figure 2-34 shows sampledebug frame-relay events output.

router# debug frame-relay events

Serial2(i): reply rcvd 131.108.170.26 126
Serial2(i): reply rcvd 131.108.170.28 128
Serial2(i): reply rcvd 131.108.170.34 134
Serial2(i): reply rcvd 131.108.170.38 144
Serial2(i): reply rcvd 131.108.170.41 228
Serial2(i): reply rcvd 131.108.170.65 325

Figure 2-34 Sample Debug Frame-Relay Events Output

As Figure 2-34 shows,debug frame-relay events returns one specific message type. The first line,
for example, indicates that IP address 131.108.170.26 sent a Frame Relay ARP reply; this packet
was received as input on the Serial2 interface. The last field (126) is the data link connection
identifier (DLCI) to use when communicating with the responding router.

Debug Commands 2-65

debug frame-relay lmi

debug frame-relay lmi
Use thedebug frame-relay lmi EXEC command to display information on the local management
interface (LMI) packets exchanged by the router and the Frame Relay service provider. Theno form
of this command disables debugging output.

debug frame-relay lmi
no debug frame-relay lmi

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
You can use this command to determine whether the router and the Frame Relay switch are sending
and receiving LMI packets properly.

Note Because thedebug frame-relay lmi command does not generate much output, you can use it
at any time, even during periods of heavy traffic, without adversely affecting other users on the
system.

Sample Display
Figure 2-35 shows sampledebug frame-relay lmi output.

Figure 2-35 Sample Debug Frame-Relay LMI Output

router# debug frame-relay lmi

Serial1(out): StEnq, clock 20212760, myseq 206, mineseen 205, yourseen 136, DTE up
Serial1(in): Status, clock 20212764, myseq 206
RT IE 1, length 1, type 1
KA IE 3, length 2, yourseq 138, myseq 206
Serial1(out): StEnq, clock 20222760, myseq 207, mineseen 206, yourseen 138, DTE up
Serial1(in): Status, clock 20222764, myseq 207
RT IE 1, length 1, type 1
KA IE 3, length 2, yourseq 140, myseq 207
Serial1(out): clock 20232760, myseq 208, mineseen 207, yourseen 140, line up
RT IE 1, length 1, type 1
KA IE 3, length 2, yourseq 142, myseq 208
Serial1(out): StEnq, clock 20252760, myseq 210, mineseen 209, yourseen 144, DTE up
Serial1(in): Status, clock 20252764,
RT IE 1, length 1, type 0
KA IE 3, length 2, yourseq 146, myseq 210
PVC IE 0x7, length 0x6, dlci 400, status 0, bw 56000
PVC IE 0x7, length 0x6, dlci 401, status 0, bw 56000

S
25

46

LMI
exchange

Full LMI
status
message

2-66 Debug Command Reference

debug frame-relay lmi

In Figure 2-35, the first four lines describe an LMI exchange. The first line describes the LMI request
the router has sent to the switch. The second line describes the LMI reply the router has received
from the switch. The third and fourth lines describe the response to this request from the switch. This
LMI exchange is followed by two similar LMI exchanges. The last six lines in Figure 2-35 comprise
a full LMI status message that includes a description of the router’s two permanent virtual circuits
(PVCs).

Table 2-16 describes significant fields in the first line of thedebug frame-relay lmi output shown
in Figure 2-35.

Table 2-16 Debug Frame-Relay LMI Field Descriptions—Part 1

Table 2-17 describes significant fields in the third and fourth lines ofdebug frame-relay lmi output
shown in Figure 2-35.

Table 2-17 Debug Frame-Relay LMI Field Descriptions—Part 2

Field Description

Serial1(out) Indication that the LMI request was sent out on the Serial1 interface.

StEnq Command mode of message:

StEnq—Status inquiry

Status—Status reply

clock 20212760 System clock (in milliseconds). Useful for determining whether an appropriate
amount of time has transpired between events.

myseq 206 The myseq counter maps to the router’s CURRENT SEQ counter.

yourseen 136 The yourseen counter maps to the LAST RCVD SEQ counter of the switch.

DTE up Line protocol up/down state for the DTE (user) port.

Field Description

RT IE 1 Value of the report type information element.

length 1 Length of the report type information element (in bytes).

type 1 Report type in RT IE.

KA IE 3 Value of the keepalive information element.

length 2 Length of the keepalive information element (in bytes).

yourseq 138 The yourseq counter maps to the CURRENT SEQ counter of the switch.

myseq 206 The myseq counter maps to the router’s CURRENT SEQ counter.

Debug Commands 2-67

debug frame-relay lmi

Table 2-18 describes significant fields in the last line ofdebug frame-relay lmi output shown in
Figure 2-35.

Table 2-18 Debug Frame-Relay LMI Field Descriptions—Part 3

Field Description

PVC IE 0x7 Value of the permanent virtual circuit information element type.

length 0x6 Length of the PVC IE (in bytes).

dlci 401 DLCI decimal value for this PVC.

status 0 Status value. Possible values include the following:

0x00—Added/inactive

0x02—Added/active

0x04—Deleted

0x08—New/inactive

0x0a—New/active

bw 56000 CIR (committed information rate), in decimal, for the DLCI.

2-68 Debug Command Reference

debug frame-relay packets

debug frame-relay packets
Use thedebug frame-relay packets EXEC command to display information on packets that have
been sent on a Frame Relay interface. Theno form of this command disables debugging output.

debug frame-relay packets
no debug frame-relay packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command helps you analyze the packets that are sent on a Frame Relay interface. Because the
debug frame-relay packets command generates large amounts of output, only use it when traffic
on the Frame Relay network is less than 25 packets per second.

To analyze the packetsreceived on a Frame Relay interface, use thedebug frame-relay command.

Sample Display
Figure 2-36 shows sampledebug frame-relay packets output.

Figure 2-36 Sample Debug Frame-Relay Packets Output

As Figure 2-36 shows,debug frame-relay packets output comprises groups of output lines; each
group describes a Frame Relay packet that has been sent. The number of lines in the group can vary,
depending on the number of data link connection identifiers (DLCIs) on which the packet was sent.
For example, the first two pairs of output lines describe two different packets, both of which were
sent out on a single DLCI. The last three lines in Figure 2-36 describe a single Frame Relay packet
that was sent out on two DLCIs.

router# debug frame-relay packets

Serial0: broadcast = 1, link 809B, addr 65535.255
Serial0(o):DLCI 500 type 809B size 24
Serial0: broadcast - 0, link 809B, addr 10.2
Serial0(o):DLCI 100 type 809B size 104
Serial0: broadcast search
Serial0(o):DLCI 300 type 809B size 24
Serial0(o):DLCI 400 type 809B size 24 S

25
47

Groups of
output lines

Debug Commands 2-69

debug frame-relay packets

Table 2-19 describes significant fields shown in the first pair of output lines in Figure 2-36.

Table 2-19 Debug Frame-Relay Packets Field Descriptions

Explanations for other lines of output shown in Figure 2-36 follow:

The following lines describe a Frame Relay packet sent to a particular address; in this case
AppleTalk address 10.2:

Serial0: broadcast - 0, link 809B, addr 10.2
Serial0(o):DLCI 100 type 809B size 104

The following lines describe a Frame Relay packet that went out on two different DLCIs, because
two Frame Relay map entries were found:

Serial0: broadcast search
Serial0(o):DLCI 300 type 809B size 24
Serial0(o):DLCI 400 type 809B size 24

The following lines do not appear in Figure 2-36. They describe a Frame Relay packet sent to a true
broadcast address.

Serial1: broadcast search
Serial1(o):DLCI 400 type 800 size 288

Field Description

Serial0: Indicates the interface that has sent the Frame Relay packet.

broadcast = 1 Indicates the destination of the packet. Possible values include the following:

broadcast = 1—Broadcast address

broadcast = 0—Particular destination

broadcast search—Searches all Frame Relay map entries for this particular protocol
that include the keywordbroadcast.

link 809B Indicates the packet type, as documented under “debug frame relay.”

addr 65535.255 Indicates the destination protocol address for this packet. In this case, it is an
AppleTalk address.

Serial0(o): (o) indicates that this is an output event.

DLCI 500 Decimal value of the DLCI.

type 809B Indicates the packet type, as documented under “debug frame-relay.”

size 24 Size of this packet (in bytes).

2-70 Debug Command Reference

debug ip eigrp

debug ip eigrp
Use thedebug ip eigrp EXEC command to display information on Enhanced IGRP protocol
packets. Theno form of this command disables debugging output.

debug ip eigrp
no debug ip eigrp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command helps you analyze the packets that are sent and received on an interface. Because the
debug ip eigrp command generates large amounts of output, only use it when traffic on the network
is light.

Sample Display
Figure 2-37 shows sampledebug ip eigrp output.

router# debug ip eigrp

IP-EIGRP: Processing incoming UPDATE packet
IP-EIGRP: Ext 198.135.3.0 255.255.255.0 M 386560 - 256000 130560 SM 360960 - 256
000 104960
IP-EIGRP: Ext 198.135.0.0 255.255.255.0 M 386560 - 256000 130560 SM 360960 - 256
000 104960
IP-EIGRP: Ext 198.135.3.0 255.255.255.0 M 386560 - 256000 130560 SM 360960 - 256
000 104960
IP-EIGRP: 198.92.43.0 255.255.255.0, - do advertise out Ethernet0/1
IP-EIGRP: Ext 198.92.43.0 255.255.255.0 metric 371200 - 256000 115200
IP-EIGRP: 192.135.246.0 255.255.255.0, - do advertise out Ethernet0/1
IP-EIGRP: Ext 192.135.246.0 255.255.255.0 metric 46310656 - 45714176 596480
IP-EIGRP: 198.92.40.0 255.255.255.0, - do advertise out Ethernet0/1
IP-EIGRP: Ext 198.92.40.0 255.255.255.0 metric 2272256 - 1657856 614400
IP-EIGRP: 192.135.245.0 255.255.255.0, - do advertise out Ethernet0/1
IP-EIGRP: Ext 192.135.245.0 255.255.255.0 metric 40622080 - 40000000 622080
IP-EIGRP: 192.135.244.0 255.255.255.0, - do advertise out Ethernet0/1

Figure 2-37 Sample Debug IP EIGRP Output

Table 2-20 describes significant fields in the debug messages shown in Figure 2-37.

Debug Commands 2-71

debug ip eigrp

Table 2-20 Debug IP EIGRP Field Descriptions

Field Description

IP-EIGRP: Indicates that this is an IP EIGRP packet.

Ext Indicates the following address is an external destination rather than an
internal destination, which would be labeled as Int.

M Shows the computed metric, which includes SM and the cost between
this router and the neighbor. The first number is the composite metric.
The next two numbers are the inverse bandwidth and the delay,
respectively.

SM Shows the metric as reported by the neighbor.

2-72 Debug Command Reference

debug ip icmp

debug ip icmp
Use thedebug ip icmp EXEC command to display information on Internal Control Message
Protocol (ICMP) transactions. Theno form of this command disables debugging output.

debug ip icmp
no debug ip icmp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command helps you determine whether the router is sending or receiving ICMP messages. Use
it, for example, when you are troubleshooting an end-to-end connection problem.

Sample Display
Figure 2-38 shows sampledebug ip icmp output.

router# debug ip icmp

ICMP: rcvd type 3, code 1, from 128.95.192.4
ICMP: src 36.56.0.202, dst 131.108.16.1, echo reply
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15
ICMP: src 131.108.12.35, dst 131.108.20.7, echo reply
ICMP: dst (255.255.255.255) protocol unreachable rcv from 192.31.7.21
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15
ICMP: dst (255.255.255.255) protocol unreachable rcv from 192.31.7.21
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15
ICMP: src 36.56.0.202, dst 131.108.16.1, echo reply
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15
ICMP: dst (255.255.255.255) protocol unreachable rcv from 192.31.7.21
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15

Figure 2-38 Sample Debug IP ICMP Output

Table 2-21 describes significant fields in the first line ofdebug ip icmp output shown in Figure 2-38.

Debug Commands 2-73

debug ip icmp

Table 2-21 Debug IP ICMP Field Descriptions—Part 1

Field Description

ICMP: Indication that this message describes an ICMP packet.

rcvd type 3 The type field can be one of the following:

0—Echo Reply

3—Destination Unreachable

4—Source Quench

5—Redirect

8—Echo

9—Router Discovery Protocol Advertisement

10—Router Discovery Protocol Solicitations

11—Time Exceeded

12—Parameter Problem

13—Timestamp

14—Timestamp Reply

15—Information Request

16—Information Reply

17—Mask Request

18—Mask Reply

code 1 This field is a code. The meaning of the code depends upon the type
field value:

Echo and Echo Reply—The code field is always zero.

Destination Unreachable—The code field can have the following values:

0—Network unreachable

1—Host unreachable

2—Protocol unreachable

3—Port unreachable

4—Fragmentation needed and DF bit set

5—Source route failed

Source Quench—The code field is always 0.

Redirect—The code field can have the following values:

0—Redirect datagrams for the network

1—Redirect datagrams for the host

2—Redirect datagrams for the command mode of service and network

3—Redirect datagrams for the command mode of service and host

Router Discovery Protocol Advertisements and Solicitations—The code
field is always zero.

2-74 Debug Command Reference

debug ip icmp

Table 2-22 describes significant fields in the second line ofdebug ip icmp output in Figure 2-38.

Table 2-22 Debug IP ICMP Field Descriptions—Part 2

Other messages that thedebug ip icmp command can generate follow.

When an IP router or host sends out an ICMP mask request, the following message is generated
when the router sends a mask reply:

ICMP: sending mask reply (255.255.255.0) to 160.89.80.23 via Ethernet0

The following two lines are examples of the two forms of this message. The first form is generated
when a mask reply comes in after the router sends out a mask request. The second form occurs when
the router receives a mask reply with a nonmatching sequence and ID. See Appendix I of RFC 950,
“Internet Standard Subnetting Procedures,” for details.

ICMP: mask reply 255.255.255.0 from 160.89.80.31
ICMP: unexpected mask reply 255.255.255.0 from 160.89.80.32

The following output indicates that the router sent a redirect packet to the host at address
160.89.80.31, instructing that host to use the gateway at address 160.89.80.23 in order to reach the
host at destination address 131.108.1.111:

ICMP: redirect sent to 160.89.80.31 for dest 131.108.1.111 use gw 160.89.80.23

The following message indicates that the router received a redirect packet from the host at address
160.89.80.23, instructing the router to use the gateway at address 160.89.80.28 in order to reach the
host at destination address 160.89.81.34:

ICMP: redirect rcvd from 160.89.80.23 -- for 160.89.81.34 use gw 160.89.80.28

code 1 (continued) Time Exceeded—The code field can have the following values:

0—Time to live exceeded in transit

1—Fragment reassembly time exceeded

Parameter Problem—The code field can have the following values:

0—General problem

1—Option is missing

2—Option missing, no room to add

Timestamp and Timestamp Reply—The code field is always zero.

Information Request and Information Reply—The code field is always
zero.

Mask Request and Mask Reply—The code field is always zero.

from 128.95.192.4 Source address of the ICMP packet.

Field Description

ICMP: Indication that this message describes an ICMP packet.

src 36.56.0.202 The address of the sender of the echo.

dst 131.108.16.1 The address of the receiving router.

echo reply Indication the router received an echo reply.

Field Description

Debug Commands 2-75

debug ip icmp

The following message is displayed when the router sends an ICMP packet to the source address
(160.89.94.31 in this case), indicating that the destination address (131.108.13.33 in this case) is
unreachable:

ICMP: dst (131.108.13.33) host unreachable sent to 160.89.94.31

The following message is displayed when the router receives an ICMP packet from an intermediate
address (160.89.98.32 in this case), indicating that the destination address (131.108.13.33 in this
case) is unreachable:

ICMP: dst (131.108.13.33) host unreachable rcv from 160.89.98.32

Depending on the code received (as Table 2-21 describes), any of the unreachable messages can have
any of the following “strings” instead of the “host” string in the message:

net
protocol
port
frag. needed and DF set
source route failed
prohibited

The following message is displayed when the TTL in the IP header reaches zero and a time exceed
ICMP message is sent. The fields are self-explanatory.

ICMP: time exceeded (time to live) send to 128.95.1.4 (dest was 131.108.1.111)

The following message is generated when parameters in the IP header are corrupted in some way
and the parameter problem ICMP message is sent. The fields are self-explanatory.

ICMP: parameter problem sent to 128.121.1.50 (dest was 131.108.1.111)

Based on the preceding information, the remaining output can be easily understood.

ICMP: parameter problem rcvd 160.89.80.32
ICMP: source quench rcvd 160.89.80.32
ICMP: source quench sent to 128.121.1.50 (dest was 131.108.1.111)
ICMP: sending time stamp reply to 160.89.80.45
ICMP: sending info reply to 160.89.80.12
ICMP: rdp advert rcvd type 9, code 0, from 160.89.80.23
ICMP: rdp solicit rcvd type 10, code 0, from 160.89.80.43

Note For more information about the fields indebug ip icmp output, see RFC-792, “Internet
Control Message Protocol;” Appendix I of RFC-950, “Internet Standard Subnetting Procedure;” and
RFC-1256, “ICMP Router Discovery Messages.”

2-76 Debug Command Reference

debug ip igmp

debug ip igmp
Use the debug ip igmpEXEC command to display Internet Group Management Protocol (IGMP)
packets received and transmitted, as well as IGMP-host related events. Theno form of this command
disables debugging output.

debug ip igmp
no debug ip igmp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Notes
This command helps discover whether the IGMP processes are functioning. In general, if IGMP is
not working, the router process never discovers that there is another host on the network that is
configured to receive multicast packets. In dense mode this means the packets will be delivered
intermittently (a few every 3 minutes). In sparse mode they will never be delivered.

Use this command in conjunction withdebug ip pimanddebug ip mrouting to observe additional
multicast activity and to see what is happening the the multicast routing process, or why packets are
forwarded out of particular interfaces.

Sample Display
Figure 2-39 shows sampledebug ip igmp output.

router# debug ip igmp

IGMP: Received Host-Query from 198.92.37.33 (Ethernet1)
IGMP: Received Host-Report from 198.92.37.192 (Ethernet1) for 224.0.255.1
IGMP: Received Host-Report from 198.92.37.57 (Ethernet1) for 224.2.127.255
IGMP: Received Host-Report from 198.92.37.33 (Ethernet1) for 225.2.2.2

Figure 2-39 Sample Debug IP IGMP Output

Explanations for output from Figure 2-39 follow.

The messages displayed by thedebug ip igmp command show query and report activity received
from other routers and multicast group addresses.

Related Commands
debug ip pim

debug ip mrouting

Debug Commands 2-77

debug ip igrp events

debug ip igrp events
Use thedebug ip igrp events EXEC command to display summary information on Interior Gateway
Routing Protocol (IGRP) routing messages that indicates the source and destination of each update,
as well as the number of routes in each update. Messages are not generated for each route. Theno
form of this command disables debugging output.

debug ip igrp events[ip-address]
no debug ip igrp events[ip-address]

Syntax Description

Command Mode
EXEC

Usage Guidelines
If the IP address of an IGRP neighbor is specified, the resultingdebug ip igrp events output includes
messages describing updates from that neighbor and updates that the router broadcasts toward that
neighbor.

This command is particularly useful when there are many networks in your routing table. In this
case, usingdebug ip igrp transaction could flood the console and make the router unusable. Use
debug ip igrp events instead to display summary routing information.

Sample Display
Figure 2-40 shows sampledebug ip igrp events output.

Figure 2-40 Sample Debug IP IGRP Events Output

Figure 2-40 shows that the router has sent two updates to the broadcast address 255.255.255.255.
The router also received two updates. Three lines of output describe each of these updates.
Explanations for representative lines of output from Figure 2-40 follow.

ip-address (Optional) IP address of an IGRP neighbor

router# debug ip igrp events

IGRP: sending update to 255.255.255.255 via Ethernet1 (160.89.33.8)
IGRP: Update contains 26 interior, 40 system, and 3 exterior routes.
IGRP: Total routes in update: 69
IGRP: sending update to 255.255.255.255 via Ethernet0 (160.89.32.8)
IGRP: Update contains 1 interior, 0 system, and 0 exterior routes.
IGRP: Total routes in update: 1
IGRP: received update from 160.89.32.24 on Ethernet0
IGRP: Update contains 17 interior, 1 system, and 0 exterior routes.
IGRP: Total routes in update: 18
IGRP: received update from 160.89.32.7 on Ethernet0
IGRP: Update contains 5 interior, 1 system, and 0 exterior routes.
IGRP: Total routes in update: 6

Updates sent
to these two
destination
addresses

Updates
received from
these source
addresses

S
25

48

2-78 Debug Command Reference

debug ip igrp events

The first line indicates whether the router sent or received the update packet, the source or
destination address, and the interface through which the update was sent or received. If the update
was sent, the IP address assigned to this interface is shown (in parentheses).

IGRP: sending update to 255.255.255.255 via Ethernet1 (160.89.33.8)

The second line summarizes the number and types of routes described in the update:

IGRP: Update contains 26 interior, 40 system, and 3 exterior routes.

The third line indicates the total number of routes described in the update.

IGRP: Total routes in update: 69

Debug Commands 2-79

debug ip igrp transaction

debug ip igrp transaction
Use thedebug ip igrp transaction EXEC command to display transaction information on Interior
Gateway Routing Protocol (IGRP) routing transactions. Theno form of this command disables
debugging output.

debug ip igrp transaction [ip-address]
no debug ip igrp transaction[ip-address]

Syntax Description

Command Mode
EXEC

Usage Guidelines
If the IP address of an IGRP neighbor is specified, the resultingdebug ip igrp transaction output
includes messages describing updates from that neighbor and updates that the router broadcasts
toward that neighbor.

When there are many networks in your routing table,debug ip igrp transaction can flood the
console and make the router unusable. In this case, usedebug ip igrp events instead to display
summary routing information.

Sample Display
Figure 2-41 shows sampledebug ip igrp transaction output.

Figure 2-41 Sample Debug IP IGRP Transaction Output

ip-address (Optional) IP address of an IGRP neighbor

Router# debug ip igrp transactions

IGRP: received update from 160.89.80.240 on Ethernet
 subnet 160.89.66.0, metric 1300 (neighbor 1200)
 subnet 160.89.56.0, metric 8676 (neighbor 8576)
 subnet 160.89.48.0, metric 1200 (neighbor 1100)
 subnet 160.89.50.0, metric 1300 (neighbor 1200)
 subnet 160.89.40.0, metric 8676 (neighbor 8576)
 network 192.82.152.0, metric 158550 (neighbor 158450)
 network 192.68.151.0, metric 1115511 (neighbor 1115411)
 network 150.136.0.0, metric 16777215 (inaccessible)
 exterior network 129.140.0.0, metric 9676 (neighbor 9576)
 exterior network 140.222.0.0, metric 9676 (neighbor 9576)
IGRP: received update from 160.89.80.28 on Ethernet
 subnet 160.89.95.0, metric 180671 (neighbor 180571)
 subnet 160.89.81.0, metric 1200 (neighbor 1100)
 subnet 160.89.15.0, metric 16777215 (inaccessible)
IGRP: sending update to 255.255.255.255 via Ethernet0 (160.89.64.31)
 subnet 160.89.94.0, metric=847
IGRP: sending update to 255.255.255.255 via Serial1 (160.89.94.31)
 subnet 160.89.80.0, metric=16777215
 subnet 160.89.64.0, metric=1100

Updates sent
o these two
ource

addresses

Updates
eceived from
hese two
destination
addresses S

25
49

2-80 Debug Command Reference

debug ip igrp transaction

Figure 2-41 shows that the router being debugged has received updates from two other routers on
the network. The router at source address 160.89.80.240 sent information about ten destinations in
the update; the router at source address 160.89.80.28 sent information about three destinations in its
update. The router being debugged also sent updates—in both cases to the broadcast address
255.255.255.255 as the destination address.

The first line in Figure 2-41 is self-explanatory.

On the second line in Figure 2-41, the first field refers to the type of destination information:
“subnet” (interior), “network” (system), or “exterior” (exterior). The second field is the Internet
address of the destination network. The third field is the metric stored in the routing table and the
metric advertised by the neighbor sending the information. “Metric ... inaccessible” usually means
that the neighbor router has put the destination in holddown.

The entries in Figure 2-41 show that the router is sending updates that are similar, except that the
numbers in parentheses are the source addresses used in the IP header. A metric of 16777215 is
inaccessible.

Other examples of output that thedebug ip igrp transaction command can produce follow.

The following entry indicates that the routing table was updated and shows the new edition number
(97 in this case) to be used in the next IGRP update:

IGRP: edition is now 97

Entries such as the following occur on startup or when some event occurs such as an interface
transitioning or a user manually clearing the routing table:

IGRP: broadcasting request on Ethernet0
IGRP: broadcasting request on Ethernet1

The following type of entry can result when routing updates become corrupted between sending and
receiving routers:

IGRP: bad checksum from 160.89.64.43

An entry such as the following should never appear. If it does, the receiving router has a bug in the
software or a problem with the hardware. In either case, contact your technical support
representative.

IGRP: system 45 from 160.89.64.234, should be system 109

Debug Commands 2-81

debug ip mpacket

debug ip mpacket
Use thedebug ip mpacket EXEC command to display only IP multicast packets received and
transmitted.Theno form of this command disables debugging output.

debug ip mpacket[group]
no debug ip mpacket[group]

Syntax Description

Command Mode
EXEC

Usage Guidelines
This command displays information for multicast IP packets that are forwarded from this router. By
using the optionalgroup, you can limit the display to a specific multicast group.

Use this command withdebug ip packet to observe additional packet information.

Note Thedebug ip mpacket command generates lots of messages. Use with care so that
performance on the network is not affected by the debug message traffic.

Sample Display
Figure 2-42 shows sampledebug ip mpacket output.

router# debug ip mpacket 224.2.0.1

IP: s=131.188.34.54 (Ethernet1), d=224.2.0.1 (Tunnel0), len 88, mforward
IP: s=131.188.34.54 (Ethernet1), d=224.2.0.1 (Tunnel0), len 88, mforward
IP: s=131.188.34.54 (Ethernet1), d=224.2.0.1 (Tunnel0), len 88, mforward
IP: s=140.162.3.27 (Ethernet1), d=224.2.0.1 (Tunnel0), len 68, mforward

Figure 2-42 Sample Debug IP Mpacket Output

Table 2-23 defines fields shown in Figure 2-42.

group (Optional) Group name or address to monitor a single
group’s packet activity

2-82 Debug Command Reference

debug ip mpacket

Table 2-23 Debug IP Mpacket Field Descriptions

Related Commands
debug ip mrouting

debug ip packet

Field Description

IP An IP packet.

s=address The source address of the packet.

(Ethernet1) The name of the interface that received the packet.

d= address The multicast group address that is the destination for this packet.

(Tunnel0) The outgoing interface for the packet.

len 88 The number of bytes in the packet. This value will vary depending on the
application and the media.

mforward The packet has been forwarded.

not RPF interface The interface is not a reverse packet forwarding interface. (Seedebug ip
mrouting .)

RPF lookup failed The reverse packet forwarding lookup failed. (Seedebug ip mrouting.)

Debug Commands 2-83

debug ip mrouting

debug ip mrouting
Use thedebug ip mrouting EXEC command to display changes to the IP multicast routing
table.Theno form of this command disables debugging output.

debug ip mrouting [group]
no debug ip mrouting [group]

Syntax Description

Command Mode
EXEC

Usage Notes
This command tells when the router has made changes to the mroute table. Use thedebug ip pim
anddebug ip mrouting commands at the same time to obtain additional multicast routing
information. In addition, use thedebug ip igmp command to see why an mroute message is being
displayed.

This command generates a large amount of output. Use the optionalgroup to limit the output to a
single multicast group.

Sample Display
Figure 2-43 shows sampledebug ip mrouting output.

router# debug ip mrouting 224.2.0.1
IP multicast routing debugging is on

MRT: Delete (13.0.0.0/8, 224.2.0.1)
MRT: Delete (128.3.0.0/16, 224.2.0.1)
MRT: Delete (128.6.0.0/16, 224.2.0.1)
MRT: Delete (128.9.0.0/16, 224.2.0.1)
MRT: Delete (128.16.0.0/16, 224.2.0.1)
MRT: Create (*, 224.2.0.1), if_input NULL
MRT: Create (198.92.15.0/24, 225.2.2.4), if_input Ethernet0, RPF nbr 131.108.61.15
MRT: Create (198.92.39.0/24, 225.2.2.4), if_input Ethernet1, RPF nbr 0.0.0.0
MRT: Create (13.0.0.0/8, 224.2.0.1), if_input Ethernet1, RPF nbr 0.0.0.0
MRT: Create (128.3.0.0/16, 224.2.0.1), if_input Ethernet1, RPF nbr 0.0.0.0
MRT: Create (128.6.0.0/16, 224.2.0.1), if_input Ethernet1, RPF nbr 0.0.0.0
MRT: Create (128.9.0.0/16, 224.2.0.1), if_input Ethernet1, RPF nbr 0.0.0.0
MRT: Create (128.16.0.0/16, 224.2.0.1), if_input Ethernet1, RPF nbr 0.0.0.0

Figure 2-43 Sample Debug IP Mrouting Output

Explanations for individual lines of output from Figure 2-43 follow.

group (Optional) Group name or address to monitor a single
group’s packet activity

2-84 Debug Command Reference

debug ip mrouting

The following lines show that multicast IP routes were deleted from the routing table:

MRT: Delete (13.0.0.0/8, 224.2.0.1)
MRT: Delete (128.3.0.0/16, 224.2.0.1)
MRT: Delete (128.6.0.0/16, 224.2.0.1)

The *,G entry in the following line is always null since it is a *,G. The *,G entries are generally
created by receipt of an IGMP host-report from a group member on the directly connected lan or by
a PIM join message (in sparse mode) which this router receives from a router that is sending joins
toward the RP. This router will in turn, send a join toward the RP which creates the shared tree (or
RP tree).

MRT: Create (*, 224.2.0.1), if_input NULL

The following lines are an example of creating an S,G entry that show a mpacket was received on
E0. The second line shows a route being created for a source that is on a directly connected LAN.
The RPF means “reverse path forwarding,” whereby the router looks up the source address of the
multicast packet in the unicast routing table and asks which interface will be used to send a packet
to that source.

MRT: Create (198.92.15.0/24, 225.2.2.4), if_input Ethernet0, RPF nbr 131.108.61.15
MRT: Create (198.92.39.0/24, 225.2.2.4), if_input Ethernet1, RPF nbr 0.0.0.0

The following lines show that multicast IP routes were added to the routing table. Note the 0.0.0.0
as the RPF, which means the route was created by a source that is directly connected to this router.

MRT: Create (128.9.0.0/16, 224.2.0.1), if_input Ethernet1, RPF nbr 0.0.0.0
MRT: Create (128.16.0.0/16, 224.2.0.1), if_input Ethernet1, RPF nbr 0.0.0.0

If the source is not directly connected, the nbr address shown in these lines will be the address of the
router that forwarded the packet to this router.

The shortest path tree state maintained in routers consists of source (S), multicast address (G),
outgoing interface (OIF), and incoming interface (IIF). The forwarding information is referred to as
the multicast forwarding entry for (S,G).

An entry for a shared tree can match packets from any source for its associated group if the packets
come through the proper incoming interface as determined by the RPF lookup. Such an entry is
denoted as (*,G). A (*,G) entry keeps the same information a (S,G) entry keeps, except that it saves
the rendezvous point (RP) address in place of the source address in sparse mode or 0.0.0.0 in dense
mode.

Related Commands
debug ip pim

debug ip igmp

Debug Commands 2-85

debug ip ospf events

debug ip ospf events
Use thedebug ip ospf events EXEC command to display information on Open Shortest Path First
(OSPF)-related events, such as adjacencies, flooding information, designated router selection, and
shortest path first (SPF) calculation. Theno form of this command disables debugging output.

debug ip ospf events
no debug ip ospf events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-44 shows sampledebug ip ospf events output.

router# debug ip ospf-events

OSPF:hello with invalid timers on interface Ethernet0
hello interval received 10 configured 10
net mask received 255.255.255.0 configured 255.255.255.0
dead interval received 40 configured 30

Figure 2-44 Sample Debug IP OSPF Events Output

Thedebug ip ospf events output shown in Figure 2-44 might appear if any of the following occurs:

• The IP subnet masks for routers on the same network do not match.

• The OSPF hello interval for the router does not match that configured for a neighbor.

• The OSPF dead interval for the router does not match that configured for a neighbor.

If a router configured for OSPF routing is not seeing an OSPF neighbor on an attached network, do
the following:

• Make sure that both routers have been configured with the same IP mask, OSPF hello interval,
and OSPF dead interval.

• Make sure that both neighbors are part of the same area type.

In the following example line, the neighbor and this router are not part of a stub area (that is, one is
a part of a transit area and the other is a part of a stub area, as explained in RFC 1247).

OSPF: hello packet with mismatched E bit

2-86 Debug Command Reference

debug ip packet

debug ip packet
Use thedebug ip packet EXEC command to display general IP debugging information and IP
security option (IPSO) security transactions. Theno form of this command disables debugging
output.

debug ip packet [access-list-number]
no debug ip packet [access-list-number]

Syntax Description

Command Mode
EXEC

Usage Guidelines
If a communication session is closing when it should not be, an end-to-end connection problem can
be the cause. Thedebug ip packet command is useful for analyzing the messages traveling between
the local and remote hosts.

IP debugging information includes packets received, generated, and forwarded. Fast-switched
packets do not generate messages.

IPSO security transactions include messages that describe the cause of failure each time a datagram
fails a security test in the system. This information is also sent to the sending host when the router
configuration allows it.

Note Because thedebug ip packet command generates a significant amount of output, use it only
when traffic on the IP network is low, so other activity on the system is not adversely affected.

access-list-number (Optional) IP access list number that you can specify. If the
datagram is not permitted by that access list, the related
debugging output is suppressed.

Debug Commands 2-87

debug ip packet

Sample Display
Figure 2-45 shows sampledebug ip packet output.

router# debug ip packet

IP: s=131.108.13.44 (Fddi0), d=157.125.254.1 (Serial2), g=131.108.16.2, forward
IP: s=131.108.1.57 (Ethernet4), d=192.36.125.2 (Serial2), g=131.108.16.2, forward
IP: s=131.108.1.6 (Ethernet4), d=255.255.255.255, rcvd 2
IP: s=131.108.1.55 (Ethernet4), d=131.108.2.42 (Fddi0), g=131.108.13.6, forward
IP: s=131.108.89.33 (Ethernet2), d=131.130.2.156 (Serial2), g=131.108.16.2, forward
IP: s=131.108.1.27 (Ethernet4), d=131.108.43.126 (Fddi1), g=131.108.23.5, forward
IP: s=131.108.1.27 (Ethernet4), d=131.108.43.126 (Fddi0), g=131.108.13.6, forward
IP: s=131.108.20.32 (Ethernet2), d=255.255.255.255, rcvd 2
IP: s=131.108.1.57 (Ethernet4), d=192.36.125.2 (Serial2), g=131.108.16.2, access denied

Figure 2-45 Sample Debug IP Packet Output

Figure 2-45 shows two types of messages that thedebug ip packet command can produce; the first
line of output describes an IP packet that the router forwards, and the third line of output describes
a packet that is destined for the router. In the third line of output, “rcvd 2” indicates that the router
decided to receive the packet.

Table 2-24 describes the fields shown in the first line of Figure 2-45.

Table 2-24 Debug IP Packet Field Descriptions

The calculation on whether to send a security error message can be somewhat confusing. It depends
upon both the security label in the datagram and the label of the incoming interface. First, the label
contained in the datagram is examined for anything obviously wrong. If nothing is wrong, assume
it to be correct. If there is something wrong, the datagram is treated asunclassified genser. Then the
label is compared with the interface range, and the appropriate action is taken as Table 2-25
describes.

Field Description

IP: Indicates that this is an IP packet.

s = 131.108.13.44 (Fddi0) Indicates the source address of the packet and the name of the interface
that received the packet.

d = 157.125.254.1 (Serial2) Indicates the destination address of the packet and the name of the
interface (in this case, S2) through which the packet is being sent out on
the network.

g = 131.108.16.2 Indicates the address of the next hop gateway.

forward Indicates that the router is forwarding the packet. If a filter denies a
packet, “access denied” replaces “forward,” as shown in the last line of
output in Figure 2-45.

2-88 Debug Command Reference

debug ip packet

Table 2-25 Security Actions

The security code can only generate a few types of ICMP error messages. The only possible error
messages and their meanings follow:

• “ICMP Parameter problem, code 0”—Error at pointer

• “ICMP Parameter problem, code 1”—Missing option

• “ICMP Parameter problem, code 2”—See Note that follows

• “ICMP Unreachable, code 10”—Administratively prohibited

Note The message “ICMP Parameter problem, code 2” identifies a specific error that occurs in the
processing of a datagram. This message indicates that the router received a datagram containing a
maximum length IP header but no security option. After being processed and routed to another
interface, it is discovered that the outgoing interface is marked with “add a security label.” Since the
IP header is already full, the system cannot add a label and must drop the datagram and return an
error message.

When an IP packet is rejected due to an IP security failure, an audit message is sent via DNSIX NAT.
Also, anydebug ip packet output is appended to include a description of the reason for rejection.
These reasons can be any of the following:

• No basic

• No basic, no response

• Reserved class

• Reserved class, no response

• Class too low, no response

• Class too high

• Class too high, bad authorities, no response

• Unrecognized class

• Unrecognized class, no response

• Multiple basic

Classification Authorities Action Taken

Too low Too low

Good

Too high

No Response

No Response

No Response

In range Too low

Good

Too high

No Response

Accept

Send Error

Too high Too low

In range

Too high

No Response

Send Error

Send Error

Debug Commands 2-89

debug ip packet

• Multiple basic, no response

• Authority too low, no response

• Authority too high

• Compartment bits not dominated by maximum sensitivity level

• Compartment bits don't dominate minimum sensitivity level

• Security failure: extended security disallowed

• NLESO source appeared twice

• ESO source not found

• Postroute, failed xfc out

• No room to add IPSO

2-90 Debug Command Reference

debug ip pim

debug ip pim
Use the debug ip pim EXEC command to display Protocol Independent Multicast (PIM) packets
received and transmitted as well as PIM related events.Theno form of this command disables
debugging output.

debug ip pim [group]
no debug ip pim[group]

Syntax Description

Command Mode
EXEC

Usage Guidelines
PIM uses IGMP packets to communicate between routers and advertise reachability information.

Use this command withdebug ip igmpanddebug ip mrouting to observe additional multicast
routing information.

group (Optional) Group name or address to monitor a single
group’s packet activity

Debug Commands 2-91

debug ip pim

Sample Display
Figure 2-46 shows sampledebug ip pim output.

router# debug ip pim 224.2.0.1

PIM: Received Join/Prune on Ethernet1 from 198.92.37.33
PIM: Received Join/Prune on Ethernet1 from 198.92.37.33
PIM: Received Join/Prune on Tunnel0 from 10.3.84.1
PIM: Received Join/Prune on Ethernet1 from 198.92.37.33
PIM: Received Join/Prune on Ethernet1 from 198.92.37.33
PIM: Received RP-Reachable on Ethernet1 from 131.108.20.31
PIM: Update RP expiration timer for 224.2.0.1
PIM: Forward RP-reachability packet for 224.2.0.1 on Tunnel0
PIM: Received Join/Prune on Ethernet1 from 198.92.37.33
PIM: Prune-list (163.221.196.51/32, 224.2.0.1)
PIM: Set join delay timer to 2 seconds for (163.221.0.0/16, 224.2.0.1) on Ethernet1
PIM: Received Join/Prune on Ethernet1 from 198.92.37.6
PIM: Received Join/Prune on Ethernet1 from 198.92.37.33
PIM: Received Join/Prune on Tunnel0 from 10.3.84.1
PIM: Join-list: (*, 224.2.0.1) RP 131.108.20.31
PIM: Add Tunnel0 to (*, 224.2.0.1), Forward state
PIM: Join-list: (13.0.0.0/8, 224.2.0.1)
PIM: Add Tunnel0 to (13.0.0.0/8, 224.2.0.1), Forward state
PIM: Join-list: (128.3.0.0/16, 224.2.0.1)
PIM: Prune-list (198.92.84.16/28, 224.2.0.1) RP-bit set RP 198.92.84.16
PIM: Send Prune on Ethernet1 to 198.92.37.6 for (198.92.84.16/28, 224.2.0.1), RP
PIM: For RP, Prune-list: 128.9.0.0/16
PIM: For RP, Prune-list: 128.16.0.0/16
PIM: For RP, Prune-list: 128.49.0.0/16
PIM: For RP, Prune-list: 128.84.0.0/16
PIM: For RP, Prune-list: 128.146.0.0/16
PIM: For 10.3.84.1, Join-list: 198.92.84.16/28
PIM: Send periodic Join/Prune to RP via 198.92.37.6 (Ethernet1)

Figure 2-46 Sample Debug IP PIM Output

Explanations for individual lines of output from Figure 2-46 follow.

The following lines appear periodically when PIM is running in sparse mode and indicate to this
router which multicast groups and multicast sources other routers are interested in:

PIM: Received Join/Prune on Ethernet1 from 198.92.37.33
PIM: Received Join/Prune on Ethernet1 from 198.92.37.33

The following lines appear when a rendezvous point (RP) message is received and the RP timer is
reset. The expiration timer sets a checkpoint to make sure the RP still exists; otherwise a new RP
must be discovered:

PIM: Received RP-Reachable on Ethernet1 from 131.108.20.31
PIM: Update RP expiration timer for 224.2.0.1
PIM: Forward RP-reachability packet for 224.2.0.1 on Tunnel0

The prune-list message in the following line states that this router is not interested in the source
address information. The prune message tells an upstream router to stop forwarding multicast
packets from this source.

PIM: Prune-list (163.221.196.51/32, 224.2.0.1)

2-92 Debug Command Reference

debug ip pim

In the following line, a second router on the network wants to override the prune message that the
upstream router just received. The timer is set at a random value so that if there are additional routers
on the network that still want to receive multicsat packets for the group, only one will actually send
the message. The other routers will receive the join message and then suppress sending their own
message.

PIM: Set join delay timer to 2 seconds for (163.221.0.0/16, 224.2.0.1) on Ethernet1

In the following line, a join message is sent towards the RP for all sources:

PIM: Join-list: (*, 224.2.0.1) RP 131.108.20.31

In the following lines, the interface is being added to the outgoing interface (OIF) of the *,G and S,G
mroute table entry so that packets from the source will be forwarded out that particular interface:

PIM: Add Tunnel0 to (*, 224.2.0.1), Forward state
PIM: Add Tunnel0 to (13.0.0.0/8, 224.2.0.1), Forward state

The following line appears in sparse mode only. There are two trees on which data may be received:
the RP tree and the source tree. In dense mode there is no RP. After the source and the receiver have
discovered one another at the RP, the first-hop router for the receiver will usually join to the source
tree rather than the RP tree:

PIM: Prune-list (198.92.84.16/28, 224.2.0.1) RP-bit set RP 198.92.84.16

The Send Prune message in the next line show that a router is sending a message to a second router
saying that the first router no longer wants to receive multicast packets for the S,G. The “RP” at the
end of the message indicates that the router is pruning the RP tree and is most likely joining the
source tree, although the router may not have downstream members for the group or downstream
routers with members of the group. The output shows which specific sources this router no longer
wants multicast from.

PIM: Send Prune on Ethernet1 to 198.92.37.6 for (198.92.84.16/28, 224.2.0.1), RP

The following lines indicate a prune message is sent toward the RP so that router can join the source
tree rather than the RP tree:

PIM: For RP, Prune-list: 128.9.0.0/16
PIM: For RP, Prune-list: 128.16.0.0/16
PIM: For RP, Prune-list: 128.49.0.0/16

In the following line, a periodic message is sent towards the RP. The default period is once per
minute. Prune and join messages are sent toward the RP or source rather than directly to the RP or
source. It is the responsibility of the next-hop router to take proper action with this message, such as
continuing to forward it to the next router in the tree.

PIM: Send periodic Join/Prune to RP via 198.92.37.6 (Ethernet1)

Related Commands
debug ip mrouting

debug ip igmp

Debug Commands 2-93

debug ip rip

debug ip rip
Use thedebug ip rip EXEC command to display information on RIP routing transactions. Theno
form of this command disables debugging output.

debug ip rip
no debug ip rip

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-47 shows sampledebug ip rip output.

Figure 2-47 Sample Debug IP RIP Output

Figure 2-47 shows that the router being debugged has received updates from one router at source
address 160.89.80.28. That router sent information about five destinations in the routing table
update. Notice that the fourth destination address in the update—131.108.0.0—is inaccessible
because it is more than 15 hops away from the router sending the update. The router being debugged
also sent updates, in both cases to broadcast address 255.255.255.255 as the destination.

The first line in Figure 2-47 is self-explanatory.

The second line in Figure 2-47 is an example of a routing table update. It shows how many hops a
given Internet address is from the router.

The entries in Figure 2-47 show that the router is sending updates that are similar, except that the
number in parentheses is the source address encapsulated into the IP header.

Examples of additional output that thedebug ip rip command can generate follow.

router# debug ip rip

RIP: received update from 160.89.80.28 on Ethernet0
 160.89.95.0 in 1 hops
 160.89.81.0 in 1 hops
 160.89.66.0 in 2 hops
 131.108.0.0 in 16 hops (inaccessible)
 0.0.0.0 in 7 hop
RIP: sending update to 255.255.255.255 via Ethernet0 (160.89.64.31)
 subnet 160.89.94.0, metric 1
 131.108.0.0 in 16 hops (inaccessible)
RIP: sending update to 255.255.255.255 via Serial1 (160.89.94.31)
 subnet 160.89.64.0, metric 1
 subnet 160.89.66.0, metric 3
 131.108.0.0 in 16 hops (inaccessible)
 default 0.0.0.0, metric 8

Updates
received
from this
source
address

Updates
sent to
these two
destination
addresses

S
25

50

2-94 Debug Command Reference

debug ip rip

Entries such as the following appear at startup or when an event occurs such as an interface
transitioning or a user manually clearing the routing table:

RIP: broadcasting general request on Ethernet0
RIP: broadcasting general request on Ethernet1

The following line is self-explanatory:

RIP: received request from 160.89.80.207 on Ethernet0

An entry such as the following is most likely caused by a malformed packet from the transmitter:

RIP: bad version 128 from 160.89.80.43

Debug Commands 2-95

debug ip routing

debug ip routing
Use thedebug ip routing EXEC command to display information on Routing Information Protocol
(RIP) routing table updates and route-cache updates. Theno form of this command disables
debugging output.

debug ip routing
no debug ip routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-48 shows sampledebug ip routing output.

router# debug ip routing

RT: add 198.93.168.0 255.255.255.0 via 198.92.76.30, igrp metric [100/3020]
RT: metric change to 198.93.168.0 via 198.92.76.30, igrp metric [100/3020]
 new metric [100/2930]
IP: cache invalidation from 0x115248 0x1378A, new version 5736
RT: add 198.133.219.0 255.255.255.0 via 198.92.76.30, igrp metric [100/16200]
RT: metric change to 198.133.219.0 via 198.92.76.30, igrp metric [100/16200]
 new metric [100/10816]
RT: delete route to 198.133.219.0 via 198.92.76.30, igrp metric [100/10816]
RT: no routes to 198.133.219.0, entering holddown
IP: cache invalidation from 0x115248 0x1378A, new version 5737
RT: 198.133.219.0 came out of holddown
RT: garbage collecting entry for 198.133.219.0
IP: cache invalidation from 0x115248 0x1378A, new version 5738
RT: add 198.133.219.0 255.255.255.0 via 198.92.76.30, igrp metric [100/10816]
RT: delete route to 198.133.219.0 via 198.92.76.30, igrp metric [100/10816]
RT: no routes to 198.133.219.0, entering holddown
IP: cache invalidation from 0x115248 0x1378A, new version 5739
RT: 198.133.219.0 came out of holddown
RT: garbage collecting entry for 198.133.219.0
IP: cache invalidation from 0x115248 0x1378A, new version 5740
RT: add 198.133.219.0 255.255.255.0 via 198.92.76.30, igrp metric [100/16200]
RT: metric change to 198.133.219.0 via 198.92.76.30, igrp metric [100/16200]
 new metric [100/10816]
RT: delete route to 198.133.219.0 via 198.92.76.30, igrp metric [100/10816]
RT: no routes to 198.133.219.0, entering holddown
IP: cache invalidation from 0x115248 0x1378A, new version 5741

Figure 2-48 Sample Debug IP Routing Output

Explanations for representative lines of output in Figure 2-48 follow.

In the following lines, a newly created entry has been added to the IP routing table. The “metric
change” indicates that this entry existed previously, but its metric changed and the change was
reported by means of IGRP. The metric could also be reported via RIP, OSPF, or another IP routing
protocol. The numbers inside the brackets report the administrative distance and the actual metric.

2-96 Debug Command Reference

debug ip routing

 “Cache invalidation” means that the fast switching cache was invalidated due to a routing table
change. “New version” is the version number of the routing table. When the routing table changes,
this number is incremented. The hexadecimal numbers are internal numbers that vary from version
to version and software load to software load.

RT: add 198.93.168.0 255.255.255.0 via 198.92.76.30, igrp metric [100/3020]
RT: metric change to 198.93.168.0 via 198.92.76.30, igrp metric [100/3020]
 new metric [100/2930]
IP: cache invalidation from 0x115248 0x1378A, new version 5736

In the following output, the “holddown” and“ cache invalidation” lines are displayed. Most of the
distance vector routing protocols use “holddown” to avoid typical problems like counting to infinity
and routing loops. If you look at the output ofshow ip protocols you will see what the timer values
are for “holddown” and “cache invalidation”. “Cache invalidation” corresponds to “came out of
holddown”. “Delete route” is triggered when a better path comes along. It gets rid of the old inferior
path.

RT: delete route to 198.133.219.0 via 198.92.76.30, igrp metric [100/10816]
RT: no routes to 198.133.219.0, entering holddown
IP: cache invalidation from 0x115248 0x1378A, new version 5737
RT: 198.133.219.0 came out of holddown

Debug Commands 2-97

debug ip security

debug ip security
Use thedebug ip security EXEC command to display IP security option processing. Theno form
of this command disables debugging output.

debug ip security
no debug ip security

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Thedebug ip security command displays information for both basic and extended IP security
options. For interfaces whereip security is configured, each IP packet processed for that interface
results in debugging output whether or not the packet contains IP security options. IP packets
processed for other interfaces that also contain IP security information also trigger debugging
output. Some additional IP security debugging information is also controlled by thedebug ip packet
EXEC command.

Note Because thedebug ip security command generates a significant amount of output for every
IP packet processed, use it only when traffic on the IP network is low, so other activity on the system
is not adversely affected.

Sample Display
Figure 2-49 shows sampledebug ip security output.

router# debug ip security

IP Security: src 198.92.72.52 dst 198.92.72.53, number of BSO 1
 idb: NULL
 pak: insert (0xFF) 0x0
IP Security: BSO postroute: SECINSERT changed to secret (0x5A) 0x10
IP Security: src 198.92.72.53 dst 198.92.72.52, number of BSO 1
 idb: secret (0x6) 0x10 to secret (0x6) 0x10, no implicit
 def secret (0x6) 0x10
 pak: secret (0x5A) 0x10
IP Security: checking BSO 0x10 against [0x10 0x10]
IP Security: classified BSO as secret (0x5A) 0x10

Figure 2-49 Sample Debug IP Security Output

Table 2-26 describes significant fields shown in Figure 2-49.

2-98 Debug Command Reference

debug ip security

Table 2-26 Debug IP Security Field Descriptions

Explanations for representative lines of output in Figure 2-49 follow.

The following line indicates that the packet was locally generated, and it has been classified with the
internally significant security level “insert” (0xff) and authority 0x0:

idb: NULL
pak: insert (0xff) 0x0

The following line indicates that the packet was received via an interface with dedicated IP security
configured. Specifically, the interface is configured at security level “secret” and with authority
information of 0x0. The packet itself was classified at level “secret” (0x5a) and authority 0x10.

idb: secret (0x6) 0x10 to secret (0x6) 0x10, no implicit
 def secret (0x6) 0x10
pak: secret (0x5A) 0x10

Field Description

number of BSO Indicates the number of basic security options found in the packet.

idb Provides information on the security configuration for the incoming interface.

pak Provides information on the security classification of the incoming packet.

src Indicates the source IP address.

dst Indicates the destination IP address.

Debug Commands 2-99

debug ip tcp driver

debug ip tcp driver
Use thedebug ip tcp driver EXEC command to display information on Transmission Control
Protocol (TCP) driver events; for example, connections opening or closing, or packets being dropped
because of full queues. Theno form of this command disables debugging output.

debug ip tcp driver
no debug ip tcp driver

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The TCP driver is the process that the router software uses to send packet data over a TCP
connection. Remote source-route bridging, STUN (serial tunneling), and X.25 switching currently
use the TCP driver.

Using thedebug ip tcp driver command together with thedebug ip tcp driver-pak command
provides the most verbose debugging output concerning TCP driver activity.

Sample Display
Figure 2-50 shows sampledebug ip tcp driver output.

router# debug ip tcp driver

TCPDRV359CD8: Active open 160.89.80.26:0 --> 160.89.80.25:1996 OK, lport 36628
TCPDRV359CD8: enable tcp timeouts
TCPDRV359CD8: 160.89.80.26:36628 --> 160.89.80.25:1996 Abort
TCPDRV359CD8: 160.89.80.26:36628 --> 160.89.80.25:1996 DoClose tcp abort

Figure 2-50 Sample Debug IP TCP Driver Output

Explanations for individual lines of output from Figure 2-50 follow.

Table 2-27 describes the fields in the first line of output.

2-100 Debug Command Reference

debug ip tcp driver

Table 2-27 Debug IP TCP Driver Field Descriptions

The following line indicates that the TCP driver user (remote source-route bridging, in this case) will
allow TCP to drop the connection if excessive retransmissions occur:

TCPDRV359CD8: enable tcp timeouts

The following line indicates that the TCP driver user (in this case, remote source-route bridging) at
IP address 160.89.80.26 (and using TCP port number 36628) is requesting that the connection to IP
address 160.89.80.25 using TCP port number 1996 be aborted:

TCPDRV359CD8: 160.89.80.26:36628 --> 160.89.80.25:1996 Abort

The following line indicates that this connection was in fact closed due to an abort:

TCPDRV359CD8: 160.89.80.26:36628 --> 160.89.80.25:1996 DoClose tcp abort

Field Description

TCPDRV359CD8: Unique identifier for this instance of TCP driver activity.

Active open 160.89.80.26 Indication that the router at IP address 160.89.80.26 has initiated a
connection to another router.

:0 The TCP port number the initiator of the connection uses to indicate that
any port number can be used to set up a connection.

--> 160.89.80.25 The IP address of the remote router to which the connection has been
initiated.

:1996 The TCP port number that the initiator of the connection is requesting
that the remote router use for the connection. (1996 is a private TCP port
number reserved in this implementation for remote source-route
bridging.)

OK, Indication that the connection has been established. If the connection has
not been established, this field and the following field do not appear in
this line of output.

lport 36628 The TCP port number that has actually been assigned for the initiator to
use for this connection.

Debug Commands 2-101

debug ip tcp driver-pak

debug ip tcp driver-pak
Use thedebug ip tcp driver-pak EXEC command to display information on every operation that
the Transmission Control Protocol (TCP) driver performs. Theno form of this command disables
debugging output.

debug ip tcp driver-pak
no debug ip tcp driver-pak

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command turns on a verbose debugging by logging at least one debugging message for every
packet sent or received on the TCP driver connection.

The TCP driver is the process that the router software uses to send packet data over a TCP
connection. Remote source-route bridging, STUN (serial tunneling), and X.25 switching currently
use the TCP driver.

To observe the context within which certaindebug ip tcp driver-pak messages occur, turn on this
command in conjunction with thedebug ip tcp driver command.

Note Because thedebug ip tcp driver-pak command generates so many messages, use it only on
lightly loaded systems. This command not only places a significant load on the system processor,
but it may even change the symptoms of any unexpected behavior that occur.

Sample Display
Figure 2-51 shows sampledebug ip tcp driver-pak output.

router# debug ip tcp driver-pak

TCPDRV359CD8: send 2E8CD8 (len 26) queued
TCPDRV359CD8: output pak 2E8CD8 (len 26) (26)
TCPDRV359CD8: readf 42 bytes (Thresh 16)
TCPDRV359CD8: readf 26 bytes (Thresh 16)
TCPDRV359CD8: readf 10 bytes (Thresh 10)
TCPDRV359CD8: send 327E40 (len 4502) queued
TCPDRV359CD8: output pak 327E40 (len 4502) (4502)

Figure 2-51 Sample Debug IP TCP Driver-Pak Output

Explanations for individual lines of output from Figure 2-51 follow.

Table 2-28 describes the fields shown in the first line of output.

2-102 Debug Command Reference

debug ip tcp driver-pak

Table 2-28 Debug TCP Driver-Pak Field Descriptions

The following line indicates that the TCP driver has sent the data that it had received from the TCP
driver user, as shown in the previous line of output. The last field in the line (26) indicates that the
26 bytes of data were sent out as a single unit.

TCPDRV359CD8: output pak 2E8CD8 (len 26) (26)

The following line indicates that the TCP driver has received 42 bytes of data from the remote IP
address. The TCP driver user (in this case, remote source-route bridging) has established an input
threshold of 16 bytes for this connection. (The input threshold instructs the TCP driver to transfer
data to the TCP driver user only when at least 16 bytes are present.)

TCPDRV359CD8: readf 42 bytes (Thresh 16)

Field Description

TCPDRV359CD8 Unique identifier for this instance of TCP driver activity.

send Indication that this event involves the TCP driver sending data.

2E8CD8 Address in memory of the data the TCP driver is sending.

(len 26) Length of the data (in bytes).

queued Indication that the TCP driver user process (in this case, remote source-
route bridging) has transferred the data to the TCP driver to send.

Debug Commands 2-103

debug ip tcp transactions

debug ip tcp transactions
Use thedebug ip tcp transactionsEXEC command to display information on significant
Transmission Control Protocol (TCP) transactions such as state changes, retransmissions, and
duplicate packets. Theno form of this command disables debugging output.

debug ip tcp transactions
no debug ip tcp transactions

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is particularly useful for debugging a performance problem on a TCP/IP network that
you have isolated above the data link layer.

Thedebug ip tcp transactions command displays output for packets the router sends and receives,
but does not display output for packets it forwards.

Sample Display
Figure 2-52 shows sampledebug ip tcp transactions output.

router# debug ip tcp transactions

TCP: sending SYN, seq 168108, ack 88655553
TCP0: Connection to 26.9.0.13:22530, advertising MSS 966
TCP0: state was LISTEN -> SYNRCVD [23 -> 26.9.0.13(22530)]
TCP0: state was SYNSENT -> SYNRCVD [23 -> 26.9.0.13(22530)]
TCP0: Connection to 26.9.0.13:22530, received MSS 956
TCP0: restart retransmission in 5996
TCP0: state was SYNRCVD -> ESTAB [23 -> 26.9.0.13(22530)]
TCP2: restart retransmission in 10689
TCP2: restart retransmission in 10641
TCP2: restart retransmission in 10633
TCP2: restart retransmission in 13384 -> 26.0.0.13(16151)]
TCP0: restart retransmission in 5996 [23 -> 26.0.0.13(16151)]

Figure 2-52 Sample Debug IP TCP Output

Table 2-29 describes significant fields shown in Figure 2-52.

2-104 Debug Command Reference

debug ip tcp transactions

Table 2-29 Debug IP TCP Field Descriptions

Field Description

TCP: Indicates that this is a TCP transaction.

sending SYN Indicates that a synchronize packet is being sent.

seq 168108 Indicates the sequence number of the data being sent.

ack 88655553 Indicates the sequence number of the data being
acknowledged.

TCP0: Indicates the TTY number (0, in this case) with which this
TCP connection is associated.

Connection to 26.9.0.13:22530 Indicates the remote address with which a connection has
been established.

advertising MSS 966 Indicates the maximum segment size this side of the TCP
connection is offering to the other side.

state was LISTEN -> SYNSENT Indicates that the TCP state machine changed state from
LISTEN to SYNSENT. Possible TCP states follow:

CLOSED—Connection closed.

CLOSEWAIT—Received a FIN segment.

CLOSING—Received a FIN/ACK segment.

ESTAB—Connection established.

FINWAIT 1—Sent a FIN segment to start closing the
connection.

FINWAIT 2—Waiting for a FIN segment.

LASTACK—Sent a FIN segment in response to a received
FIN segment.

LISTEN—Listening for a connection request.

SYNRCVD—Received a SYN psegment, and responded.

SYNSENT—Sent a SYN segment to start connection
negotiation.

TIMEWAIT—Waiting for network to clear segments for this
connection before the network no longer recognizes the
connection as valid. This must occur before a new connection
can be set up.

[23 -> 26.9.0.13(22530)] Within these brackets:

The first field (23) indicates local TCP port.

The second field (26.9.0.13) indicates the destination IP
address.

The third field (22530) indicates the destination TCP port.

restart retransmission in 5996 Indicates the number of milliseconds until the next
retransmission takes place.

