
frontmatter.fm October 11, 2004

Netcool®/OMNIbusTM

v7

Probe and Gateway Guide

© 2004 Micromuse Inc., Micromuse Ltd.

All rights reserved. No part of this work may be reproduced in any form or by any
person without prior written permission of the copyright owner. This document is
proprietary and confidential to Micromuse, and is subject to a confidentiality
agreement, as well as applicable common and statutory law.

Micromuse Disclaimer of Warranty and Statement of Limited Liability

Micromuse provides this document “as is”, without warranty of any kind, either
express or implied, including, but not limited to, the implied warranties of
merchantability, fitness for a particular purpose or non-infringement. This
document may contain technical inaccuracies or typographical errors. Micromuse
may make improvements and changes to the programs described in this document
or this document at any time without notice. Micromuse assumes no responsibility
for the use of the programs or this document except as expressly set forth in the
applicable Micromuse agreement(s) and subject to terms and conditions set forth
therein. Micromuse does not warrant that the functions contained in the programs
will meet your requirements, or that the operation of the programs will be
uninterrupted or error-free. Micromuse shall not be liable for any indirect,
consequential or incidental damages arising out of the use or the ability to use the
programs or this document.

Micromuse specifically disclaims any express or implied warranty of fitness for high
risk activities.

Micromuse programs and this document are not certified for fault tolerance, and
are not designed, manufactured or intended for use or resale as on-line control
equipment in hazardous environments requiring fail-safe performance, such as in
the operation of nuclear facilities, aircraft navigation or communication systems,
air traffic control, direct life support machines, or weapons systems (“High Risk
Activities”) in which the failure of programs could lead directly to death, personal
injury, or severe physical or environmental damage.

Compliance with Applicable Laws; Export Control Laws

Use of Micromuse programs and documents is governed by all applicable federal,
state and local laws. All information therein is subject to U.S. export control laws
and may also be subject to the laws of the country where you reside.

All Micromuse programs and documents are commercial in nature. Use,
duplication or disclosure by the United States Government is subject to the
restrictions set forth in DFARS 252.227-7015 and FAR 52.227-19.

Trademarks and Acknowledgements

Micromuse and Netcool are registered trademarks of Micromuse.

Other Micromuse trademarks include but are not limited to: Netcool/OMNIbus,
Netcool/OMNIbus for Voice Networks, Netcool/Reporter, Netcool/Internet
Service Monitors, Netcool/NT Service Monitors, Netcool/Wireless Service
Monitors, Netcool/Usage Service Monitors, Netcool/Fusion, Netcool/Data
Center Monitors, Netcool/Impact, Netcool/Visionary, Netcool/Precision for IP
Networks, Netcool/Precision for Transmission Networks, Netcool/Firewall,
Netcool/Webtop, Netcool/SM Operations, Netcool/SM Configuration,
Netcool/OpCenter, Netcool/System Service Monitors, Netcool/Application
Service Monitors, Netcool for Asset Management, Netcool for Voice over IP,
Netcool for Security Management, Netcool/Portal 2.0 Premium Edition, Netcool
ObjectServer, Netcool/Software Developers Kit, Micromuse Alliance Program
and Network Slice.

Micromuse acknowledges the use of I/O Concepts Inc. X-Direct 3270 terminal
emulators and hardware components and documentation in Netcool/Fusion.
X-Direct ©1989-1999 I/O Concepts Inc. X-Direct and Win-Direct are
trademarks of I/O Concepts Inc.

Netcool/Fusion contains IBM Runtime Environment for AIX®, Java™
Technology Edition Runtime Modules © Copyright IBM Corporation 1999. All
rights reserved.

Micromuse acknowledges the use of MySQL in Netcool/Precision for IP
Networks. Copyright © 1995, 1996 TcX AB & Monty Program KB & Detron

HB Stockholm SWEDEN, Helsingfors FINLAND and Uppsala SWEDEN. All
rights reserved.

Micromuse acknowledges the use of the UCD SNMP Library Netcool/ISMs.
Copyright © 1989, 1991, 1992 by Carnegie Mellon University. Derivative Work
- Copyright © 1996, 1998, 1999, 2000 The Regents of the University of
California. All rights reserved.

Portions of the Netcool/ISMs code are copyright (c) 2001, Cambridge Broadband
Ltd. All rights reserved.

Portions of the Netcool/ISMs code are copyright (c) 2001, Networks Associates
Technology, Inc. All rights reserved.

Micromuse acknowledges the use of Viador Inc. software and documentation for
Netcool/Reporter. Viador © 1997-1999 is a trademark of Viador Inc.

Micromuse acknowledges the use of software developed by the Apache Group for
use in the Apache HTTP server project. Copyright © 1995-1999 The Apache
Group. Apache Server is a trademark of the Apache Software Foundation. All
rights reserved.

Micromuse acknowledges the use of software developed by Edge Technologies,
Inc. ”2003 Edge Technologies, Inc. and Edge enPortal are trademarks or
registered trademarks of Edge Technologies Inc. All rights reserved.

Micromuse acknowledges the use of Acme Labs software in Netcool/SM
Operations, Netcool/SM Configuration and Netcool/OpCenter. Copyright
1996, 1998 Jef Poskanzer jef@acme.com. All rights reserved.

Micromuse acknowledges the use of WAP and MMS stacks in Netcool/SM as
powered by http://www.serialio.com.

Micromuse acknowledges the use of Merant drivers. Copyright © MERANT
Solutions Inc., 1991-1998.

The following product names are trademarks of Tivoli Systems or IBM
Corporation: AIX, IBM, OS/2, RISC System/6000, Tivoli Management
Environment, and TME10.

IBM, Domino, Lotus, Lotus Notes, NetView/6000 and WebSphere are either
trademarks or registered trademarks of IBM Corporation. VTAM is a trademark
of IBM Corporation.

Omegamon is a trademark of Candle Corporation.

Netspy is a trademark of Computer Associates International Inc.

The Sun logo, Sun Microsystems, SunOS, Solaris, SunNet Manager, Java are
trademarks of Sun Microsystems Inc.

SPARC is a registered trademark of SPARC International Inc. Programs bearing
the SPARC trademark are based on an architecture developed by Sun
Microsystems Inc. SPARCstation is a trademark of SPARC International Inc.,
licensed exclusively to Sun Microsystems Inc.

UNIX is a registered trademark of the X/Open Company Ltd.

Sybase is a registered trademark of Sybase Inc.

Action Request System and Remedy are registered trademarks of Remedy
Corporation.

Peregrine System and ServiceCenter are registered trademarks of Peregrine Systems
Inc.

HP, HP-UX and OpenView are trademarks of Hewlett-Packard Company.

InstallShield is a registered trademark of InstallShield Software Corporation.

Microsoft, Windows 95/98/Me/NT/2000/XP are either registered trademarks or
trademarks of Microsoft Corporation.

Microsoft Active Directory, Microsoft Internet Information Server/Services (IIS),
Microsoft Exchange Server, Microsoft SQL Server, Microsoft perfmon and
Microsoft Cluster Service are registered trademarks of Microsoft Corporation.

BEA and WebLogic are registered trademarks of BEA Systems Inc.

FireWall-1 is a registered trademark of Check Point Software Technologies Ltd.

Netscape and Netscape Navigator are registered trademarks of Netscape
Communications Corporation in the United States and other countries.

Netscape's logos and Netscape product and service names are also trademarks of
Netscape Communications Corporation, which may be registered in other
countries.

Micromuse acknowledges the use of Xpm tool kit components.

SentinelLM is a trademark of Rainbow Technologies Inc.

GLOBEtrotter and FLEXlm are registered trademarks of Globetrotter Software
Inc.

Red Hat, the Red Hat “Shadow Man” logo, RPM, Maximum RPM, the RPM
logo, Linux Library, PowerTools, Linux Undercover, RHmember, RHmember
More, Rough Cuts, Rawhide and all Red Hat-based trademarks and logos are
trademarks or registered trademarks of Red Hat Inc. in the United States and other
countries.

Linux is a registered trademark of Linus Torvalds.

Nokia is a registered trademark of Nokia Corporation.

WAP Forum™ and all trademarks, service marks and logos based on these
designations (Trademarks) are marks of Wireless Application Protocol Forum Ltd.

Micromuse acknowledges the use of InstallAnywhere software in Netcool/WAP
Service Monitors. Copyright © Zero G Software Inc.

Orbix is a registered trademark of IONA Technologies PLC. Orbix 2000 is a
trademark of IONA Technologies PLC.

Micromuse acknowledges the use of Graph Layout Toolkit in Netcool/ Precision
for IP Networks. Copyright © 1992 - 2001, Tom Sawyer Software, Berkeley,
California. All rights reserved.

Portions of Netcool/Precision for IP Networks are © TIBCO Software, Inc.
1994-2003. All rights reserved. TIB and TIB/Rendezvous are trademarks of
TIBCO Software, Inc.

Portions of Netcool/Precision for IP Networks are Copyright © 1996-2003,
Daniel Stenberg, <daniel@haxx.se>.

SAP, R/2 and R/3 are trademarks or registered trademarks of SAP AG in Germany
and in several other countries.

Oracle is a registered trademark of Oracle Corporation.

Micromuse acknowledges the use of Digital X11 in Netcool/Precision for IP
Networks. Copyright 1987, 1988 by Digital Equipment Corporation, Maynard,
Massachusetts, All Rights Reserved. DIGITAL DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Netcool/Service Monitors include software developed by the OpenSSL Project for
use in the OpenSSL Toolkit (http://www.openssl.org/).

Micromuse acknowledges the use of software developed by ObjectPlanet. ©2003
ObjectPlanet, Inc, Ovre Slottsgate, 0157 Oslo, Norway.

Micromuse acknowledges the use of Expat in Netcool/ASM. Copyright 1998,
1999, 2000 Thai Open Source Software Center Ltd and Clark Cooper. Copyright
2001, 2002 Expat maintainers. THE EXPAT SOFTWARE IS PROVIDED
HEREUNDER "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS OF THE EXPAT SOFTWARE BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE EXPAT SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE. Expat explicitly
grants its permission to any person obtaining a copy of any Expat software and

associated documentation files (the "Expat Software") to deal in the Expat
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Expat
Software. Expat's permission is subject to the following conditions: The above
copyright notice and this permission notice shall be included in all copies or
substantial portions of the Expat Software. Except as set forth hereunder, all
software provided by Micromuse hereunder is subject to the applicable license
agreement.

All other trademarks, registered trademarks and logos are the property of their
respective owners.

Micromuse Inc., 139 Townsend Street, San Francisco, USA CA 94107

www.micromuse.com

Document Version Number: 1.1

http://www.micromuse.com

Contents
probe_gateTOC.fm October 11, 2004 10:49 am

Contents

Preface . 1

Audience. 2

About the Netcool/OMNIbus v7 Probe and Gateway Guide . 3

Associated Publications . 4

Netcool®/OMNIbus™ Installation and Deployment Guide . 4

Netcool®/OMNIbus™ User Guide . 4

Netcool®/OMNIbus™ Administration Guide . 4

Netcool®/OMNIbus™ Probe and Gateway Guide . 4

Online Help . 4

Typographical Notation . 5

Note, Tip, and Warning Information . 6

Syntax and Example Subheadings . 7

Operating System Considerations . 8

Chapter 1: Introduction to Probes . 9

Probe Overview . 10

Types of Probes . 11

Device Probes . 11

Log File Probes . 11

Database Probes. 12

API Probes. 12

CORBA Probes . 13

Miscellaneous Probes . 13

Probe Components . 14

Executable File. 14

Properties File . 14

Rules File . 16
Netcool/OMNIbus v7 Probe and Gateway Guide i

Contents
Probe Architecture. 17

Creating a Unique Identifier . 18

Deduplication with Probes. 18

Probe Features . 19

Store and Forward Mode . 19

Raw Capture Mode . 20

Secure Mode . 20

Peer-to-Peer Failover . 20

Using a Specific Probe . 22

Running a Probe on UNIX . 22

Running a Probe on Windows . 23

Chapter 2: Probe Rules File Syntax . 27

Elements, Fields, Properties, and Arrays in Rules Files . 28

Assigning Values to ObjectServer Fields . 28

Assigning Temporary Elements in Rules Files . 28

Assigning Property Values to Fields . 29

Assigning Values to Properties . 29

Using Arrays . 30

Conditional Statements in Rules Files . 32

The IF Statement . 32

The SWITCH Statement. 32

Including Multiple Rules Files . 34
ii Netcool/OMNIbus v7 Probe and Gateway Guide

Contents
Rules File Functions and Operators . 35

Math and String Operators . 37

Bit Manipulation Operators. 38

Comparison Operators . 38

Logical Operators. 39

Existence Function. 39

Deleting Elements or Events . 40

String Functions . 41

Math Functions . 43

Date and Time Functions . 44

Host and Process Utility Functions . 45

Lookup Table Operations . 45

Update on Deduplication Function . 47

Details Function . 48

Message Logging Functions . 49

Sending Alerts to Alternate ObjectServers and Tables . 50

Service Function . 51

Monitoring Probe Loads . 52

Testing Rules Files . 54

Debugging Rules Files . 55

Rules File Examples . 56

Enhancing the Summary Field. 56

Populating Multiple Fields. 56

Nested IF Statements . 56

Regular Expression Match . 57

Regular Expression Extract. 57

Numeric Comparisons. 57

Simple Numeric Expressions . 58

Strings and Numerics in One Expression . 58

Using Load Functions to Monitor Nodes . 58
Netcool/OMNIbus v7 Probe and Gateway Guide iii

Contents
Chapter 3: Probe Properties and Command Line Options 59

Probe Properties and Command Line Options . 60

Chapter 4: Introduction to Gateways . 69

Introduction to Gateways . 70

Types of Gateways. 72

ObjectServer Gateways . 73

Unidirectional ObjectServer Gateway . 73

Bidirectional ObjectServer Gateway . 73

ObjectServer Gateway Writers and Failback (Alert Replication Between Sites) . 74

Database, Helpdesk, and Other Gateways . 75

Gateway Components . 75

Unidirectional Gateways . 75

Bidirectional Gateways. 76

Gateway Configuration . 79

Gateway Configuration File . 79

Reader Commands. 79

Writer Commands . 80

Route Commands . 81

Mapping Commands . 81

Filter Commands . 82

Running a Gateway. 84

Running a Gateway on UNIX . 84

Running a Gateway on Windows . 84

Configuring Gateways Interactively . 86

Saving Configurations Interactively . 87

Dumping and Loading Gateway Configurations Interactively . 87

Gateway Features . 88

Store and Forward Mode . 88

Secure Mode . 88

Encrypting Target System Passwords . 89
iv Netcool/OMNIbus v7 Probe and Gateway Guide

Contents
Gateway Debugging . 91

Other Gateway Writers and Failback . 92

Conversion Table Utility . 93

Adding a Conversion . 94

Updating a Conversion . 94

Deleting a Conversion . 94

Chapter 5: Gateway Commands and Command Line Options 95

Gateway Command Line Options. 96

Reader Commands . 98

START READER . 98

STOP READER . 99

SHOW READERS . 99

Writer Commands . 101

START WRITER . 101

STOP WRITER . 102

SHOW WRITERS . 102

SHOW WRITER TYPES . 103

SHOW WRITER ATTRIBUTES. 103

Mapping Commands . 105

CREATE MAPPING . 105

DROP MAPPING . 106

SHOW MAPPINGS . 106

SHOW MAPPING ATTRIBUTES . 107

Filter Commands. 108

CREATE FILTER. 108

LOAD FILTER. 108

DROP FILTER. 109
Netcool/OMNIbus v7 Probe and Gateway Guide v

Contents
Route Commands . 110

ADD ROUTE. 110

REMOVE ROUTE. 110

SHOW ROUTES . 111

Configuration Commands . 112

LOAD CONFIG. 112

SAVE CONFIG . 112

DUMP CONFIG . 112

General Commands . 114

SHUTDOWN . 114

SET CONNECTIONS. 114

SHOW SYSTEM . 115

SET DEBUG MODE . 116

TRANSFER. 116

Appendix A: Regular Expressions . 119

How to Use Regular Expressions . 120

Appendix B: ObjectServer Tables . 123

Alerts Tables . 124

alerts.status Table. 124

alerts.details Table . 130

alerts.journal Table. 131

Service Tables . 133

service.status Table. 133
vi Netcool/OMNIbus v7 Probe and Gateway Guide

Contents
ObjectServer Data Types . 134

Appendix C: Probe Error Messages and Troubleshooting Techniques . . . 137

Generic Error Messages . 138

Fatal Level Messages . 138

Error Level Messages . 139

Warning Level Messages . 142

Information Level Messages . 143

Debug Level Messages . 143

ProbeWatch and TSMWatch Messages. 146

Troubleshooting Probes . 148

Common Problem Causes . 148

What to Do If . 149

Appendix D: Gateway Error Messages . 155

Common Gateway Error Messages . 156

Contact Information . 175
Netcool/OMNIbus v7 Probe and Gateway Guide vii

Contents
viii Netcool/OMNIbus v7 Probe and Gateway Guide

preface.fm October 11, 2004 10:49 am

Preface

This guide describes how to configure and use probes and gateways.

It contains introductory and reference information about probes, including probe rules file syntax,
properties and command line options, error messages, and troubleshooting techniques.

It also contains introductory and reference information about gateways, including gateway commands,
command line options, and error messages.

For more information about specific probes and gateways, refer to the documentation available for each
probe and gateway on the Micromuse Support Site.

This preface contains the following sections:

• Audience on page 2

• About the Netcool/OMNIbus v7 Probe and Gateway Guide on page 3

• Associated Publications on page 4

• Typographical Notation on page 5

• Operating System Considerations on page 8
Netcool/OMNIbus v7 Probe and Gateway Guide 1

Preface
Audience

This guide is intended for both users and administrators, and provides detailed cross-platform information
about functions and capabilities. In addition, it is designed to be used as a reference guide to assist you in
designing and configuring your environment.

Probes and gateways are part of Netcool/OMNIbus, and it is assumed that you understand how
Netcool/OMNIbus works. For more information, refer to the publications described in Associated
Publications on page 4.
2 Netcool/OMNIbus v7 Probe and Gateway Guide

About the Netcool/OMNIbus v7 Probe and Gateway Guide
About the Netcool/OMNIbus v7 Probe and Gateway Guide

This book is organized as follows:

• Chapter 1: Introduction to Probes on page 9 introduces probes, their key features, and how to use
them. It also describes the types of probes, their architecture and components, and how to run them.

• Chapter 2: Probe Rules File Syntax on page 27 describes rules file syntax. The rules file defines how the
probe should process event data to create a meaningful Netcool/OMNIbus alert.

• Chapter 3: Probe Properties and Command Line Options on page 59 describes the properties and
command line options common to all probes and TSMs.

• Chapter 4: Introduction to Gateways on page 69 introduces gateways, their key features, and how to
use them. It also describes the types of gateways, their architecture and components, and how to run
them.

• Chapter 5: Gateway Commands and Command Line Options on page 95 describes the command line
options for nco_gate. It also describes gateway commands that are common to all gateways.

• Appendix A: Regular Expressions on page 119 contains information about how to use regular
expressions.

• Appendix B: ObjectServer Tables on page 123 contains ObjectServer database table information. It
describes the tables in the alerts and service databases and ObjectServer data types.

• Appendix C: Probe Error Messages and Troubleshooting Techniques on page 137 lists all of the messages
that are common to all probes, including ProbeWatch and TSMWatch messages. It also includes
troubleshooting information for probes.

• Appendix D: Gateway Error Messages on page 155 lists gateway error messages.
Netcool/OMNIbus v7 Probe and Gateway Guide 3

Preface
Associated Publications

To use probes and gateways, you must possess an understanding of the Netcool/OMNIbus technology. This
section provides a description of the documentation that accompanies Netcool/OMNIbus.

Netcool®/OMNIbus™ Installation and Deployment Guide

This book is intended for Netcool administrators who need to install and deploy Netcool/OMNIbus. It
includes installation, upgrade, and licensing procedures. In addition, it contains information about
configuring security and component communications. It also includes examples of Netcool/OMNIbus
architectures and how to implement them.

Netcool®/OMNIbus™ User Guide

This book is intended for anyone who needs to use Netcool/OMNIbus desktop tools on UNIX or Windows
platforms. It provides an overview of Netcool/OMNIbus components, as well as a description of the
operator tasks related to event management using the desktop tools.

Netcool®/OMNIbus™ Administration Guide

This book is intended for system administrators who need to manage Netcool/OMNIbus. It describes how
to perform administrative tasks using the Netcool/OMNIbus Administrator GUI, command line tools, and
process control. It also contains descriptions and examples of ObjectServer SQL syntax and automations.

Netcool®/OMNIbus™ Probe and Gateway Guide

This guide contains introductory and reference information about probes and gateways, including probe
rules file syntax and gateway commands. For more information about specific probes and gateways, refer to
the documentation available for each probe and gateway on the Micromuse Support Site.

Online Help

Netcool/OMNIbus GUIs contain context-sensitive online help with index and search capabilities.
4 Netcool/OMNIbus v7 Probe and Gateway Guide

Typographical Notation
Typographical Notation

Table 1 shows the typographical notation and conventions used to describe commands, SQL syntax, and
graphical user interface (GUI) features. This notation is used throughout this book and other Netcool®
publications.

Table 1: Typographical Notation and Conventions (1 of 2)

Example Description

Monospace The following are described in a monospace font:

• Commands and command line options

• Screen representations

• Source code

• Object names

• Program names

• SQL syntax elements

• File, path, and directory names

Italicized monospace text indicates a variable that the user must populate. For example, -password
password.

Bold The following application characteristics are described in a bold font style:

• Buttons

• Frames

• Text fields

• Menu entries

A bold arrow symbol indicates a menu entry selection. For example, File→Save.

Italic The following are described in an italic font style:

• An application window name; for example, the Login window

• Information that the user must enter

• The introduction of a new term or definition

• Emphasized text
Netcool/OMNIbus v7 Probe and Gateway Guide 5

Preface
Many Netcool commands have one or more command line options that can be specified following a hyphen
(-).

Command line options can be string, integer, or BOOLEAN types:

• A string can contain alphanumeric characters. If the string has spaces in it, enclose it in quotation
(") marks.

• An integer must contain a positive whole number or zero (0).

• A BOOLEAN must be set to TRUE or FALSE.

SQL keywords are not case-sensitive, and may appear in uppercase, lowercase, or mixed case. Names of
ObjectServer objects and identifiers are case-sensitive.

Note, Tip, and Warning Information

The following types of information boxes are used in the documentation:

[1] Code or command examples are occasionally prefixed with a line number in square brackets. For
example:

[1] First command...
[2] Second command...
[3] Third command...

{ a | b } In SQL syntax notation, curly brackets enclose two or more required alternative choices, separated by
vertical bars.

[] In SQL syntax notation, square brackets indicate an optional element or clause. Multiple elements or
clauses are separated by vertical bars.

| In SQL syntax notation, vertical bars separate two or more alternative syntax elements.

... In SQL syntax notation, ellipses indicate that the preceding element can be repeated. The repetition is
unlimited unless otherwise indicated.

,... In SQL syntax notation, ellipses preceded by a comma indicate that the preceding element can be
repeated, with each repeated element separated from the last by a comma. The repetition is unlimited
unless otherwise indicated.

a In SQL syntax notation, an underlined element indicates a default option.

() In SQL syntax notation, parentheses appearing within the statement syntax are part of the syntax and
should be typed as shown unless otherwise indicated.

Table 1: Typographical Notation and Conventions (2 of 2)

Example Description
6 Netcool/OMNIbus v7 Probe and Gateway Guide

Typographical Notation
 Note: Note is used for extra information about the feature or operation that is being described. Essentially,
this is for extra data that is important but not vital to the user.

 Tip: Tip is used for additional information that might be useful for the user. For example, when describing
an installation process, there might be a shortcut that could be used instead of following the standard
installation instructions.

!!
 Warning: Warning is used for highlighting vital instructions, cautions, or critical information. Pay close
attention to warnings, as they contain information that is vital to the successful use of our products.

Syntax and Example Subheadings

The following types of constrained subheading are used in the documentation:

Syntax

Syntax subheadings contain examples of ObjectServer SQL syntax commands and their usage. For example:

CREATE DATABASE database_name;

Example

Example subheadings describe typical or generic scenarios, or samples of code. For example:

[1] <body>
[2] <img src="ChartView?template=barchart&format=PNG
[3] &request=image&chart=quote&width=800&height=400" border="0" height="400"
[4] width="800" alt="Events by Severity"
[5] >
[6] </body>
Netcool/OMNIbus v7 Probe and Gateway Guide 7

Preface
Operating System Considerations

All command line formats and examples are for the standard UNIX shell. UNIX is case-sensitive. You must
type commands in the case shown in the book.

Unless otherwise specified, command files are located in the $OMNIHOME/bin directory, where
$OMNIHOME is the UNIX environment variable that contains the path to the Netcool/OMNIbus home
directory.

On Microsoft Windows platforms, replace $OMNIHOME with %OMNIHOME% and the forward slash (/)
with a backward slash (\).
8 Netcool/OMNIbus v7 Probe and Gateway Guide

intro_probes.fm October 11, 2004 10:49 am

Chapter 1: Introduction to Probes

This chapter introduces probes, their key features, and how to use them. It also describes the types of probes,
their architecture and components, and how to run them.

For descriptions of common properties and command line options, see Chapter 3: Probe Properties and
Command Line Options on page 59.

For information about using probe rules file syntax to define how the probe should process event data, see
Rules File on page 16 and Chapter 2: Probe Rules File Syntax on page 27.

For descriptions of probe error messages and troubleshooting hints, see Appendix C: Probe Error Messages
and Troubleshooting Techniques on page 137.

For more information about specific probes, see Using a Specific Probe on page 22 and the individual guides
available for each probe on the Micromuse Support Site.

This chapter contains the following sections:

• Probe Overview on page 10

• Types of Probes on page 11

• Probe Components on page 14

• Probe Architecture on page 17

• Creating a Unique Identifier on page 18

• Probe Features on page 19

• Using a Specific Probe on page 22
Netcool/OMNIbus v7 Probe and Gateway Guide 9

Chapter 1: Introduction to Probes
1.1 Probe Overview

Probes connect to an event source, detect and acquire event data, and forward the data to the ObjectServer
as alerts. Probes use the logic specified in a rules file to manipulate the event elements before converting them
into fields of an alert in the ObjectServer alerts.status table.

Figure 1 shows how probes fit into the Netcool/OMNIbus architecture.

Probes can acquire data from any stable data source. These sources are described in Types of Probes on
page 11.

Figure 1: Event Processing in Netcool/OMNIbus

Raw Data
snmp-trap
"" sequ
ence I 4305
recei
ve-time U

Event data is generated by
the probe target.

The probe acquires event
data and processes it based
on a rules file before
forwarding it to the
ObjectServer as an alert.

The ObjectServer stores and
manages alerts, which can be
displayed in the event list, and
optionally forwarded to a
gateway.

ObjectServer
NCOMS

Gateway

Probe

Probe
Target

Event List

RDBMS
Gateway

Remedy
ARS
10 Netcool/OMNIbus v7 Probe and Gateway Guide

Types of Probes
1.2 Types of Probes

Each probe is uniquely designed to acquire event data from a specific source. However, probes can be
categorized based on how they acquire events. For example, the Probe for Oracle obtains event data from a
database table, and is therefore classed as a database probe. The types of probes are:

• Device

• Log file

• Database

• API

• CORBA

• Miscellaneous

These types of probes are described in the following sections.

 Tip: The probe type is determined by the method in which the probe detects events. For example, the Probe
for Agile ATM Switch Management detects events produced by a device (an ATM switch), but it acquires
events from a log file, not directly from the switch. Therefore, this probe is classed as a log file probe and
not a device probe.

Device Probes

A device probe acquires events by connecting to a remote device, such as an ATM switch.

Device probes often run on a separate machine to the one they are probing and connect to the target
machine through a network link, modem, or physical cable. Some device probes can use more than one
method to connect to the target machine.

Once connected to the target machine, the probe detects events and forwards them to the ObjectServer.
Some device probes are passive, waiting to detect an event before forwarding it to the ObjectServer; for
example, the Probe for Marconi ServiceOn EMOS. Other device probes are more active, issuing commands
to the target device in order to acquire events; for example, the TSM for Ericsson AXE10.

Log File Probes

A log file probe acquires events by reading a log file created by the target system. For example, the Probe for
Heroix RoboMon Element Manager reads the Heroix RoboMon Element Manager event file.
Netcool/OMNIbus v7 Probe and Gateway Guide 11

Chapter 1: Introduction to Probes
Most log file probes run on the machine where the log file resides; this is not necessarily the same machine
as the target system. The target system appends events to the log file. Periodically, the probe opens the log
file, acquires and processes the events stored in it, and forwards the relevant events to the ObjectServer as
alerts. You can configure how often the probe checks the log file for new events and how events are
processed.

Database Probes

A database probe acquires events from a single database table; the source table. Depending on the
configuration, any change (insert, update, or delete) to a row of the source table can produce an event. For
example, the Probe for Oracle acquires data from transactions logged in an Oracle database table.

When a database probe is started, it creates a temporary logging table and adds a trigger to the source table.
When a change is made to the source table, the trigger forwards the event to the logging table. Periodically,
the events stored in the logging table are forwarded to the ObjectServer as alerts and the contents of the
logging table are discarded. You can configure how often the probe checks the logging table for new events.

!!
 Warning: Existing triggers on the source table may be overwritten when the probe is installed.

Database probes treat each row of the source table as a single entity. Even if only one field of a row in the
source table changes, all of the fields of that row are forwarded to the logging table and from there to the
ObjectServer. If a row in the source table is deleted, the probe forwards the contents of the row before it was
deleted. If a row in the source table is inserted or updated, the probe forwards the contents of the row after
the insert or update.

API Probes

An API probe acquires events through the API of another application. For example, the Probe for Sun
Management Center uses the Sun Management Center Java API to connect remotely to the Sun
Management Center.

API probes use specially designed libraries to acquire events from another application or management
system. These libraries contain functions that connect to the target system and manage the retrieval of
events. The API probes call these functions which connect to the target system and return any events to the
probe. The probe processes these events and forwards them to the ObjectServer as alerts.
12 Netcool/OMNIbus v7 Probe and Gateway Guide

Types of Probes
CORBA Probes

Common Object Request Broker Architecture (CORBA) allows distributed systems to be defined
independent of a specific programming language. CORBA probes use CORBA interfaces to connect to the
data source; usually an Element Management System (EMS). Equipment vendors publish the details of their
specific CORBA interface as Interface Definition Language (IDL) files. These IDL files are used to create
the CORBA client and server applications. A specific probe is required for each specific CORBA interface.

CORBA probes use the Borland VisiBroker Object Request Broker (ORB) to communicate with other
vendor's ORBs. You must obtain this ORB from Micromuse Support.

Most CORBA probes are written using Java, and require specific Java components to be installed to run the
probe, as described in the individual guides for these probes. Probes written in Java use the following
additional processes:

• The nco_p_nonnative probe, which enables probes written in Java to communicate with the
standard probe C library (libOpl)

• Java runtime libraries

For example, the Probe for Marconi MV38/PSB manages the alarm lifecycle by collecting events from the
Marconi ServiceOn Optical Network Management System. To do this, it connects to the Practical Service
and Business (PSB) CORBA interface using the CORBA Naming Service running on the PSB host.

Miscellaneous Probes

All of the miscellaneous probes have characteristics that differentiate them from the other types of probes
and from each other. Each of them carries out a specialized task that requires them to work in a unique way.

For example, the Email Probe connects to the mail server, retrieves emails, processes them, deletes them, and
then disconnects. This is useful on a workstation that does not have sufficient resources to permit an SMTP
server and associated local mail delivery system to be kept resident and continuously running.

Another example of a probe in the miscellaneous category is the Ping Probe. It is used for general purpose
applications on UNIX platforms and does not require any special hardware. You can use the Ping Probe to
monitor any device that supports the ICMP protocol, such as switches, routers, PCs, and UNIX hosts.
Netcool/OMNIbus v7 Probe and Gateway Guide 13

Chapter 1: Introduction to Probes
1.3 Probe Components

A probe has the following primary components:

• An executable file

• A properties file

• A rules file

These components are described in the following sections.

 Tip: Some probes have additional components. When additional components are provided, they are
described in the individual probe guides.

Executable File

The executable file is the core of a probe. It connects to the event source, acquires and processes events, and
forwards the events to the ObjectServer as alerts.

Probe executable files are stored in the directory $OMNIHOME/probes/arch, where arch is the
platform name of the architecture. For example, the executable file for the Ping Probe that runs on HP-UX
11.00 is:

$OMNIHOME/probes/hpux11/nco_p_ping

To start a probe on UNIX with the appropriate configuration information, run the wrapper script in the
directory $OMNIHOME/probes. For example, to start the Ping Probe, enter:

$OMNIHOME/probes/nco_p_ping

When the probe is started, it obtains information on how to configure its environment from the properties
and rules files, described in the next sections. The probe uses this configuration information to customize
the data it forwards to the ObjectServer.

For more information about how to run a specific probe and specify command line options, see Using a
Specific Probe on page 22.

Properties File

Probe properties define the environment in which the probe runs. For example, the Server property
specifies the ObjectServer to which the probe forwards alerts. Probe properties are stored in a properties file
in the directory $OMNIHOME/probes/arch. Properties files are identified by the .props file
extension.
14 Netcool/OMNIbus v7 Probe and Gateway Guide

Probe Components
For example, the properties file for the Ping Probe that runs on HP-UX 11.00 is:

$OMNIHOME/probes/hpux11/ping.props

Properties files are formed of name-value pairs separated by a colon. For example:

Server : "NCOMS"

In this name-value pair, Server is the name of the property and NCOMS is the value to which the property
is set. String values must be enclosed in quotes; other values do not require quotes.

Probe Property Types

Properties can be divided into two categories: common properties and probe-specific properties.

For example, the Server property is a common property, because every probe needs to know which
ObjectServer to send alerts to. Common properties are described in Probe Properties and Command Line
Options on page 60.

Probe-specific properties vary by probe. Some probes do not have any specific properties, but most have
additional properties that relate to the environment in which they run. For example, the Ping Probe has a
Pingfile property which specifies the name of a file containing a list of the machines to be pinged.
Probe-specific properties are described in the individual probe guides, available on the Micromuse Support
Site.

Properties and Command Line Options

There is a command line option that corresponds to each probe property. For example, the Server
property is set in the properties file:

Server : "NCOMS"

It can also be set on the command line using the option:

$OMNIHOME/probes/nco_p_probename -server STWO

The command line option overrides the property when both are set. In the preceding example, where the
property sets the server to NCOMS and the command line option sets the server to STWO, the value STWO
is used for the ObjectServer name. For more information on using command line options to override
properties, refer to Probe Properties and Command Line Options on page 60.
Netcool/OMNIbus v7 Probe and Gateway Guide 15

Chapter 1: Introduction to Probes
Rules File

The rules file defines how the probe should process event data to create a meaningful alert. The rules file also
creates an identifier for each alert, the Identifier field, described in Creating a Unique Identifier on
page 18. This identifier is used to uniquely identify the problem source. Duplicate alerts (those with the
same identifier) are correlated so they only appear in the event list once.

Local rules files are stored in the directory $OMNIHOME/probes/arch, and are identified by the
.rules file extension.

For example, the rules file for the Ping Probe that runs on HP-UX 11.00 is:

$OMNIHOME/probes/hpux11/ping.rules

You can use a URL to specify a rules file located on a remote server that is accessible using the http
protocol. This allows all rules files to be sourced for each probe from a central point. Using a suitable
configuration management tool, such as CVS, at the central point enables version management of all rules
files.

Refer to Chapter 2: Probe Rules File Syntax on page 27 for detailed information about rules files and how to
modify them.

Re-reading the Rules File

For changes to the rules file to take effect, the probe must be forced to re-read the rules file. You can force
the probe to re-read the rules file by issuing the command kill -HUP pid on the probe process ID
(PID). Refer to the ps and kill man pages for more information.

This method is preferable to restarting the probe, because the probe will not lose events.

 Tip: For CORBA probes, issue the command kill -HUP on the nco_p_nonnative process.
16 Netcool/OMNIbus v7 Probe and Gateway Guide

Probe Architecture
1.4 Probe Architecture

The function of a probe is to acquire information from an event source and forward it to the ObjectServer.
Figure 2 shows how probes process the event data acquired from the event source using rules.

The raw event data that a probe acquires cannot be sent directly to the ObjectServer. The probe breaks the
event data into tokens (1 - in Figure 2). Each token represents a piece of event data.

The probe then parses these tokens into elements and processes the elements according to the rules in the
rules file (2 - in Figure 2). Elements are identified in the rules file by the $ symbol. For example, $Node is
an element containing the node name of the event source.

Elements are used to assign values to ObjectServer fields, indicated by the @ symbol (3 - in Figure 2). The
field values contain the event details in a form understood by the ObjectServer. Fields make up the alerts
which are forwarded to the ObjectServer, where they are stored and managed in the alerts.status
table and displayed in the event list.

The Identifier field is also generated by the rules file, as described in the next section.

For more information about manipulating fields and elements, see Chapter 2: Probe Rules File Syntax on
page 27.

Figure 2: Event Mapping Using Rules

NodeNumber
IPAddress
Cause
Summary
Time
Date
Summary
Sequence
Version
Text
Flag

$NodeNumber
$IPAddress
$Cause
$Summary
$Time
$Date
$Summary
$Sequence
$Version
$Text
$Flag

@Identifier
@NodeNumber
@IPAddress
@Cause
@Summary
@Time
@Date
@Summary
@Sequence
@Version
@Text
@Flag

T "" 0.0.0.0 10
0122 0.0.0.0
82 8097562
27237 82
9000937 8290
00 936 0 0 0
Pope23
snmp-trap ""
se quence I
4305 re
ceive-time U
82 9000936

ObjectServer

Probe

Event List

Gateway

21 3
Netcool/OMNIbus v7 Probe and Gateway Guide 17

Chapter 1: Introduction to Probes
1.5 Creating a Unique Identifier

The Identifier field (@Identifier) is used to uniquely identify a problem source. Like other
ObjectServer fields, the Identifier field is constructed from the tokens the probe acquires from the
event stream according to the rules in the rules file.

The Identifier field allows the ObjectServer to correlate alerts so that duplicate alerts only appear in
the event list once. Rather than inserting a new alert, the alert is reinserted —the existing alert is updated.
These updates are configurable. For example, the tally field (@Tally) is typically incremented to keep track
of the number of times the event occurred.

It is essential that the identifier identifies repeated events appropriately. The following identifier is not
specific enough, because any events with the same manager and node are treated as duplicates:

@Identifier=@Manager+@Node

If the identifier is too specific, the ObjectServer is not able to correlate and deduplicate repeated events. For
example, an identifier that contains a time value prevents correct deduplication.

The following identifier correctly identifies repeated events in a typical environment:

@Identifier=@Node+" "+@AlertKey+" "+@AlertGroup+" "+@Type+" "+@Agent+" "+@Manager

Rules file syntax is described in Chapter 2: Probe Rules File Syntax on page 27.

Deduplication with Probes

Deduplication is managed by the ObjectServer, but can be configured in the probe rules file. This enables
you to set deduplication rules on a per-event basis. You can specify which fields of an alert are to be updated
if the alert is deduplicated using the update function. This is described in Update on Deduplication
Function on page 47.

For an overview of alert processing and deduplication, see the Netcool/OMNIbus Administration Guide.
18 Netcool/OMNIbus v7 Probe and Gateway Guide

Probe Features
1.6 Probe Features

This section describes some of the key features of probe operation.

Store and Forward Mode

Probes can continue to run if the target ObjectServer is down. When the probe detects that the ObjectServer
is not present (usually because it is unable to forward an alert to the ObjectServer), it switches to store mode.
In this mode, the probe writes all of the messages it would normally send to the ObjectServer to a file named:

$OMNIHOME/var/probename.servername.store

In this file name, probename is the name of the probe and servername is the name of the ObjectServer
to which the probe is attempting to send alerts.

When the probe detects that the ObjectServer is back on line, it switches to forward mode and sends the
alert information held in the .store file to the ObjectServer. Once all of the alerts in the .store file
have been forwarded, the probe returns to normal operation.

Store and forward functionality is enabled by default, but can be disabled by setting the
StoreAndForward property to 0 (FALSE) in the properties file or using the -nosaf command line
option.

The RetryConnectionCount, RetryConnectionTimeout, and MaxSAFFileSize
properties also control the operation of store and forward mode. Refer to Probe Properties and Command Line
Options on page 60 for more information about these properties.

Automatic Store and Forward

By default, store and forward mode is active only after a connection to the ObjectServer has been established,
used, and then lost. If the ObjectServer is not running when the probe starts, store and forward mode is not
triggered and the probe terminates.

However, if you set the probe to run in automatic store and forward mode, it will go straight into store mode
if the ObjectServer is not running, as long as the probe has been connected to the ObjectServer at least once
before. Enable automatic store and forward mode using the -autosaf command line option or
AutoSAF property.

 Note: For failover to work, automatic store and forward must be enabled in addition to setting the
ServerBackup, NetworkTimeout, and PollServer properties.
Netcool/OMNIbus v7 Probe and Gateway Guide 19

Chapter 1: Introduction to Probes
Raw Capture Mode

Raw capture mode enables you to save the complete stream of event data acquired by a probe into a file
without any processing by the rules file. This can be useful for auditing, recording, or debugging the
operation of a probe.

The captured data is in a format that can be replayed by the Generic Probe, as described in the guide for the
Generic Probe.

You can enable raw capture mode using the -raw command line option or RawCapture property.

You can also set the RawCapture property in the rules file, so that you can send the raw event data to a
file only when certain conditions are met. See Changing the Value of the RawCapture Property in the Rules File
on page 30 for more information.

The RawCaptureFile, RawCaptureFileAppend, and MaxRawFileSize properties also
control the operation of raw capture mode. Refer to Probe Properties and Command Line Options on page 60
for more information about these properties.

Secure Mode

You can run the ObjectServer in secure mode. When you start the ObjectServer using the -secure
command line option, the ObjectServer authenticates probe, gateway, and proxy server connections by
requiring a user name and encrypted password. When a connection request is sent, the ObjectServer issues
an authentication message. The probe, gateway, or proxy server must respond with the correct user name
and password combination.

If the ObjectServer is not running in secure mode, probe, gateway, and proxy server connection requests are
not authenticated.

When connecting to a secure ObjectServer or proxy server, each probe must have the AuthUserName and
AuthPassword properties in its property file. If the user name and password combination is incorrect,
the ObjectServer issues an error message and rejects the connection.

You must encrypt the passwords used in secure mode using the nco_g_crypt utility, described in the
Netcool/OMNIbus Administration Guide. Then, add the AuthUserName and AuthPassword
properties to the probe properties file with the corresponding user name and encrypted password before
running the probe.

Peer-to-Peer Failover

Two instances of a probe can run simultaneously in a peer-to-peer failover relationship. One instance is
designated as the master; the other acts as a slave and is on hot standby. If the master instance fails, the slave
instance is activated.
20 Netcool/OMNIbus v7 Probe and Gateway Guide

Probe Features
 Note: Peer-to-peer failover is not supported for all probes. Probes that list the Mode, PeerHost, and
PeerPort properties when you run the command $OMNIHOME/probes/nco_p_probename
-dumpprops support peer-to-peer failover.

To set up a peer-to-peer failover relationship, do the following:

• For the master instance, set the Mode property to master and the PeerHost property to the
network element name of the slave.

• For the slave instance, set the Mode property to slave and the PeerHost property to the
network element name of the master.

• For both instances, set the PeerPort property to the port through which the master and slave
communicate.

To disable the peer-to-peer failover relationship, run a single instance of the probe with the Mode property
set to standard. This is the default setting.

Setting the Failover Mode in the Properties Files

The failover mode is set in the properties files. The following are example properties file values for the
master:

PeerPort: 9999
PeerHost: "slavehost"
Mode: "master"

The following are example properties file values for the slave:

PeerPort: 9999
PeerHost: "masterhost"
Mode: "slave"

Setting the Mode in the Rules File

The mode of a probe can be switched between master and slave in the rules file. For example, to switch a
probe instance to become the master, use the rules file syntax:

%Mode = "master"

There is a delay of up to one second before the mode change takes effect. This can result in duplicate events
if two probe instances are switching from standard mode to master or slave; however, no data is
lost.
Netcool/OMNIbus v7 Probe and Gateway Guide 21

Chapter 1: Introduction to Probes
1.7 Using a Specific Probe

Each probe has an abbreviated name that is used to identify the probe executable and its associated files. For
example, the abbreviated name for SunNet Manager is snmlog and the abbreviated name for IBM
Netview/6000 is nv.

The Probe for SunNet Manager executable is named:

$OMNIHOME/probes/arch/nco_p_snmlog

 Tip: To start the probe on UNIX with the appropriate configuration, run the wrapper script, as described
in Running a Probe on UNIX on page 22.

The properties file is named:

$OMNIHOME/probes/arch/snmlog.prop

The rules file is named:

$OMNIHOME/probes/arch/snmlog.rules

In these paths, arch is the name of the architecture on which the probe is installed; for example,
solaris2 when running on a Solaris system.

Refer to the guide for each probe, available on the Micromuse Support Site, for details about specific probes,
their defaults, and which of their properties can be changed.

Running a Probe on UNIX

This section describes how to run a probe from the command line.

 Note: Probes should be managed by process control. Process control is described in the Netcool/OMNIbus
Administration Guide.

Once you have installed the probe, you must configure the properties and rules files to fit your environment.
For example, if you are using a log file probe such as the HTTP Common Log Format Probe, you need to
set the LogFile property, so that the probe can connect to the event source. Refer to Probe Components
on page 14 for more information about properties and rules files.
22 Netcool/OMNIbus v7 Probe and Gateway Guide

Using a Specific Probe
To run a probe, enter:

$OMNIHOME/probes/nco_p_probename [-option [value] ...]

The probename is the abbreviated name of the probe you want to run. The -option is the command
line option and value is the value you are setting the option to. Not every option requires you to specify
a value. For example, to run the Sybase Probe in raw capture mode, enter:

$OMNIHOME/probes/nco_p_sybase -raw

The command line options available to all probes are described in Chapter 3: Probe Properties and Command
Line Options on page 59.

 Note: If you are running a proxy server, connect your probes to the proxy server rather than to the
ObjectServer. To do this, use the Server property or -server command line option and specify the
name of the proxy server. For more information on the proxy server, see the Netcool/OMNIbus
Administration Guide.

Running a Probe on Windows

You can run probes on Windows as console applications or services.

 Tip: In versions of Netcool/OMNIbus prior to v7, probes were installed as services by default. As of
Netcool/OMNIbus v7, probes are installed as console applications by default.

Running a Probe as a Console Application

To run a probe as a console application, enter the following command from the probe directory:

nco_p_probename [-option [value] ...]

In this command, probename is the abbreviated name of the probe you want to run and option is a
command line option.
Netcool/OMNIbus v7 Probe and Gateway Guide 23

Chapter 1: Introduction to Probes
There are extra command line options available for the Windows version of each probe. To display these,
enter the following command:

nco_p_probename -?

The Windows-specific command line options are described in Table 2.

Running a Probe as a Service

To run a probe as a service, use the -install command line option.

Configure how probes are started using the Services window as follows:

1. Click Start→Settings→Control Panel. The Control Panel is displayed.

2. Double-click the Admin Tools icon, then double-click the Services icon. The Services window is
displayed.

The Services window lists all of the Windows services currently installed on your machine. All
Netcool/OMNIbus service names start with NCO.

Table 2: Windows-Specific Probe Command Line Options

Command Line Option Description

-install This option installs the probe as a Windows service.

-noauto This option is used with the -install option. It disables automatic
startup for the probe running as a service. If this option is used, the
probe is not started automatically when the machine boots.

-remove This option removes a probe that is installed as a service. It is the
opposite of the -install command.

-group string This option is used with the -depend command line option. You can
group all the probes together under the same group name. You can
then force that group to be dependent on another service.

-depend srv @grp ... This option specifies other services or groups that the probe is
dependent on. If you use this option, the probe will not start until the
services (srv) and groups (@grp) specified with this option have been
run.

-cmdLine "-option value..." This option specifies one or more command line options to be set each
time the probe service is restarted.
24 Netcool/OMNIbus v7 Probe and Gateway Guide

Using a Specific Probe
3. Use the Services window to start and stop Windows services. Indicate whether the service is started
automatically when the machine is booted by clicking the Startup button.

 Note: If the ObjectServer and the probe are started as services, the probe may start first. The probe
will not be able to connect to the ObjectServer until the ObjectServer is running.
Netcool/OMNIbus v7 Probe and Gateway Guide 25

Chapter 1: Introduction to Probes
26 Netcool/OMNIbus v7 Probe and Gateway Guide

probe_rules_ch.fm October 11, 2004 11:01 am

Chapter 2: Probe Rules File Syntax

This chapter describes rules file syntax. The rules file defines how the probe should process event data to
create a meaningful Netcool/OMNIbus alert. The rules file also creates an identifier for each alert to
uniquely identify the problem source, so repeated events can be deduplicated.

For introductory information about rules files, see Rules File on page 16. For information about the
Identifier field, see Creating a Unique Identifier on page 18.

This chapter contains the following sections:

• Elements, Fields, Properties, and Arrays in Rules Files on page 28

• Conditional Statements in Rules Files on page 32

• Including Multiple Rules Files on page 34

• Rules File Functions and Operators on page 35

• Testing Rules Files on page 54

• Debugging Rules Files on page 55

• Rules File Examples on page 56
Netcool/OMNIbus v7 Probe and Gateway Guide 27

Chapter 2: Probe Rules File Syntax
2.1 Elements, Fields, Properties, and Arrays in Rules Files

A probe takes an event stream and parses it into elements. Event elements are processed by the probe based
on the logic in the rules file. Elements are assigned to fields and forwarded to the ObjectServer, where they
are inserted as alerts into the alerts.status table.

The Identifier field, used by the ObjectServer for deduplication, is also created based on the logic in
the rules file, as described in Creating a Unique Identifier on page 18.

Elements are indicated by the $ symbol in the rules file. For example, $Node is an element containing the
node name of the event source. You can assign elements to ObjectServer fields, indicated by the @ symbol
in the rules file.

Assigning Values to ObjectServer Fields

You can assign values to ObjectServer fields in the following ways:

• Direct assignment, for example: @Node = $Node

• Concatenation, for example: @Summary = $Summary + $Group

• Adding text, for example: @Summary = $Node + "has problem" + $Summary

Numeric values can be expressed in decimal or hexadecimal form. The following statements, which set the
Class field to 100, are equivalent:

• @Class=100

• @Class=0x64

In addition to assigning elements to fields, you can use the processing statements, operators, and functions
described in this chapter to manipulate these values in rules files before assigning them.

 Tip: Elements are stored as strings, so you need to use the int function, described in Math Functions on
page 43, to convert them into integers before performing numeric operations.

Assigning Temporary Elements in Rules Files

You can create a temporary element in a rules file by assigning it to an expression, for example:

$tempelement = "message"

An element, $tempelement, is created and assigned the string value message.

If you refer to an element that has not been initialized in this way, the element is set to the null string ("").
28 Netcool/OMNIbus v7 Probe and Gateway Guide

Elements, Fields, Properties, and Arrays in Rules Files
The following example creates the element $b and sets it to setnow:

$b="setnow"

The following example then sets the element $a to setnow:

$a=$b

In the following example, temporary elements are used to extract information from a Summary element,
which has the string value: The Port is down on Port 1 Board 2.

$temp1 = extract ($Summary, "Port ([0-9]+)")
$temp2 = extract ($Summary, "Board ([0-9]+)")
@AlertKey = $temp1 + "." + $temp2

The extract function is used to assign values to temporary elements temp1 and temp2. Then these
elements are concatenated with a . separating them, and assigned to the AlertKey field. After these
statements are executed, the AlertKey field has the value 1.2. The extract function is described in
String Functions on page 41, and the concatenate operator (+) is described in Math and String Operators on
page 37.

Assigning Property Values to Fields

You can assign the value of a probe property, as defined in the properties file or on the command line, to a
field value. A property is represented by a % symbol in the rules file. For example, you could add the
following statement to your rules file:

@Summary = "Server = " + %Server

In this example, when the rules file is processed, the probe searches for a property named Server. If the
property is found, its value is concatenated to the text string and assigned to the Summary field. If the
property is not found, a null string ("") is assigned.

Assigning Values to Properties

You can also assign values to a property in the rules file. If the property does not exist, it is created. For
example, you could create a property called Counter to keep track of the number of events that have been
processed as follows:

if (match(%Counter,""))
{%Counter = 1}

else {%Counter = int(%Counter) + 1}

These properties retain their values across events and when the rules file is re-read.
Netcool/OMNIbus v7 Probe and Gateway Guide 29

Chapter 2: Probe Rules File Syntax
Changing the Value of the RawCapture Property in the Rules File

Most probes read properties once at startup, so changing probe properties after startup does not usually
affect probe behavior. However, the RawCapture property can be set in the rules file, so that you can send
the raw event data to a file only when certain conditions are met. For example:

Start rules processing
%RawCapture=0

if (condition) {
Send the next event to the raw capture file
%RawCapture=1

}

The IF statement is described in Conditional Statements in Rules Files on page 32.

 Tip: The setting for raw capture mode takes effect for the next event processed; not for the current event.

You can enable raw capture mode globally by setting the -raw command line option or the RawCapture
property in the probe properties file, as described in Raw Capture Mode on page 20.

Using Arrays

You must define arrays at the start of a rules file, before any processing statements.

 Tip: You must also define tables, described in Lookup Table Operations on page 45, and target
ObjectServers, described in Sending Alerts to Alternate ObjectServers and Tables on page 50, before any
processing statements.

To define an array, use the following syntax:

array node_arr;

Arrays are one dimensional. Each time an assignment is made for a key value that already exists, the previous
value is overwritten. For example:

node_arr["myhost"] = "a";
node_arr["yourhost"] = "b";
node_arr["myhost"] = "c";
30 Netcool/OMNIbus v7 Probe and Gateway Guide

Elements, Fields, Properties, and Arrays in Rules Files
After the preceding statements have been executed, there are two items in the node_arr array. The item
with the key myhost is set to c, and the item with the key yourhost is set to b. You can make
assignments using probe elements, for example:

node_arr[$Node] = "d";

 Note: Array values are persistent until a probe is restarted; if you force the probe to re-read the rules file by
issuing a kill -HUP pid command on the probe process ID, the array values are maintained.
Netcool/OMNIbus v7 Probe and Gateway Guide 31

Chapter 2: Probe Rules File Syntax
2.2 Conditional Statements in Rules Files

The IF and SWITCH statements provide condition testing for processing elements in rules files.

The IF Statement

A condition is a combination of expressions and operations that resolve to either TRUE or FALSE. The IF
statement allows conditional execution of a set of one or more assignment statements by executing only the
rules for the condition that is TRUE. It has the following syntax:

if (condition) {
rules

} [else if (condition) {
rules

} ...]
[else (condition) {
rules

}]

You can combine conditions into increasingly complex conditions using the logical AND operator (&&),
which is true only if all of its inputs are true, and OR operator (||), which is true if any of its inputs are true.
For example:

if match ($Enterprise, "Acme") && match ($trap-type, "Link-Up") {
@Summary = "Acme Link Up on " + @Node
}

Logical operators are described in Logical Operators on page 39. The match function is described in String
Functions on page 41.

The SWITCH Statement

A SWITCH statement transfers control to a set of one or more rules assignment statements depending on
the value of an expression. It has the following syntax:

switch (expression) {
case "stringliteral":

rules
case "stringliteral":

rules
...
default:

[rules]
}

32 Netcool/OMNIbus v7 Probe and Gateway Guide

Conditional Statements in Rules Files
The SWITCH statement tests for exact matches only. This statement should be used wherever possible
instead of an IF statement because SWITCH statements are processed more efficiently and therefore execute
more quickly.

 Note: Each SWITCH statement must contain a default case even if there are no rules associated with it.
There is no BREAK clause for the SWITCH statement, so any rules in the DEFAULT case are executed if no
other case is matched.

The expression can be any valid expression. For example:

switch($node)

The stringliteral can be any string value. For example:

case "jupiter":

You can have more than one stringliteral separated by the pipe (|) symbol. For example:

case "jupiter" | "mars" | "venus":

This case is executed if the expression matches any of the specified strings.
Netcool/OMNIbus v7 Probe and Gateway Guide 33

Chapter 2: Probe Rules File Syntax
2.3 Including Multiple Rules Files

You can include a number of secondary rules files in your main rules file using the include statement:

include "rulesfile"

Specify the path to the rules file as an absolute path. A relative path is relative to the probe working directory,
which can vary depending on how the probe is started. You cannot use environment variables in the path.

if(match(@Manager, "ProbeWatch"))
{
include "/opt/netcool/omnibus/probes/solaris2/probewatch.rules"
}
else
...
34 Netcool/OMNIbus v7 Probe and Gateway Guide

Rules File Functions and Operators
2.4 Rules File Functions and Operators

You can use the operators and functions described in this section to manipulate elements in rules files before
assigning them to ObjectServer fields.

Table 3 lists the operators described in the following sections.

Table 4 lists the functions described in the following sections.

Table 3: Rules File Operators

Operators Description Details on...

*, /, -, + Perform math and string operations. page 37

&, |, ^, >>, << Perform bitwise operations. page 38

==, !=, <>, <, >, <=, >= Perform comparison operations. page 38

NOT (also !), AND (also &&), OR (also ||), XOR (also ^) Perform logical (boolean) operations. page 39

Table 4: Rules File Functions (1 of 3)

Function Name Description Details on...

datetotime Converts a string into a time data type. page 44

details Adds information to the alerts.details table. page 48

discard Deletes an entire event. page 40

exists Tests for the existence of an element. page 39

expand Returns a string (which must be a literal string) with escape
sequences expanded.

page 41

extract Returns the part of a string (which can be a field, element, or
string expression) that matches the parenthesized section of
the regular expression.

page 41

getdate Returns the current date as a date data type. page 44

getenv Returns the value of an environment variable. page 45

getload Measures the load on the ObjectServer. page 52

getpid Returns the process ID of a running probe. page 45

hostname Returns the name of the host on which the probe is running. page 45
Netcool/OMNIbus v7 Probe and Gateway Guide 35

Chapter 2: Probe Rules File Syntax
int Converts a numeric value into an integer. page 43

length Calculates the length of an expression and returns the numeric
value.

page 41

log Enables you to log messages. page 49

lookup Uses a lookup table to map additional information to an alert. page 45

lower Converts an expression to lowercase. page 41

ltrim Removes white space from the left of an expression. page 41

match Tests for an exact string match. page 41

nmatch Tests for a string match at the beginning of a specified string. page 41

printable Converts any non-printable characters in an expression to a
space character.

page 41

real Converts a numeric value into a real number. page 43

recover Recovers a discarded event. page 40

regmatch Performs full regular expression matching of a value in a regular
expression in a string.

page 41

remove Removes an element from an event. page 40

registertarget Registers an ObjectServer so alerts can be sent to multiple
ObjectServers.

page 50

rtrim Removes white space from the right of an expression. page 41

scanformat Converts an expression according to the available formats,
similar to the scanf family of routines in C.

page 41

setlog Enables you to set the message log level. page 49

settarget, setdefaulttarget Sets the ObjectServer alerts are sent to. page 50

service Sets the status of a service. page 51

split Separates a string into elements of an array. page 41

substr Extracts a substring from an expression. page 41

Table 4: Rules File Functions (2 of 3)

Function Name Description Details on...
36 Netcool/OMNIbus v7 Probe and Gateway Guide

Rules File Functions and Operators
Math and String Operators

You can use math operators to add, subtract, divide, and multiply numeric operands in expressions. Table 5
describes the math operators supported in rules files.

You can use string operators to manipulate character strings. Table 6 describes the string operator supported
in rules files.

timetodate Converts a time value into a string data type. page 44

update Indicates which fields are updated when an alert is
deduplicated.

page 47

updateload Updates the load statistics for the ObjectServer. page 52

upper Converts an expression to uppercase. page 41

Table 4: Rules File Functions (3 of 3)

Function Name Description Details on...

Table 5: Math Operators

Operator Description Example

*

/

Operators used to multiply (*) or divide (/) two operands. $eventid=int($eventid)*2

+

-

Operators used to add (+) or subtract (-) two operands. $eventid=int($eventid)+1

Table 6: String Operator

Operator Description Example

+ Concatenates two or more strings. @field = $element1 + "message" + $element2
Netcool/OMNIbus v7 Probe and Gateway Guide 37

Chapter 2: Probe Rules File Syntax
Bit Manipulation Operators

You can use bitwise operators to manipulate integer operands in expressions. Table 7 describes the bitwise
operators supported in rules files.

These operators manipulate the bits in integer expressions. For example, in the statement:

$result2 = int($number3) >> 1

If number3 has the value 17, result2 resolves to 8, as shown:

16 8 4 2 1
>> 1 0 0 0 1

0 1 0 0 0

Note that the bits do not wrap around; when they drop off one end, they are replaced on the other end by
a 0.

Bitwise operators only work with integer expressions. Elements are stored as strings, so you need to use the
int function, described in Math Functions on page 43, to convert them into integers before performing
these operations.

Comparison Operators

You can use comparison operators to test numeric values for equality and inequality. Table 8 describes the
comparison operators supported in rules files.

Table 7: Bitwise Operators

Operator Description Example

&
|
^

Bitwise AND (&), OR (|), and XOR (^). The
results are determined bit-by-bit.

$result1 = int($number1) & int($number2)

>>
<<

Shifts bits right (>>) or left (<<). $result2 = int($number3) >> 1

Table 8: Comparison Operators (1 of 2)

Operator Description Example

== Tests for equality. int($eventid) == 5

!=

<>

Tests for inequality. int($eventid) != 0
38 Netcool/OMNIbus v7 Probe and Gateway Guide

Rules File Functions and Operators
Logical Operators

You can use logical operators on boolean values to form expressions that resolve to TRUE or FALSE. Table 9
describes the logical operators supported in rules files.

Existence Function

You can use the exists function to test for the existence of an element, with the following syntax:

exists ($element)

The function returns TRUE if the element was created for this particular event; otherwise it returns FALSE.

<

>

<=

>=

Tests for greater than (>), less than (<), greater than or equal to (>=), or less
than or equal to (<=).

int($eventid) <=30

Table 8: Comparison Operators (2 of 2)

Operator Description Example

Table 9: Logical Operators

Operator Description Example

NOT (also !) A NOT expression negates the input value,
and is TRUE only if its input is FALSE.

if NOT(Severity=0)

AND (also &&) An AND expression is true only if all of its
inputs are TRUE.

if match($Enterprise,"Acme") &&

match($trap-type,"Link-Up")

OR (also ||) An OR expression is TRUE if any of its
inputs are TRUE.

if match($Enterprise,"Acme") ||

match($Enterprise,"Bo")

XOR (also ^) An XOR expression is TRUE if either of its
inputs, but not both, are TRUE.

if match($Enterprise,"Acme") XOR

match($Enterprise,"Bo")
Netcool/OMNIbus v7 Probe and Gateway Guide 39

Chapter 2: Probe Rules File Syntax
Deleting Elements or Events

You can use functions to remove elements from an event, discard an entire event, and recover a discarded
event. Table 10 describes these functions:

Table 10: Deleting Elements or Events

Function Description Example

discard Deletes an entire event.

This must be in a conditional statement;
otherwise, all events are discarded.

if match(@Node,"testnode") {
discard }

recover Recovers a discarded event. if match(@Node,"testnode") {
recover }

remove(element_name) Removes the element from the event. remove(test_element)
40 Netcool/OMNIbus v7 Probe and Gateway Guide

Rules File Functions and Operators
String Functions

You can use string functions to manipulate string elements, typically field or element names. Table 11
describes the string functions supported in rules files.

Table 11: String Functions (1 of 3)

Function Description Example

expand("string") Returns the string (which must be a
literal string) with escape sequences
expanded. Possible expansions are:

\" - double quote

\NNN - octal value of NNN

\\ - backslash

\a - alert (BEL)

\b - backspace

\e - escape (033 octal)

\f - form feed

\n - new line

\r - carriage return

\t - horizontal tab

\v - vertical tab

This function cannot be used as the
regular expression argument in the
regmatch or extract functions.

log(debug,
expand("Rules file with
embedded \\\""))

sends the following to the log:

Sun Oct 21 19:56:15 2001
Debug: Rules file with
embedded \"

extract(string,
"regexp")

Returns the part of the string (which
can be a field, element, or string
expression) that matches the
parenthesized section of the regular
expression. Regular expression
pattern matching is described in
Appendix A: Regular Expressions on
page 119.

extract
($expr,"ab([0-9]+)cd")

If $expr is "ab123cd" then the value
returned is 123.

length(expression) Calculates the length of an expression
and returns the numeric value.

$NodeLength = length($Node)

lower(expression) Converts an expression to lowercase. $Node = lower($Node)
Netcool/OMNIbus v7 Probe and Gateway Guide 41

Chapter 2: Probe Rules File Syntax
ltrim(expression) Removes white space from the left of
an expression.

$TrimNode = ltrim($Node)

match(expression,
"string")

TRUE if the expression value matches
the string exactly.

if match($Node, "New")

nmatch(expression,
"string")

TRUE if the expression starts with the
specified string.

if nmatch($Node, "New")

printable(expression) Converts any non-printable characters
in the given expression into a space
character.

$Print = printable($Node)

regmatch(expression,
"regexp")

Full regular expression matching.

For more information on regular
expressions, see Appendix A: Regular
Expressions on page 119.

if (regmatch($enterprise,
"^Acme Config:[0-9]"))

rtrim(expression) Removes white space from the right of
an expression.

$TrimNode = rtrim($Node)

scanformat(expression,
"string")

Converts the expression according to
the following formats, similar to the
scanf family of routines in C.
Conversion specifications are:

%% - literal %; do not interpret

%d - matches an optionally signed
decimal integer

%u - same as %d; no check is made for
sign

%o - matches an optionally signed
octal number

%x - matches an optionally signed
hexadecimal number

%i - matches an optionally signed
integer

%e, %f, %g - matches an optionally
signed floating point number

%s - matches a string terminated by
white space or end of string

$element =
"Foo is up in 15 seconds"

[$node, $state, $time] =
scanformat($element,
"%s is %s in %d seconds")

This sets $node, $state, and $time to
Foo, up, and 15, respectively.

Table 11: String Functions (2 of 3)

Function Description Example
42 Netcool/OMNIbus v7 Probe and Gateway Guide

Rules File Functions and Operators
Math Functions

You can use math functions to perform numeric operations on elements. Elements are stored as strings, so
you must use these functions to convert them into integers before performing numeric operations. Table 12
describes the math functions supported in rules files.

In the following example, the severity of an alert that monitors disk space usage is set depending on the
amount of available disk space.

if (int($PercentFull) > 80 && int($PercentFull) <=85)
{

num_returned_fields =
split("string",
destination_array,
"field_separator")

Separates the specified string into
elements of the destination array.

The field separator separates the
elements. The field separator itself is
not returned. If you specify multiple
characters in the field separator, when
any combination of one or more of the
characters is found in the string, a
separation will occur.

Regular expressions are not allowed in
the string or field separator.

num_elements=
split("bilbo:frodo:gandalf",
names,":")

creates an array with three entries:

names[1] = bilbo

names[2] = frodo

names[3] = gandalf

num_elements is set to 3.

You must define the names array at the
start of the rules file, before any
processing statements, as described in
Using Arrays on page 30.

substr(expression,n,
len)

Extracts a substring, starting at the
position specified in the second
parameter, for the number of
characters specified by the third
parameter.

$Substring =
substr($Node,2,10)

upper(expression) Converts an expression to uppercase. $Node = upper($Node)

Table 11: String Functions (3 of 3)

Function Description Example

Table 12: Math Functions

Function Description Example

int(numeric) Converts a numeric value into an integer. if int($PercentFull) > 80

real(numeric) Converts a numeric value into a real
number.

@DiskSpace=
(real($diskspace)/real($total))*100
Netcool/OMNIbus v7 Probe and Gateway Guide 43

Chapter 2: Probe Rules File Syntax
@Severity=2
}
else if (int($PercentFull)) > 85 && int($PercentFull) <=90)
{

@Severity=3
}
else if (int($PercentFull > 90 && int($PercentFull) <=95)
{

@Severity=4
}
else if (int($PercentFull) > 95)
{

@Severity=5
}

The percentage of disk space is not always provided in the event stream. The percentage of disk space can
be calculated in the rules file as follows:

if (int($total) > 0)
{

@DiskSpace=(100*int($diskspace))/int($total)
}

This can also be calculated using the real function:

if (int($total) > 0)
{

@DiskSpace=(real($diskspace)/real($total))*100
}

The previous example can then be used to set the severity of the alert.

Date and Time Functions

You can use date and time functions to obtain the current time or to perform date and time conversions.
Times are specified in Coordinated Universal Time (UTC)—the number of elapsed seconds since 1 January
1970. Table 13 describes the date and time functions supported in rules files.

Table 13: Date and Time Functions (1 of 2)

Function Description Example

datetotime(string,
conversion_specification)

Converts a string into a time data
type using the C library function
strptime(). See the man page
for strptime for more
information.

$Date = datetotime("Tue Dec
19 18:33:11 GMT 2000",
"%a %b %e %T %Z %Y")
44 Netcool/OMNIbus v7 Probe and Gateway Guide

Rules File Functions and Operators
Host and Process Utility Functions

You can use utility functions to obtain information about the environment in which the probe is running.
Table 14 describes the host and process functions supported in rules files.

Lookup Table Operations

Lookup tables provide a way to add extra information in an event. A lookup table consists of a list of keys
and values. It is defined with the table function and accessed using the lookup function.

The lookup function evaluates the expression in the keys of the named table and returns the associated
value. If the key is not found, an empty string is returned. The lookup function has the following syntax:

lookup(expression,tablename)

You can create a lookup table directly in the rules file or in a separate file.

Defining Lookup Tables in the Rules File

You can create a lookup table directly in the rules file using the following format:

table tablename={{"key","value"},{"key","value"}...}

getdate() Takes no arguments and returns
the current date as a date.

$tempdate = getdate()

timetodate(UTC,
conversion_specification)

Converts a time value into a string
using the C library function
strftime(). See the man page
for strftime for more
information.

@StateChange = timetodate
($StateChange, "%T, %D")

Table 13: Date and Time Functions (2 of 2)

Function Description Example

Table 14: Host and Process Utility Functions

Function Description Example

getenv(string) Returns the value of a specified
environment variable.

$My_OMNIHOME = getenv("OMNIHOME")

getpid() Returns the process ID of the running probe. $My_PID = getpid()

hostname() Returns the name of the host on which the
probe is running.

$My_Hostname = hostname()
Netcool/OMNIbus v7 Probe and Gateway Guide 45

Chapter 2: Probe Rules File Syntax
 Note: Table definitions must appear at the start of a rules file, before any processing statements. You can
define multiple tables in a rules file. For changes to the lookup table to take effect, the probe must be forced
to re-read the rules file. Refer to Re-reading the Rules File on page 16 for more information.

For example, to create a table that matches a node name to the department the node is in:

table dept={{"node1","Technical"},{"node2","Finance"}}

You can access this lookup table in the rules file as follows:

@ExtraChar=lookup(@Node,dept)

This example uses the @Node field as the key. If the value of the @Node field matches a key in the table,
@ExtraChar is set to the corresponding value.

A lookup table can also have multiple columns. For example:

table example_table =
{{"key1", "value1", "value2", "value3"},
{"key2", "val1", "val2", "val3"}}

You can obtain values from a multiple value lookup table as follows:

[@Summary, @AlertKey, $error_code] = lookup("key1", "example_table")

Defining Lookup Tables in a Separate File

Rather than including the lookup table directly in the rules file, you can create the table in a separate file. If
you are specifying a single value, the file must be in the format:

key[TAB]value
key[TAB]value

To create a table in which the node name is matched to the department the node is in, use the following
format:

node1[TAB]"Technical"
node2[TAB]"Finance"

The table function must appear at the start of a rules file, before any processing statements. Specify the
full path to the lookup table file as follows:

table dept="/opt/netcool/omnibus/probes/solaris2/Dept"

You can then use this lookup table in the rules file as follows:

@ExtraChar=lookup(@Node,dept)
46 Netcool/OMNIbus v7 Probe and Gateway Guide

Rules File Functions and Operators
For multiple values, the format is:

key1[TAB]value1[TAB]value2[TAB]value3
key2[TAB]val1[TAB]val2[TAB]val3

You can also control how the probe processes external lookup tables with the LookupTableMode
property, described in Probe Properties and Command Line Options on page 60. This property determines
how errors are handled when external lookup tables do not have the same number of values on each line.

Specifying Default Table Values

You can specify a default option to handle an event that does not match any of the key values in a table. The
default statement must follow the specific table definition.

The following is an example for a table in the rules file:

table example_table =
{{"key1", "value1", "value2", "value3"},
{"key2", "val1", "val2", "val3"}}
default = {"defval1", "defval2", "defval3"}

The following is an example for a table in a separate file:

table dept="/opt/netcool/omnibus/probes/solaris2/Dept"
default = {"defval1", "defval2", "defval3"}

Update on Deduplication Function

The deduplication process is managed by the ObjectServer, but it can be configured in the probe rules file.
Use the update function to specify which fields of an alert are to be updated if the alert is deduplicated.
This allows deduplication rules to be set on a per-alert basis.

The update function has the following syntax:

update(fieldname [, TRUE | FALSE])

If set to TRUE, update on deduplication is enabled. If set to FALSE, update on deduplication is disabled.
The default is TRUE.
Netcool/OMNIbus v7 Probe and Gateway Guide 47

Chapter 2: Probe Rules File Syntax
For example, to ensure that the Severity field is updated on deduplication, you can add the following
to the rules file:

update(@Severity)

You can also disable update on deduplication for a specific field. For example:

update(@Severity, FALSE)

Details Function

Details are extra elements created by a probe to display alert information that is not stored in a field of the
alerts.status table. Alerts do not have detail information unless it is added.

Detail elements are stored in the ObjectServer details table, alerts.details. You can view details by
double-clicking an alert in the event list.

You can add information to the details table using the details function. The detail information is added
when an alert is inserted, but not if it is deduplicated.

The following example adds the elements $a and $b to the alerts.details table:

details($a,$b)

The following example adds all of the alert information to the alerts.details table:

details($*)

!!
 Warning: You should only use $* when you are debugging or writing rules files. After using $* for long
periods of time, the ObjectServer tables will become very large and the performance of the ObjectServer will
suffer.

In the following example, the $Summary element is compared to the strings Incoming and Backup.
If there is no match, the @Summary field is set to the string Please see details, and all of the
information for the alert is added to the details table:

if (match($Summary, "Incoming"))
{

@Summary = "Received a call"
}
else if(match($Summary, "Backup"))
{

@Summary = "Attempting to back up"
}
else
{

@Summary = "Please see details"
48 Netcool/OMNIbus v7 Probe and Gateway Guide

Rules File Functions and Operators
details($*)
}

Message Logging Functions

You can use the log function to log messages during rules processing. You can also set a log level using the
setlog function, and only messages equal to or above that level are logged.

There are five log levels: DEBUG, INFO, WARNING, ERROR, and FATAL, in order of increasing severity.
For example, if the log level is set to WARNING, only WARNING, ERROR, and FATAL messages are logged,
but if the logging is set to ERROR then only ERROR and FATAL messages are logged.

Log Function

The log function sends a message to the log file.

The syntax is:

log([DEBUG | INFO | WARNING | ERROR | FATAL],"string")

 Note: When a FATAL message is logged, the probe terminates.

Setlog Function

The setlog function sets the minimum level at which messages are logged during rules processing. By
default, the level for logging is WARNING and above.

The syntax is:

setlog([DEBUG | INFO | WARNING | ERROR | FATAL])

Message Logging Example

The following is a sequence of logging functions executed in the rules file:

setlog(WARNING)
log(DEBUG,"A debug message")
log(WARNING,"A warning message")
setlog(ERROR)
log(WARNING,"Another warning message")
log(ERROR,"An error message")

This produces log output of:

A warning message
An error message
Netcool/OMNIbus v7 Probe and Gateway Guide 49

Chapter 2: Probe Rules File Syntax
The DEBUG level message is not logged, because the logging setting is set higher than DEBUG. The second
WARNING level message is not logged, because the preceding setlog function has set the log level higher
than WARNING.

Sending Alerts to Alternate ObjectServers and Tables

The registertarget function enables you to register one or more ObjectServers, and the
corresponding tables, to which you may want to send alerts.You must register all potential targets at the start
of a rules file, before any processing statements.

target_server = registertarget(server_name, backupserver_name, alerts_table [, details_
table])

In the following example, multiple targets are registered:

DefaultAlerts = registertarget("TEST1", "", "alerts.status")
HighAlerts = registertarget("TEST2", "", "alerts.status")
ClearAlerts = registertarget("TEST3", "", "alerts.status")
London = registertarget("NCOMS", "", "alerts.london")

 Note: Regardless of the number of registered target ObjectServers, each alert can only be sent to one of
them.

When you register more than one target, the one registered first is initially the default target. Unless another
command overrides these settings, the alert destination following these register commands is the
alerts.status table in the TEST1 ObjectServer.

The setdefaulttarget function enables you to change the default ObjectServer to which alerts are
sent when a target is not specified.

The settarget function enables you to specify the ObjectServer to which an alert will be sent without
changing the default target.

You can change both the default ObjectServer and the ObjectServer to which specific alerts are sent, as
shown in the following example:

Once an event of Major severity or higher comes in,
set the default ObjectServer to TEST2
if(int(@Severity) > 3)
{ setdefaulttarget(HighAlerts) }
Send all clear events to TEST3
if (int(@Severity) = 0)
{ settarget(ClearAlerts) }
50 Netcool/OMNIbus v7 Probe and Gateway Guide

Rules File Functions and Operators
Service Function

Use the service function to define the status of a service before alerts are forwarded to the ObjectServer.
The status changes the color of the alert when it is displayed in the event list and Service windows.

The syntax is:

service(service_identifier, service_status)

The service_identifier identifies the monitored service, for example, $host.

Table 15 lists the service status levels.

Service Function Example

If you want a Ping Probe to return a service status for each host it monitors, you can use the service
function in the rules file to assign a service status to each alert. In the following example, a service status is
assigned to each alert based on the value of the status element.

switch ($status)
{
case "unreachable":
@Severity = "5"
@Summary = @Node + " is not reachable"
@Type = 1
service($host, bad) # Service Entry
case "alive":
@Severity = "3"
@Summary = @Node + " is now alive"
@Type = 2
service($host, good) # Service Entry
case "noaddress":
@Severity = "2"
@Summary = @Node + " has no address"
service($host, marginal) # Service Entry
case "removed":
@Severity = "5"

Table 15: Service Function Status Levels

Service Status Level Definition

BAD The service level agreement is not being met.

MARGINAL There are some problems with the service.

GOOD There are no problems with the service.

No Level Defined The status of the service is unknown.
Netcool/OMNIbus v7 Probe and Gateway Guide 51

Chapter 2: Probe Rules File Syntax
@Summary = @Node + " has been removed"
service($host, marginal) # Service Entry
case "slow":
@Severity = "2"
@Summary = @Node + " has not responded within
trip time"
service($host, marginal) # Service Entry
case "newhost":
@Severity = "1"
@Summary = @Node + " is a new host"
service($host, good) # Service Entry
case "responded":
@Severity = "0"
@Summary = @Node + " has responded"
service($host, good) # Service Entry
default:
@Summary = "Ping Probe error details: " + $*
@Severity = "3"
service($host, marginal) # Service Entry
}

Monitoring Probe Loads

To monitor load, it is necessary to obtain time measurements and calculate the number of events processed
over time. The updateload function takes a time measurement each time it is called, and the getload
function returns the load as events per second.

Each time the updateload function is executed, the current time stamp, recorded in seconds and
microseconds, is added to the beginning of a series of time stamps. The remaining time stamps record the
difference in time from the previous time stamp. For example, to take a time measurement and update a
property called load with a new time stamp:

%load = updateload(%load)

 Tip: Depending on the operating system, differing levels of granularity may be reported in time stamps.
52 Netcool/OMNIbus v7 Probe and Gateway Guide

Rules File Functions and Operators
You can specify a maximum time window for which samples are kept, and a maximum number of samples.
By default, the time window is one second and the maximum number of samples is 50. You can specify the
number of seconds for which load samples are kept and the maximum number of samples in the format:

time_window_in_seconds.max_number_of_samples

For example, to set or reset these values for the load property:

%load = "2.40"

When the number of seconds in the time window is exceeded, any samples outside of that time window are
removed. When the number of samples reaches the limit, the oldest measurement is removed.

The getload function calculates the current load, returned as events per second. For example, to calculate
the current load and assign it to a temporary element called current_load:

$current_load = getload(%load)

For an example of how to use the load function to monitor loads, see Using Load Functions to Monitor
Nodes on page 58.
Netcool/OMNIbus v7 Probe and Gateway Guide 53

Chapter 2: Probe Rules File Syntax
2.5 Testing Rules Files

You can test the syntax of a rules file using the Syntax Probe, nco_p_syntax. This is more efficient than
actually running the probe to test that the syntax of the rules file is correct.

To run the Syntax Probe, enter:

nco_p_syntax -rulesfile /test/rules_file.rules

Use the -rulesfile command line option to specify the full path and file name of the rules file. The
Syntax Probe always runs in debug mode. It connects to the ObjectServer, tests the rules file, displays any
errors to the screen, and then exits. If no errors are displayed, the syntax of the rules file is correct.
54 Netcool/OMNIbus v7 Probe and Gateway Guide

Debugging Rules Files
2.6 Debugging Rules Files

When making changes to the rules file, adding new rules, or creating lookup tables it is useful to test the
probe by running it in debug mode. This shows exactly how an event is being parsed by the probe and any
possible problems with the rules file.

 Tip: For changes to the rules file to take effect, the probe must be forced to re-read the rules file. Refer to
Re-reading the Rules File on page 16 for more information.

To change the message level of a running probe to run in debug mode, issue the command kill -USR2
pid on the probe process ID (PID). Refer to the ps and kill man pages for more information.

Each time you issue the command kill -USR2 pid, the message level is cycled.

 Tip: For CORBA probes, issue the command kill commands on the nco_p_nonnative process ID.

You also can set the probe to run in debug mode on the command line or in the properties file. To enable
debug mode on the command line, enter the command:

$OMNIHOME/probes/arch/probename -messagelevel DEBUG -messagelog STDOUT

Alternatively, you can enter the following in the properties file:

MessageLevel: "DEBUG"
MessageLog: "STDOUT"

If you omit the MessageLog property or -messagelog command line option, the debug information
is sent to the probe log file in the $OMNIHOME/log directory rather than to the screen.
Netcool/OMNIbus v7 Probe and Gateway Guide 55

Chapter 2: Probe Rules File Syntax
2.7 Rules File Examples

The following sections show examples of typical rules file segments.

Enhancing the Summary Field

This example rule tests if the $trap-type element is Link-Up. If it is, the @Summary field is
populated with a string made up of Link up on, the name of the node from the record being generated,
Port, and the value of the $ifIndex element:

if(match($trap-type,"Link-Up"))
{

@Summary = "Link up on " + @Node + " Port " + $ifIndex
}

Populating Multiple Fields

This example rule is similar to the previous rule except that the @AlertKey and @Severity fields are
also populated:

if(match($trap-type, "Link-Up"))
{

@Summary = "Link up on " + @Node + " Port " + $ifIndex
@AlertKey = $ifIndex
@Severity = 4

}

Nested IF Statements

This example rule first tests if the trap has come from an Acme manager, and then tests if it is a Link-Up.
If both conditions are met, the @Summary field is populated the values of the @Node field and
$ifIndex and $ifLocReason elements:

if(match($enterprise,"Acme"))
{

if(match($trap-type, "Link-Up"))
{
@Summary= "Acme Link Up on " + @Node + " Port " + $ifIndex +
" Reason: "+$ifLocReason
} }
56 Netcool/OMNIbus v7 Probe and Gateway Guide

Rules File Examples
Regular Expression Match

This example rule tests for a line starting with Acme Configuration: followed by a single digit:

if (regmatch($enterprise,"^Acme Configuration:[0-9]"))
{

@Summary="Generic configuration change for " + @Node
}

Regular Expression Extract

This example rule tests for a line starting with Acme Configuration: followed by a single digit. If the
condition is met, it extracts that single digit and places it in the @Summary field:

if (regmatch($enterprise,"^Acme Configuration:[0-9]"))
{

@Summary="Acme error "+extract($enterprise,"^Acme Configuration:
([0-9])")+" on" + @Node

}

Numeric Comparisons

This example rule tests the value of an element called $freespace as a numeric value by converting it to
an integer and performing a numeric comparison:

if (int($freespace) < 1024)
{

@Summary="Less than 1024K free on drive array"
}

Netcool/OMNIbus v7 Probe and Gateway Guide 57

Chapter 2: Probe Rules File Syntax
Simple Numeric Expressions

This example rule creates an element called $tmpval. The value of $tmpval is derived from the
$temperature element, which is converted to an integer and then has 20 subtracted from it. The string
element $tmpval contains the result of this calculation:

$tmpval=int($temperature)-20

Strings and Numerics in One Expression

This example rule creates an element called $Kilobytes. The value of $Kilobytes is derived from
the $DiskSize element, which is divided by 1024 before being converted to a string type with the letter
K appended:

$Kilobytes = string(int($DiskSize)/1024) + "K"

Using Load Functions to Monitor Nodes

This example shows how to measure load for each node that is generating events. If a node is producing more
than five events per second, a warning is written to the probe log file. If more than 80 events per second are
generated for all nodes being monitored by the probe, events are sent to an alternate ObjectServer and a
warning is written to the probe log file.

declare the ObjectServers HIGHLOAD and LOWLOAD
declare the loads array
LOWLOAD = registertarget("NCOMS_LOW", "", "alerts.status")
HIGHLOAD = registertarget("NCOMS_HIGH", "", "alerts.status")
array loads;

initialize array items with the number of seconds samples may span and
number of samples to maintain.

if (match("", loads[@Node])){
 loads[@Node] = "2.50"
}
if (match("" , %general_load)){
 %general_load="2.50"
}
loads[@Node] = updateload(loads[@Node])
%general_load=updateload(%general_load)
if (int(getload(loads[@Node])) > 5){
 log(WARN, $Node + " is creating more than 5 events per second")
}
if (int(getload(%general_load)) > 80){
 log(WARN, "Probe is creating more than 80 events per second - switching to HIGHLOAD")
 settarget(HIGHLOAD)
}

58 Netcool/OMNIbus v7 Probe and Gateway Guide

probe_props.fm October 11, 2004 11:01 am

Chapter 3: Probe Properties and Command
Line Options

This chapter describes the properties and command line options common to all probes and TSMs. For the
properties and command line options specific to a particular probe or TSM, refer to the individual guides
for each probe and TSM available on the Micromuse Support Site.

For introductory information about probes, see Chapter 1: Introduction to Probes on page 9. For an
introduction to probe properties, refer to Properties File on page 14.

This chapter contains the following section:

• Probe Properties and Command Line Options on page 60
Netcool/OMNIbus v7 Probe and Gateway Guide 59

Chapter 3: Probe Properties and Command Line Options
3.1 Probe Properties and Command Line Options

The probe has default values for each property. In an unedited properties file, all properties are listed with
their default values, commented out with a hash symbol (#) at the beginning of the line.

You can edit probe property values using a text editor. To override the default, change a setting in the
properties file and remove the hash symbol. If you edit the properties file while the probe is running, the
changes you make will take effect the next time you start the probe.

If you change a setting on the command line, this overrides both the default value and the setting in the
properties file. To simplify the command you type to run the probe, add as many properties as possible to
the properties file rather than using the command line options.

To run a probe, enter:

$OMNIHOME/probes/nco_p_probename [-option [value] ...]

The probename is the abbreviated name of the probe you want to run. The -option is the command
line option and value is the value you are setting the option to. Not every option requires you to specify
a value.

If the -name command line option is specified, it determines the name used for the probe files described
in Table 16:

In these paths, arch is the name of the architecture on which the probe is installed; for example,
solaris2 when running on a Solaris system.

If the -propsfile command line option is specified, its value overrides the name setting for the
properties file.

 Note: Always read the guide that is specific to the probe you are running for additional configuration
information. The individual probe guides are available on the Micromuse Support Site.

Table 16: Names of Probe Files

Type of File Path and File Name

Properties File $OMNIHOME/probes/arch/name.props

Rules File $OMNIHOME/probes/arch/name.rules

Store and Forward File $OMNIHOME/var/name.store.server

Message Log File $OMNIHOME/log/name.log
60 Netcool/OMNIbus v7 Probe and Gateway Guide

Probe Properties and Command Line Options
Table 17 lists the common properties and command line options available to all probes, and their default
settings.

Table 17: Common Probe Properties and Command Line Options (1 of 7)

Property Command Line Option Description

AuthPassword string N/A The password associated with the user name used
to authenticate the probe when it connects to an
ObjectServer running in secure mode. This
password must be encrypted with the nco_g_
crypt utility. The default is ''.

Secure mode is described in Secure Mode on
page 20.

AuthUserName string N/A A user name used to authenticate the probe when
it connects to an ObjectServer running in secure
mode. The default is ''.

Secure mode is described in Secure Mode on
page 20.

AutoSAF 0 | 1 -autosaf

-noautosaf

Specifies whether or not automatic store and
forward mode is enabled. By default, automatic
store and forward mode is not enabled (0).

Store and forward mode is described in Store and
Forward Mode on page 19.

Note: For failover to work, automatic store and
forward must be enabled in addition to setting the
ServerBackup, NetworkTimeout, and
PollServer properties.

BeatInterval integer -beatinterval integer Specifies the heartbeat interval for peer-to-peer
failover. The default is 2 seconds.

Peer-to-peer failover is described in Peer-to-Peer
Failover on page 20.

Buffering 0 | 1 -buffer

-nobuffer

Specifies whether or not buffering is used when
sending alerts to the ObjectServer. By default,
buffering is not enabled (0).

Note: All alerts sent to the same table are sent in
the order in which they were processed by the
probe. If alerts are sent to multiple tables, the order
is preserved for each table, but not across tables.

BufferSize integer -buffersize integer Specifies the number of alerts the probe buffers.
The default is 10 .
Netcool/OMNIbus v7 Probe and Gateway Guide 61

Chapter 3: Probe Properties and Command Line Options
N/A -help Displays the supported command line options and
exits.

LookupTableMode integer -lookupmode integer Specifies how table lookups are performed. It can
be set to 1, 2, or 3. The default is 3.

If set to 1, all external lookup tables are assumed to
have a single value column. Tabs are not used as
column delimiters.

If set to 2, all external lookup tables are assumed to
have multiple columns. If the number of columns
on each line is not the same, an error is generated
that includes the file name and the line on which
the error occurred.

If set to 3, the rules engine attempts to determine
the number of columns in the external lookup
table. An error is generated for each line that has a
different column count from the previous line. The
error includes the file name and the line on which
the error occurred.

Lookup tables are described in Lookup Table
Operations on page 45.

Manager string -manager string Specifies the value of the Manager field for the
alert. The default value is determined by the probe.

MaxLogFileSize integer -maxlogfilesize integer Specifies the maximum size the log file can grow
to, in Bytes. The default is 1 MByte. Once the log
file reaches the size specified, a second log file is
started. When the second file reaches the
maximum size, the first file is overwritten with a
new log file and the process starts again.

MaxRawFileSize integer N/A Specifies the maximum size of the raw capture file,
in KBytes. The default is unlimited (-1).

Raw capture mode is described in Raw Capture
Mode on page 20.

MaxSAFFileSize integer -maxsaffilesize integer Specifies the maximum size the store and forward
file can grow to, in Bytes. The default is 1 MByte.

Store and forward mode is described in Store and
Forward Mode on page 19.

Table 17: Common Probe Properties and Command Line Options (2 of 7)

Property Command Line Option Description
62 Netcool/OMNIbus v7 Probe and Gateway Guide

Probe Properties and Command Line Options
MessageLevel string -messagelevel string Specifies the message logging level. Possible
values are: debug, info, warn, error, and
fatal. The default level is warn.

Messages that are logged at each level are listed
below:

fatal - fatal only.

error - fatal and error.

warn - fatal, error, and warn.

info - fatal, error, warn, and info.

debug - fatal, error, warn, info, and debug.

MessageLog string -messagelog string Specifies where messages are logged. The default
is $OMNIHOME/log/name.log.

MessageLog can also be set to stdout or
stderr.

Mode string -mode string Specifies the role of the instance of the probe in a
peer-to-peer failover relationship. The mode can
be:

master - This instance is the master.

slave - This instance is the slave.

standard - There is no failover relationship.

 The default is standard.

Peer-to-peer failover is described in Peer-to-Peer
Failover on page 20.

MsgDailyLog 0 | 1 -msgdailylog 0 | 1 Specifies whether or not daily logging is enabled.
By default, the daily backup of log files is not
enabled (0).

Note: Because the time is checked regularly, when
MsgDailyLog is set there is a slight reduction in
performance.

MsgTimeLog string -msgtimelog string Specifies the time after which the daily log is
created. The default is 0000 (midnight).

If MsgDailyLog set to 0, this value is ignored .

Table 17: Common Probe Properties and Command Line Options (3 of 7)

Property Command Line Option Description
Netcool/OMNIbus v7 Probe and Gateway Guide 63

Chapter 3: Probe Properties and Command Line Options
Name string -name string Specifies the name of the probe. This value
determines the names of the properties file, rules
file, message log file, and store and forward file, as
listed in Table 16 on page 60.

NetworkTimeout integer -networktimeout integer Specifies a time in seconds after which the
connection to the ObjectServer times out, should a
network failure occur. The default is 0, meaning
that no timeout occurs.

If a timeout occurs, the probe attempts to connect
to the secondary ObjectServer, identified by the
ServerBackup property.

If a timeout occurs and no secondary ObjectServer
is specified, the probe enters store and forward
mode. Store and forward mode is described in
Store and Forward Mode on page 19.

PeerHost string -peerhost string Specifies the hostname of the network element
acting as the counterpart to this probe instance in
a peer-to-peer failover relationship. The default is
localhost.

Peer-to-peer failover is described in Peer-to-Peer
Failover on page 20.

PeerPort integer -peerport integer Specifies the port through which the master and
slave communicate in a peer-to-peer failover
relationship. The default port is 99.

Peer-to-peer failover is described in Peer-to-Peer
Failover on page 20.

PidFile string -pidfile string Specifies the name of the file that stores the
process ID for the device. The default is
$OMNIHOME/var/name.pid, where name is
the name of the probe and pid is the process ID.

Table 17: Common Probe Properties and Command Line Options (4 of 7)

Property Command Line Option Description
64 Netcool/OMNIbus v7 Probe and Gateway Guide

Probe Properties and Command Line Options
PollServer integer -pollserver integer If connected to a backup ObjectServer because
failover occurred, a probe periodically attempts to
reconnect to the primary ObjectServer. This
property specifies the frequency in seconds at
which the probe polls for the return of the primary
ObjectServer. It does this by disconnecting and
then reconnecting; to the primary ObjectServer if
available, or to the secondary ObjectServer if the
primary is not available. Polling is the only way the
probe can determine if the primary ObjectServer is
available. The default is 0, meaning that no polling
occurs.

Polling only occurs if the ObjectServer to which the
probe is currently connected has the
BackupObjectServer property, which
designates a backup ObjectServer, set to TRUE.

Note: A probe may go into store and forward
mode when the primary ObjectServer becomes
unavailable. The first alert is not forwarded to the
backup ObjectServer until the second alert opens
the connection to the backup. If PollServer is
set to less than the average time between alerts,
the ObjectServer connection is polled before an
alert is sent, and the probe does not go into store
and forward mode.

Props.CheckNames
TRUE | FALSE

N/A When TRUE, the probe does not run if any
specified property is invalid. The default is TRUE.

PropsFile string -propsfile string Specifies the name of the properties file. The
default is
$OMNIHOME/probes/arch/name.props,
where name is the name of the probe and arch is
the platform name of the architecture.

Table 17: Common Probe Properties and Command Line Options (5 of 7)

Property Command Line Option Description
Netcool/OMNIbus v7 Probe and Gateway Guide 65

Chapter 3: Probe Properties and Command Line Options
RawCapture 0 | 1 -raw

-noraw

Controls the raw capture mode. Raw capture mode
is usually used at the request of Micromuse
Support. By default, raw capture mode is disabled
(0).

Note: Raw capture can generate a large amount of
data. By default, the raw capture file can grow
indefinitely, although you can limit the size using
the MaxRawFileSize property. Raw capture can
also slow probe performance due to the amount of
disk activity required for a busy probe.

Raw capture mode is described in Raw Capture
Mode on page 20.

RawCaptureFile string -capturefile string Specifies the name of the raw capture file. The
default is $OMNIHOME/var/name.cap, where
name is the name of the probe.

Raw capture mode is described in Raw Capture
Mode on page 20.

RawCaptureFileAppend
0 | 1

-rawcapfileappend

-norawcapfileappend

Specifies whether new data is appended to the
existing raw capture file, instead of overwriting it.
By default, the file is overwritten (0).

Raw capture mode is described in Raw Capture
Mode on page 20.

RetryConnectionCount integer N/A Specifies the number of events the probe
processes in store and forward mode before trying
to reconnect to the ObjectServer. The default is 15.

Store and forward mode is described in Store and
Forward Mode on page 19.

RetryConnectionTimeOut integer N/A Specifies the number of seconds the probe
processes events in store and forward mode
before trying to reconnect to the ObjectServer.
The default is 30.

Store and forward mode is described in Store and
Forward Mode on page 19.

Table 17: Common Probe Properties and Command Line Options (6 of 7)

Property Command Line Option Description
66 Netcool/OMNIbus v7 Probe and Gateway Guide

Probe Properties and Command Line Options
RulesFile string -rulesfile string Specifies the name of the rules file.

This can be a file name or URL that specifies a rules
file located on a remote server that is accessible
using the http protocol.

The default is
$OMNIHOME/probes/arch/name.rules,
where name is the name of the probe.

SAFFileName string -saffilename string Specifies the name of the store and forward file.

The default is
$OMNIHOME/var/name.store.server,
where name is the name of the probe and server
is the name of the target ObjectServer.

If a name other than the default is specified, the
.server extension is appended to the path and
file name.

Store and forward mode is described in Store and
Forward Mode on page 19.

Server string -server string Specifies the name of the ObjectServer or proxy
server that alerts are sent to. The default is NCOMS.

For more information about configuring the
ObjectServer or proxy server, see the
Netcool/OMNIbus Administration Guide.

ServerBackup string N/A Specifies a secondary ObjectServer should the
primary ObjectServer connection fail. If
NetworkTimeout is set, use ServerBackup to
identify a secondary ObjectServer.

StoreAndForward
0 | 1

-saf

-nosaf

Controls the store and forward operations. By
default, store and forward mode is enabled (1).

Store and forward mode is described in Store and
Forward Mode on page 19.

N/A -version Displays version information and exits.

Table 17: Common Probe Properties and Command Line Options (7 of 7)

Property Command Line Option Description
Netcool/OMNIbus v7 Probe and Gateway Guide 67

Chapter 3: Probe Properties and Command Line Options
68 Netcool/OMNIbus v7 Probe and Gateway Guide

intro_gates.fm October 11, 2004 11:01 am

Chapter 4: Introduction to Gateways

This chapter introduces gateways, their key features, and how to use them. It also describes the types of
gateways, their components, and how to run them.

For information about commands common to all gateways and nco_gate command line options, refer
to Chapter 5: Gateway Commands and Command Line Options on page 95.

For descriptions of gateway error messages, refer to Appendix D: Gateway Error Messages on page 155.

For information about specific gateways, refer to the documentation available for each gateway on the
Micromuse Support Site. Some gateways have a different architecture than that described in this chapter,
and do not use nco_gate.

This chapter contains the following sections:

• Introduction to Gateways on page 70

• Types of Gateways on page 72

• ObjectServer Gateways on page 73

• Database, Helpdesk, and Other Gateways on page 75

• Gateway Configuration on page 79

• Running a Gateway on page 84

• Configuring Gateways Interactively on page 86

• Gateway Features on page 88

• Gateway Debugging on page 91

• Other Gateway Writers and Failback on page 92

• Conversion Table Utility on page 93
Netcool/OMNIbus v7 Probe and Gateway Guide 69

Chapter 4: Introduction to Gateways
4.1 Introduction to Gateways

Netcool/OMNIbus gateways enable you to exchange alerts between ObjectServers and complementary
third-party applications, such as databases and helpdesk or Customer Relationship Management (CRM)
systems.

You can use gateways to replicate alerts or to maintain a backup ObjectServer. Application gateways enable
you to integrate different business functions. For example, you can configure a gateway to send alert
information to a helpdesk system. You can also use a gateway to archive alerts to a database.

Figure 3 shows an example gateway architecture.

Figure 3: Gateways in the Netcool/OMNIbus Architecture

ObjectServer
NCOMS

Gateway

Probe

Event List

RDBMS
Gateway

Helpdesk/
CRMMonitor

Alerts are replicated in an
additional ObjectServer
in a failover
configuration.

Monitors and probes
send alerts to the local
ObjectServer.

Gateways
forward alerts to
a helpdesk/CRM
system and an
RDBMS.

ObjectServer
DENCO

Gateway
70 Netcool/OMNIbus v7 Probe and Gateway Guide

Introduction to Gateways
In the example in Figure 3, gateways are used for a variety of purposes:

• The ObjectServer Gateway enables you to replicate alerts between ObjectServers in a failover
configuration.

• RDBMS gateways enable you to store critical alerts in a database so you can analyze network
performance.

• Helpdesk gateways enable you to integrate the NOC and the helpdesk by converting trouble tickets
to alerts and alerts to trouble tickets.

Once a gateway is correctly installed and configured, the transfer of alerts is transparent to operators. For
example, alerts are forwarded from an ObjectServer to a database automatically without user intervention.
Netcool/OMNIbus v7 Probe and Gateway Guide 71

Chapter 4: Introduction to Gateways
4.2 Types of Gateways

There are two main types of gateways:

• Unidirectional (archive) gateways

• Bidirectional (synchronization) gateways

Unidirectional gateways only allow alerts to flow in one direction. Changes made in the source ObjectServer
are replicated in the destination ObjectServer or application, but changes made in the destination
ObjectServer or application are not replicated in the source ObjectServer. They can be considered as
archiving tools.

Bidirectional gateways allow alerts to flow from the source ObjectServer to the target ObjectServer or
application and also allow feedback to the source ObjectServer. In a bidirectional gateway configuration,
changes made to the contents of a source ObjectServer are replicated in a destination ObjectServer or
application, and the destination ObjectServer or application replicates its alerts in the source ObjectServer.
They can be considered as synchronization tools.

Gateways are able to send alerts to a variety of targets:

• Another ObjectServer

• A database

• A helpdesk application

• Other applications or devices

ObjectServer gateways are used to exchange alerts between ObjectServers. This is useful when you want to
create a distributed installation, or when you want to install a backup ObjectServer.

Database gateways are used to store alerts from an ObjectServer. This is useful when you want to keep a
historical record of the alerts forwarded to the ObjectServer.

Helpdesk gateways are used to integrate Netcool/OMNIbus with a range of helpdesk systems. This is useful
when you want to correlate the trouble tickets raised by your customers with the networks and systems you
are using to provide their services.

Other gateways are specialized applications that forward ObjectServer alerts to other applications or devices
(for example, a flat file or socket).

 Note: Only gateways that send alerts to certain targets can be bidirectional. For more information, refer to
the individual gateway guides available on the Micromuse Support Site.
72 Netcool/OMNIbus v7 Probe and Gateway Guide

ObjectServer Gateways
4.3 ObjectServer Gateways

This section provides a brief overview of the unidirectional and bidirectional ObjectServer gateways.

 Note: ObjectServer gateways have been revised for Netcool/OMNIbus v7 and do not use the nco_gate
binary which is common to many other gateways.

The unidirectional and bidirectional ObjectServer gateways are described in detail in the guide for the
ObjectServer Gateway, available on the Micromuse Support Site.

Unidirectional ObjectServer Gateway

A unidirectional ObjectServer Gateway allows alerts to flow from a source ObjectServer to a destination
ObjectServer. Changes made in the source ObjectServer are replicated in the destination ObjectServer, but
changes made in the destination ObjectServer are not replicated in the source ObjectServer.

Figure 4 shows the configuration of a unidirectional ObjectServer Gateway:

Bidirectional ObjectServer Gateway

A bidirectional ObjectServer Gateway allows alerts to flow from a source ObjectServer to a destination
ObjectServer. Changes made to the contents of a source ObjectServer are replicated in a destination
ObjectServer, and the destination ObjectServer replicates its alerts in the source ObjectServer. This enables
you, for example, to maintain a system with two ObjectServers configured as a failover pair.

Figure 4: Unidirectional ObjectServer Gateway

ObjectServer
NCOMS

The Gateway - nco_g_objserv_uniChanges made in the
NCOMS ObjectServer are
replicated in the DENCO
ObjectServer.

Changes made in the
DENCO ObjectServer
are not replicated in
the NCOMS
ObjectServer.

ObjectServer
DENCO

WriterReader

Mapper
Netcool/OMNIbus v7 Probe and Gateway Guide 73

Chapter 4: Introduction to Gateways
Figure 5 shows the configuration of a bidirectional ObjectServer Gateway:

ObjectServer Gateway Writers and Failback (Alert Replication Between
Sites)

Failover occurs when a gateway loses its connection to the primary ObjectServer; this allows the gateway to
connect to a backup ObjectServer. Failback functionality allows the gateway to reconnect to the primary
ObjectServer when it becomes active again.

Because bidirectional ObjectServer gateways are used to resynchronize failover pairs, failback is
automatically disabled. This is because one half of the gateway can legitimately be connected to a backup
server and so should not be forced to keep failing back to the primary ObjectServer.

However, if a bidirectional gateway is being used to share data between two separate sites, and each site has
a failover pair operating, you can manually enable failback on each server. When enabled, the writer
automatically enables failback on its counterpart reader.

For more information about ObjectServer gateways and how to enable failback, see the guide for the
ObjectServer Gateway, available on the Micromuse Support Site.

Figure 5: Bidirectional ObjectServer Gateway

The Gateway - nco_g_objserv_biChanges made in the NCOMS
ObjectServer are replicated in the
DENCO ObjectServer.

Changes made in the DENCO
ObjectServer are replicated in
the NCOMS ObjectServer.

ObjectServer
DENCO

ObjectServer
NCOMS

WriterReader

Mapper

Writer Reader
74 Netcool/OMNIbus v7 Probe and Gateway Guide

Database, Helpdesk, and Other Gateways
4.4 Database, Helpdesk, and Other Gateways

Most database, helpdesk, and other gateways are based on the generic gateway binary nco_gate.
Additional modules handle the communication with the target applications, devices, or files.

 Note: While all gateways have the components described in this section, some gateways have a different
architecture than that described, and do not use nco_gate. For more information, refer to the individual
gateway guides available on the Micromuse Support Site.

Gateway Components

Gateways have reader and writer components. Readers extract alerts from the ObjectServer. Writers forward
alerts to another ObjectServer or to other applications. There is only one type of reader, but there are various
types of writers depending on the destination application.

Routes specify the destination to which a reader forwards alerts. One reader can have multiple routes to
different writers, and one writer can have multiple routes from different readers.

Gateway filters and mappings configure alert flow. Filters define the types of alerts that can be passed through
a gateway. Mappings define the format of these alerts.

Readers, writers, routes, filters, and mappings are defined in the gateway configuration file, described in
Gateway Configuration on page 79.

Unidirectional Gateways

A simple example of a gateway is the Flat File Gateway. This is a unidirectional gateway that reads alerts
from an ObjectServer and writes them to a flat file. This example architecture is shown in Figure 6.

Figure 6: Example Flat File Gateway Architecture

ObjectServer
NCOMS

Flat
FileReader

Route
Writer

The Gateway - nco_gate
Netcool/OMNIbus v7 Probe and Gateway Guide 75

Chapter 4: Introduction to Gateways
Bidirectional Gateways

In a bidirectional gateway configuration, changes made to the alerts in a source ObjectServer are replicated
in a destination application, and the destination application replicates changes to its alerts in the source
ObjectServer. This enables you, for example, to raise trouble tickets in a helpdesk system for certain alerts.
Changes made to the tickets in the helpdesk system can then be sent back to the ObjectServer.

Bidirectional gateways have a similar configuration to unidirectional gateways, with an additional
COUNTERPART attribute for the writers. The COUNTERPART attribute defines a link between a gateway’s
writer and reader.

Figure 7 shows an example bidirectional gateway configuration.

The Reader

A reader extracts alerts from an ObjectServer. There is only one type of reader: the ObjectServer reader.
When the reader starts, the gateway attempts to open a connection to the source ObjectServer. If the gateway
succeeds in opening the connection, it immediately starts to read alerts from the ObjectServer.

Writer Modules

Writer modules manage communications between gateways and third-party applications, and format the
alert correctly for entry into the application.

The writer module generates log files which can help debug the gateway. The log files are described in
Gateway Debugging on page 91.

Communication between the writer module and the third-party application uses helper applications, which
interact directly with the application through its APIs or other interfaces. These processes are transparent to
the user (though they are visible using the ps command or similar utility).

Figure 7: Bidirectional Helpdesk Gateway

ObjectServer
NCOMS

Helpdesk
MAIN

Route

The Gateway - nco_gate

Reader

Reader
Writer

Module
76 Netcool/OMNIbus v7 Probe and Gateway Guide

Database, Helpdesk, and Other Gateways
The writer module uses a reference number cache to track the alerts and their associated reference number
in the target application. For each alert, the cache stores the following:

• The serial number of the alert

• A reference number from the target application (for example, Clarify Cases or ServiceCenter Tickets)

When a ticket is raised in response to an alert, the writer module enters the reference number in the cache
and returns it to the ObjectServer where the alert is updated to include the reference number.

Figure 8 shows a simplified example of the writer module architecture.

Routes

Routes create the link between the source reader and the destination writer. Any alerts received by the source
ObjectServer are read by the reader, passed through the route to the writer, and written into the destination
ObjectServer or application.

Alert Updates from the Helpdesk

When the helpdesk operator makes additional changes to the ticket, these are forwarded to the gateway
which executes the corresponding action .sql file to update the alert in the ObjectServer. Typically the
following action .sql files are provided:

• open.sql

• update.sql

• journal.sql

• close.sql

Figure 8: Reader/Writer Module Architecture

ObjectServer
NCOMS

Helpdesk
MAIN

Reference
Number
Cache

Writer
Module

Writer

W

Reader

The Gateway - nco_gate

Reader

R

Netcool/OMNIbus v7 Probe and Gateway Guide 77

Chapter 4: Introduction to Gateways
For detailed information on configuring alert updates from the helpdesk, see the gateway guide for the type
of gateway that you are using. These are available on the Micromuse Support Site.
78 Netcool/OMNIbus v7 Probe and Gateway Guide

Gateway Configuration
4.5 Gateway Configuration

The configuration file defines the operation of the gateway using:

• Readers

• Writers

• Routes

• Mappings

• Filters

This section describes the gateway configuration file and the commands used in it to define the operation
of the gateway.

 Note: ObjectServer gateways have been revised for Netcool/OMNIbus v7. The configuration file which is
common to other gateways is replaced with a properties file. For more information, see the guide for the
ObjectServer gateway.

Gateway Configuration File

When a gateway is started, it processes the commands in the configuration file. This defines the connections
between the source ObjectServer and the alert destinations.

Every gateway has a configuration file, with the extension .conf. The default gateway configuration file is:

$OMNIHOME/etc/NCO_GATE.conf

Use the -config command line option to specify the full path and name of an alternate configuration file.
For example, to run a helpdesk gateway with a configuration file named HDESK.conf, enter:

$OMNIHOME/bin/nco_gate -config $OMNIHOME/etc/HDESK.conf

Reader Commands

A reader extracts alerts from an ObjectServer. There is only type of reader: the ObjectServer reader. Readers
are started using the START READER command, which defines the name of the reader and the name of
the ObjectServer from which to read.
Netcool/OMNIbus v7 Probe and Gateway Guide 79

Chapter 4: Introduction to Gateways
For example, to start a reader for the NCOMS ObjectServer shown in Figure 6 on page 75, add the following
command to the configuration file:

START READER NCOMS_READ CONNECT TO NCOMS;

Once this command has been issued, the reader is started and the gateway attempts to open a connection to
the source ObjectServer. If the gateway succeeds in opening the connection, it immediately starts to read
alerts from the ObjectServer. For the reader to forward these alerts to their destination, you must define an
associated route and writer.

The START READER command is described in more detail in Reader Commands on page 98.

Writer Commands

Writers send the alerts acquired by a reader to the destination application or ObjectServer. Writers are
created using the START WRITER command, which defines the name of the writer and the information
that allows it to connect to its destination.

For example, to create the writer for the Flat File Gateway shown in Figure 6 on page 75, add the following
command to the configuration file:

START WRITER FILE_WRITER

(
 TYPE = FILE,
 REVISION = 1,
 FILE = '/tmp/omnibus/log/NCOMS_alert.log',
 MAP = FILE_MAP,
 INSERT_HEADER = 'INSERT: ',
 UPDATE_HEADER = 'UPDATE: ',
 DELETE_HEADER = 'DELETE: ',
 START_STRING = '"',
 END_STRING = '"',
 INSERT_TRAILER = '\n',
 UPDATE_TRAILER = '\n',
 DELETE_TRAILER = '\n'
);

Once the START WRITER command has been issued, the gateway attempts to establish the connection to
the alert destination (either an application or another ObjectServer). The writer sends alerts received from
the source ObjectServer until the STOP WRITER command is issued.

The START WRITER command is described in more detail in Writer Commands on page 101.
80 Netcool/OMNIbus v7 Probe and Gateway Guide

Gateway Configuration
Route Commands

Routes create the link between readers and writers. Routes are created using the ADD ROUTE command.
This command defines the name of the route, the source reader, and the destination writer.

For example, to create the route between the NCOMS ObjectServer reader and the writer for the Flat File
Gateway shown in Figure 6 on page 75, add the following command to the configuration file:

ADD ROUTE FROM NCOMS_READ TO FILE_WRITER;

Once this command is issued, the connection between a reader and writer is established. Any alerts received
by the source ObjectServer are read by the reader, passed through the route to the writer, and written into
the destination ObjectServer or application.

The ADD ROUTE command is described in more detail in Route Commands on page 110.

Mapping Commands

Mappings define how alerts received from the source ObjectServer should be written to the destination
ObjectServer or application. Each writer has a different mapping which is defined using the CREATE
MAPPING command.

For example, to create the mapping between the ObjectServer reader and the writer for the Flat File Gateway
shown in Figure 6 on page 75, add the following command to the configuration file:

CREATE MAPPING FILE_MAP
(

''= '@Identifier',
''= '@Serial',
''= '@Node' ,
''= '@Manager',
''= '@FirstOccurrence' CONVERT TO DATE,
''= '@LastOccurrence' CONVERT TO DATE,
''= '@InternalLast' CONVERT TO DATE,
''= '@Tally',
''= '@Class',
''= '@Grade',
''= '@Location',
''= '@ServerName',
''= '@ServerSerial'

);

In this example, the mapping name is FILE_MAP.

Each line between the parentheses defines how the gateway writes alerts into the file. For the Flat File
Gateway, the CREATE MAPPING command defines the fields from which data is written into each alert
in the output file. The alert fields from the source ObjectServer are represented by the @ symbol.
Netcool/OMNIbus v7 Probe and Gateway Guide 81

Chapter 4: Introduction to Gateways
The following example shows INSERT and UPDATE commands using the FILE_MAP mapping shown
above.

INSERT: "Downlink6LinkMon4Link",127,"sfo4397","Netcool Probe",12/05/03
15:39:23,12/05/03 15:39:23,12/05/03 15:30:53,1,3300,0,"","NCOMS",127
UPDATE: "muppetMachineMon2Systems",104,"sfo4397","Netcool Probe",12/05/03
12:29:34,12/05/03 15:40:06,12/05/03 15:31:36,11,3300,0,"","NCOMS",104
UPDATE: "muppetMachineMon4Systems",93,"sfo4397","Netcool Probe",12/05/03
12:29:11,12/05/03 15:40:35,12/05/03 15:32:05,12,3300,0,"","NCOMS",93

Other gateways (with the exception of the Socket Gateway) require a field in the target to be specified for
each source ObjectServer field. For example, in the Gateway for Remedy ARS, source ObjectServer fields
are mapped to Remedy ARS fields, which are identified with long integer values rather than field names. In
the following example, the ARS field 536870913 maps to the Serial field from the ObjectServer:

536870913 = '@Serial' ON INSERT ONLY

The ON INSERT ONLY clause controls when the field is updated. Fields with the ON INSERT ONLY
clause are only forwarded once, when the alert is created for the first time in the ObjectServer. Fields that
do not have the ON INSERT ONLY clause are updated each time the alert changes.

The CREATE MAPPING command is described in more detail in Mapping Commands on page 105.

Filter Commands

You may not always want to send all of the alerts read by a reader to the destination application. For example,
you may only want to send alerts that have a severity level of Critical. Filters define which of the alerts
read by the ObjectServer reader should be forwarded to the destination.

You create filters using the CREATE FILTER command and apply them using the START READER
command. For example, to create a filter that only forwards critical alerts to the destination application or
ObjectServer, add the following command to the configuration file:

CREATE FILTER CRITONLY AS 'Severity = 5';

This command creates a filter named CRITONLY, which only forwards alerts with a severity level of
Critical (5).

 Note: To perform string comparisons with filters, you must escape the quotes in the CREATE FILTER
command with backslashes. For example, to create a filter that only forwards alerts from a node called fred,
the CREATE FILTER command is:

CREATE FILTER FREDONLY AS 'NODE = \'fred\'';
82 Netcool/OMNIbus v7 Probe and Gateway Guide

Gateway Configuration
To apply the filter to the ObjectServer reader shown in Figure 6 on page 75, add the following command
to the configuration file:

START READER NCOMS_READ CONNECT TO NCOMS USING FILTER CRITONLY;

The CREATE FILTER command is described in more detail in Filter Commands on page 108.

Creating Multiple Filters and Multiple Readers

If you need more than one filter for the same ObjectServer, you can create multiple readers for it. For
example, to create a reader that forwards all critical alerts and another that forwards everything else, use the
following commands:

CREATE FILTER CRITONLY AS 'Severity = 5';
CREATE FILTER NONCRIT AS 'Severity < 5';
START READER CRIT_NCOMS CONNECT TO NCOMS USING FILTER CRITONLY;
START READER NONCRIT_NCOMS CONNECT TO NCOMS USING FILTER NONCRIT;

Loading Filters Created Using Filter Builder

You can load and use filters created in the Filter Builder. For example:

LOAD FILTER FROM '/usr/filters/myfilt.elf';

This command loads the file /usr/filters/myfilt.elf as a filter. This filter name is defined by
the Filter Builder Name field.

 Note: The Name field must be alphabetical and must not contain spaces.

For more information about the Filter Builder, refer to the Netcool/OMNIbus User Guide.
Netcool/OMNIbus v7 Probe and Gateway Guide 83

Chapter 4: Introduction to Gateways
4.6 Running a Gateway

A gateway requires an entry in the Server Editor, as described in the Netcool/OMNIbus Installation and
Deployment Guide.

You must also create your configuration file, described in Gateway Configuration on page 79.

Once you have defined the gateway communications and created your configuration file, you can run the
gateway.

 Note: Some gateways have a different architecture than that described in this chapter, and do not use nco_
gate. For information about specific gateways, refer to the documentation available for each gateway on
the Micromuse Support Site.

Running a Gateway on UNIX

To run a gateway with a default configuration, enter:

$OMNIHOME/bin/nco_gate

This runs a gateway with the default name NCO_GATE and the default configuration file
$OMNIHOME/etc/NCO_GATE.conf.

To run a gateway with your own configuration, use command line options, as described in Gateway
Command Line Options on page 96. For example:

$OMNIHOME/bin/nco_gate -name ORA1 -config $OMNIHOME/etc/RDBMS.conf

This runs a gateway named ORA1 using a configuration file named RDBMS.conf.

Gateways should be configured to run under process control. Process control is described in the
Netcool/OMNIbus Administration Guide.

Running a Gateway on Windows

Gateways on Windows can be run as console applications or as services.

Running a Gateway as a Console Application

To run a gateway as a console application, enter the following at the command line:

%OMNIHOME%\bin\nco_gate

This runs a gateway with the default name NCO_GATE and the default configuration file
%OMNIHOME%\etc\NCO_GATE.conf.
84 Netcool/OMNIbus v7 Probe and Gateway Guide

Running a Gateway
To run a gateway as a console application with your own configuration, use the command line options, as
described in Gateway Command Line Options on page 96. For example:

%OMNIHOME%\bin\nco_gate -name ORA1 -config %OMNIHOME%\etc\RDBMS.conf

This runs a gateway named ORA1 using a configuration file named RDBMS.conf.

Running a Gateway as a Service

To run a gateway as a service, use the -install command line option.

You can configure how gateways are started using the Services window as follows:

1. Click Start→Settings→Control Panel. The Control Panel is displayed.

2. Double-click the Admin Tools icon, then double-click the Services icon. The Services window is
displayed.

The Services window lists all of the Windows services currently installed on your machine. All
Netcool/OMNIbus services start with NCO.

3. Use the Services window to start and stop Windows services. Define whether the service is started
automatically when the machine is booted by clicking the Startup button.
Netcool/OMNIbus v7 Probe and Gateway Guide 85

Chapter 4: Introduction to Gateways
4.7 Configuring Gateways Interactively

You can change the configuration of a gateway while it is running using the SQL interactive interface. The
SQL interactive interface is described in the Netcool/OMNIbus Administration Guide.

 Note: If you are running a gateway on UNIX, you must be a member of the UNIX user group that is
allowed to log into a gateway. By default, this is the ncoadmin user group. You may need to ask your
system administrator to create this group. The -admingroup command line option is described in
Gateway Command Line Options on page 96.

Use the SQL interactive interface to connect to a gateway as a specific user. For example:

In these commands, servername is the name of the gateway and username is a valid user name. If you
do not specify a user name, the default is the user running the command.

You are prompted to enter a password. On UNIX, the default is to enter your UNIX password. To
authenticate users using other methods, use the -authenticate command line option, described in
Gateway Command Line Options on page 96.

After connecting with a user name and password, a numbered prompt is displayed.

1>

You can enter commands to configure the gateway dynamically. The following example shows a session in
which new routes are added:

$ nco_sql -server NCO_GATE
Password:
User 'admin' logged in.
1> ADD ROUTE FROM DENCO_READ TO ARS_WRITER;
2> ADD ROUTE FROM DENCO_READ TO OS_WRITER;
3> go

1>

Table 18: Connecting to the Gateway Using the SQL Interactive Interface

On... Enter the following command...

UNIX $OMNIHOME/bin/nco_sql -server servername -user username

Windows %OMNIHOME%\bin\redist\isql.exe -s servername -u username
86 Netcool/OMNIbus v7 Probe and Gateway Guide

Configuring Gateways Interactively
If you want to disable interactive configuration, add the following line to the end of the gateway
configuration file:

SET CONNECTIONS FALSE;

Saving Configurations Interactively

You can save the interactive gateway configuration with the command:

SAVE CONFIG TO 'filename';

In this command, filename is the name of a file on a local file system.

You can then use the saved configuration file for other gateways.

Dumping and Loading Gateway Configurations Interactively

You can load gateway configurations interactively.

First stop any running readers and writers manually with the STOP command. Then use the DUMP
CONFIG command to discard the current configuration.

The DUMP CONFIG command will not discard the configuration if any readers and writers are running or
if the configuration has been changed interactively, unless you use the FORCE option. To determine if the
configuration has been changed interactively, use the SHOW SYSTEM command, described in SHOW
SYSTEM on page 115.

Refer to Configuration Commands on page 112 for more information.

Once you have dumped the configuration, you can load a new configuration with the command:

LOAD CONFIG FROM 'filename';

In this command, filename is the name of a file on a local file system.
Netcool/OMNIbus v7 Probe and Gateway Guide 87

Chapter 4: Introduction to Gateways
4.8 Gateway Features

This section describes some of the key features of gateway operation.

Store and Forward Mode

If there is a problem with the gateway target, the ObjectServer and database writers can continue to run
using store and forward mode.

When the writer detects that the target ObjectServer or database is not present or is not functioning (usually
because the writer is unable to write an alert), it switches into store mode. In this mode, the writer stores
everything it would normally send to the database in a file named:

$OMNIHOME/var/writername.destserver.store

In this file name, writername is the name of the writer and destserver is the name of the server to
which the gateway is attempting to send alerts.

When the gateway detects that the destination server is back on line, it switches into forward mode and sends
the alert information held in the .store file to the destination server. Once all of the alerts in the .store
file have been forwarded, the writer returns to normal operation.

Store and forward mode only works when a connection to the ObjectServer or database destination has been
established, used, and then lost. If the destination server is not running when the gateway starts, store and
forward mode is not triggered and the gateway terminates.

If the gateway connects to the destination ObjectServer and a store and forward file already exists, the
gateway replays the contents of the store and forward file before it sends new alerts.

Store and forward mode is configured using the attributes STORE_AND_FORWARD and STORE_FILE.

 Note: Refer to the individual gateway documentation to determine whether an individual gateway supports
store and forward mode. Store and forward does not work with bidirectional gateway configurations, with
the exception of the bidirectional ObjectServer Gateway.

Secure Mode

You can run the ObjectServer in secure mode. When you start the ObjectServer using the -secure
command line option, the ObjectServer authenticates probe, gateway, and proxy server connections by
requiring a user name and encrypted password. When a connection request is sent, the ObjectServer issues
an authentication message. The probe, gateway, or proxy server must respond with the correct user name
and password. If the user name and password combination is incorrect, the ObjectServer issues an error
message and rejects the connection.
88 Netcool/OMNIbus v7 Probe and Gateway Guide

Gateway Features
If the ObjectServer is not running in secure mode, probe, gateway, and proxy server connection requests are
not authenticated.

When connecting to a secure ObjectServer, the gateway must have the AUTH_USER and AUTH_
PASSWORD commands in the gateway configuration file. You can choose any valid user name for the
AUTH_USER gateway command. To generate the encrypted AUTH_PASSWORD, use the nco_g_crypt
utility, described in the Netcool/OMNIbus Administration Guide. The command takes the unencrypted
password and displays the encrypted password to be entered for the AUTH_PASSWORD command.

 Note: If you are connecting to a version 3.6 ObjectServer, use the nco_crypt utility, rather than the
nco_g_crypt utility, to encrypt the password. If you are using PAM for authorization in your version
3.6 ObjectServer, you must use a plain text password.

The AUTH_USER and AUTH_PASSWORD commands must precede any reader commands in the gateway
configuration file. Before running the gateway, add the user name and corresponding encrypted password
to the configuration file, for example:

AUTH_USER 'Gate_User'
AUTH_PASSWORD 'Crypt_Password'

 Note: ObjectServer gateways have been revised for Netcool/OMNIbus v7. To connect to a secure
ObjectServer from the ObjectServer Gateway, the gateway properties for the user name and password must
be set. For more information, see the guide for the ObjectServer Gateway.

Encrypting Target System Passwords

You can also use the nco_g_crypt utility to encrypt plain text login passwords. The gateways use these
encrypted passwords to log into their target systems. Encrypted passwords are decoded by the gateway before
they are used to log in to the target system.

The user name and encrypted password are stored in the USERNAME and PASSWORD attributes in the
gateway writer.

 Note: If you are using a helpdesk gateway, substitute USER for USERNAME.

To encrypt a plain text password for a gateway’s target system:

1. Use the nco_g_crypt utility to obtain an encrypted version of the password.

2. Update the gateway writer in the gateway configuration file by copying the user name into the
USERNAME attribute value and the encrypted password created in step 1 into the PASSWORD
attribute value.
Netcool/OMNIbus v7 Probe and Gateway Guide 89

Chapter 4: Introduction to Gateways
For example:

START WRITER SYBASE_WRITER
(

TYPE = SYBASE,
REVISION = 1,
SERVER = DARKSTAR,
MAP = SYBASE_MAP,
USER = 'SYSTEM',
PASSWORD = 'MKFGHIFE',
FORWARD_DELETES = TRUE

);

3. Run the gateway.
90 Netcool/OMNIbus v7 Probe and Gateway Guide

Gateway Debugging
4.9 Gateway Debugging

When debugging you should initially check the log file:

$OMNIHOME/log/NCO_GATENAME.log

Where GATENAME is the name of the gateway.

You might receive an error message such as the following:

error in srv_select () - file descriptor x is no longer active!

This type of error message indicates that the gateway has aborted because one of the reader or writer modules
failed. In this case, check the following log files:

NCO_GATE_XRWY_WRITE.log

or

NCO_GATE_XRWY_READ.log

Where X identifies the name of the gateway and Y identifies the version of that gateway.
Netcool/OMNIbus v7 Probe and Gateway Guide 91

Chapter 4: Introduction to Gateways
4.10 Other Gateway Writers and Failback

The ObjectServer reader can fail over and fail back between source ObjectServers without shutting down.
This ability is not supported by all gateway writers. If a writer does not support this mode of failback and
failover, the writer, on detection of the reader failover/failback, will shut down the gateway and rely on the
process agent to restart the gateway.

Writers that support reader failover/failback without shutting down are:

• ObjectServer writer

• Sybase database writer

• Sybase Reporter writer

• SNMP writer

• ServiceView writer

• Socket writer

• Flat file writer

• Informix database writer

Writers that support failover/failback with shutdown are:

• Remedy ARS writer

• Siebel eCommunications writer

• Oracle database writer

• Oracle Reporter writer

• Peregrine writer

• Clarify writer

• HP ITSM writer

• Peoplesoft Vantive writer

• HP Service Desk writer

• ODBC database writer
92 Netcool/OMNIbus v7 Probe and Gateway Guide

Conversion Table Utility
4.11 Conversion Table Utility

You can create conversion tables to enable certain data conversions to take place between fields. For example,
in the Gateway for Peregrine, ServiceCenter users require a status field to be alphabetic and to have a
particular value. The ObjectServer may hold these as numeric values.

You must also ensure that the appropriate table exists in your ObjectServer. The default table is
NCOMS.conversions.targetname. In this example targetname is the name of the conversion
table specific to a gateway. For example, NCOMS.conversions.peregrine.

To define the conversions, run the conversion utility:

nco_gwconv

The Gateway Conversions window for the Gateway for Peregrine is displayed in Figure 9.

The Gateway Conversion window title bar contains the ObjectServer name and table name being used. The
work area displays any existing conversions.

Figure 9: Gateway For Peregrine Conversion Window

Converted value

Conversion value

table column
ObjectServer
Netcool/OMNIbus v7 Probe and Gateway Guide 93

Chapter 4: Introduction to Gateways
Conversion details are displayed in three columns:

• The first column contains the ObjectServer table column name.

• The second column contains the values associated with the column.

• The third column contains the converted value.

Adding a Conversion

To add a new conversion:

1. Click the New button.

2. Select the Column field and enter the ObjectServer column name.

3. Enter the ObjectServer value in the OS Value field.

4. Enter the conversion value in the Conversion field.

5. Click Apply. The new conversion is added.

Updating a Conversion

To update an existing conversion:

1. Select the conversion to update. The conversion details are populated with the existing values.

2. Update the values as required.

3. Click Apply.

Deleting a Conversion

To delete a conversion:

1. Select the conversion to delete. The conversion details are populated with the existing values.

2. Click the Delete button. You can undo the delete by clicking the Undo button.

3. Click Apply.
94 Netcool/OMNIbus v7 Probe and Gateway Guide

gate_cmds.fm October 11, 2004 10:49 am

Chapter 5: Gateway Commands and
Command Line Options

This chapter describes the command line options for nco_gate. It also describes gateway commands that
are common to all gateways.

Resynchronization commands are only valid for the ObjectServer Gateway, and are therefore described in
the guide for the ObjectServer Gateway.

For more information about specific gateways, refer to the documentation available for each gateway on the
Micromuse Support Site.

This chapter contains the following sections:

• Gateway Command Line Options on page 96

• Reader Commands on page 98

• Writer Commands on page 101

• Mapping Commands on page 105

• Filter Commands on page 108

• Route Commands on page 110

• Configuration Commands on page 112

• General Commands on page 114
Netcool/OMNIbus v7 Probe and Gateway Guide 95

Chapter 5: Gateway Commands and Command Line Options
5.1 Gateway Command Line Options

This section lists the command line options for nco_gate.

Table 19: Gateway Command Line Options (1 of 2)

Option Description

-admingroup string Specifies the name of the UNIX user group that has administrator privileges. Members of
this group can log into the gateway. The default group name is ncoadmin.

-authenticate

UNIX | PAM | HPTCB

Specifies the authentication mode to use to verify user credentials. The options are UNIX,
PAM, and HPTCB.

The default authentication mode is UNIX, which means that the Posix getpwnam or
getspnam function is used to verify user credentials on UNIX platforms. Depending on
system setup, passwords are verified using the /etc/password file, the /etc/shadow
shadow password file, NIS, or NIS+.

If PAM is specified as the authentication mode, Pluggable Authentication Modules are used
to verify user credentials. The service name used by the gateway when the PAM interface is
initialized is netcool. PAM authentication is available on Linux, Solaris, and HP-UX 11
platforms only.

If HPTCB is specified as the authentication mode, this HP-UX password protection system
is used. This option is only available on HP trusted (secure) systems.

-config string Specifies the name of the configuration file to be read at start up. The default is
$OMNIHOME/etc/gatename.conf.

-debug When specified, debug mode is enabled.

-help Displays help information about the command line options and exits.

-logfile string Specifies the name of the log file. If omitted, the default is
$OMNIHOME/log/gatename.log.

-logsize integer Specifies the maximum size of the log file in KBytes. The minimum is 16 KBytes. The default
is 1 MByte.

-name string Specifies the gateway name. Specify this name following the -server command line
option to connect to the gateway using nco_sql.

If omitted, the default is NCO_GATE.

-notruncate Specifies that the log file is not truncated.

-queue integer Specifies the size of the internal queues. The default is 1024. Do not modify unless advised
by Micromuse Support.
96 Netcool/OMNIbus v7 Probe and Gateway Guide

Gateway Command Line Options
-stacksize integer Specifies the size of the internal threads. The default is 256 KBytes. Do not modify unless
advised by Micromuse Support.

-uniquelog If -logfile is not set, this option forces the log file to be uniquely named by appending
the process ID of the gateway to the end of the default log file name.

If -logfile is set, this has no effect.

-version Displays version information and exits.

Table 19: Gateway Command Line Options (2 of 2)

Option Description
Netcool/OMNIbus v7 Probe and Gateway Guide 97

Chapter 5: Gateway Commands and Command Line Options
5.2 Reader Commands

This section describes the available reader commands for gateways.

START READER

This section describes the START READER command.

Syntax

The syntax of the START READER command is:

START READER reader_name CONNECT TO server_name [USING FILTER filter_name]
[ORDER BY 'column, ... [ASC | DESC]'] [AFTER IDUC DO 'update_command']
[IDUC = integer] [JOURNAL_FLUSH = integer] [IDUC_ORDER];

Usage

Starts a reader named reader_name which connects to an ObjectServer named server_name.

The optional USING FILTER clause, followed by the name of a filter that has been created using the
CREATE FILTER command, enables you to restrict the number of rows affected by gateway updates. The
filter replaces an SQL WHERE clause, so the gateway only updates the rows selected by the filter.

The optional ORDER BY clause instructs the gateway to display the results in sequential order, depending
on the values of one or more column names, in either descending (DESC) or ascending (ASC) order. If the
ORDER BY clause is not specified, no ordering is used.

The optional AFTER IDUC clause instructs the gateway to perform the update specified in the update_
command in the ObjectServer when it places alerts in the writer queue. This is used to provide feedback
when alerts pass through a gateway.

The value specified in the optional IDUC clause indicates an IDUC interval for gateways that is more
frequent than the value of the Granularity property set in the source ObjectServer. This enables
gateway updates to be forwarded to the target more rapidly without causing overall system performance to
deteriorate.

The value specified in the optional JOURNAL_FLUSH clause indicates a delay in seconds between when
the IDUC update occurs in the ObjectServer (every Granularity seconds) and when the journal entries
are retrieved by the gateway. Normally, only journal entries that have been made in the last Granularity
seconds are retrieved. When the system is under heavy load, set this clause so journal entries are retrieved for
the last integer + Granularity seconds. This prevents the loss of any journal entries that are created
after the IDUC update but before the gateway retrieves the entries. Any duplicate journal entries retrieved
are eliminated by deduplication.
98 Netcool/OMNIbus v7 Probe and Gateway Guide

Reader Commands
The optional IDUC_ORDER clause specifies the order in which the IDUC data is processed. The default
processing mode for gateways is to process DELETE statements, followed by UPDATE statements, followed
by INSERT statements. Do not change this clause unless you have been advised to do so by Micromuse
Support.

Example

START READER NCOMS_READER CONNECT TO NCOMS USING FILTER CRIT_ONLY
ORDER BY 'SERIAL ASC' AFTER IDUC DO 'update alerts.status set Grade=2';

This example uses the Grade field as a state field. Initially, all probes set Grade to 0. The gateway filters
any alerts that have a Grade of 1. After the alerts have passed through the gateway, the AFTER IDUC
update provides alert state feedback by changing the value of the Grade field to 2.

STOP READER

This section describes the STOP READER command.

Syntax

The syntax of the STOP READER command is:

STOP READER reader_name;

Usage

Stops the reader named reader_name. This command will not stop the reader if the reader is in use with
any routes.

Example

STOP READER NCOMS_READ;

SHOW READERS

This section describes the SHOW READERS command.
Netcool/OMNIbus v7 Probe and Gateway Guide 99

Chapter 5: Gateway Commands and Command Line Options
Syntax

The syntax of the SHOW READERS command is:

SHOW READERS;

Usage

Lists all the current readers that have been started and are running on the gateway. This command can only
be used interactively.

Example

SHOW READERS;
100 Netcool/OMNIbus v7 Probe and Gateway Guide

Writer Commands
5.3 Writer Commands

This section describes the available writer commands for gateways.

START WRITER

This section describes the START WRITER command.

Syntax

The syntax of the START WRITER command is:

START WRITER writer_name
(TYPE=writer_type , REVISION=number
[, keyword_setting [, keyword_setting] ...]);

Usage

Starts a writer named writer_name. This is followed by a list of comma-separated keyword settings in
parentheses. The first setting must be a TYPE setting indicating the writer_type. The next setting must
be a REVISION setting. This is currently set to 1 for all writers. The remaining keywords and their settings
depend on the type of writer.

Example

The example shown starts the writer for a socket gateway:

START WRITER SOCKET_WRITER
(
 TYPE = SOCKET,
 REVISION = 1,
 HOST = 'sfo768',
 PORT = 4010,
 MAP = SOCKET_MAP,
 INSERT_HEADER = 'INSERT: ',
 UPDATE_HEADER = 'UPDATE: ',
 DELETE_HEADER = 'DELETE: ',
 START_STRING = '"',
 END_STRING = '"',
 INSERT_TRAILER = '\n',
 UPDATE_TRAILER = '\n',
 DELETE_TRAILER = '\n'
);
Netcool/OMNIbus v7 Probe and Gateway Guide 101

Chapter 5: Gateway Commands and Command Line Options
STOP WRITER

This section describes the STOP WRITER command.

Syntax

The syntax of the STOP WRITER command is:

STOP WRITER writer_name;

Usage

Stops the writer called writer_name. If any route is using this writer, the writer will not be stopped.

Example

STOP WRITER ARS_WRITER;

SHOW WRITERS

This section describes the SHOW WRITERS command.

Syntax

The syntax of the SHOW WRITERS command is:

SHOW WRITERS;

Usage

Lists all current writers in the gateway. This command can only be used interactively.

Example

1>SHOW WRITERS;
2>GO
Name Type Routes Msgq Id Mutex Id Thread
----------- ---- ------ ------- -------- ------
SNMP_WRITER SNMP 1 15 0 0x001b8cd0

1>
102 Netcool/OMNIbus v7 Probe and Gateway Guide

Writer Commands
SHOW WRITER TYPES

This section describes the SHOW WRITER TYPES command.

Syntax

The syntax of the SHOW WRITER TYPES command is:

SHOW WRITER TYPES;

Usage

Lists all the currently known types of writers supported by the gateway. This command can only be used
interactively.

Example

1> SHOW WRITER TYPES;
2> GO
 Type Revision Description
 ------ ----------- -----------------------
 ARS 1 Action Request System V3.0
 OBJECT_SERVER 1 Netcool/OMNIbus ObjectServer V7
 SYBASE 1 Sybase SQL Server 10.0 RDBMS
 SNMP 1 SNMP Trap forwarder
SERVICE_VIEW 1 Service View

SHOW WRITER ATTRIBUTES

This section describes the SHOW WRITER ATTRIBUTES command.

Syntax

The syntax of the SHOW WRITER ATTRIBUTES command is:

SHOW WRITER { ATTRIBUTES | ATTR } FOR writer_name;

Usage

Shows all the settings (attributes) of the writer named writer_name. The ATTRIBUTES keyword is
interchangeable with the abbreviated ATTR keyword.

This command can only be used interactively.
Netcool/OMNIbus v7 Probe and Gateway Guide 103

Chapter 5: Gateway Commands and Command Line Options

Example

1> SHOW WRITER ATTR FOR SNMP_WRITER;
2> GO
Attribute Value
----------- ---
MAP SNMP_MAP
TYPE SNMP
REVISION 1
GATEWAY penelope

1>
104 Netcool/OMNIbus v7 Probe and Gateway Guide

Mapping Commands
5.4 Mapping Commands

This section describes the available mapping commands for gateways.

CREATE MAPPING

This section describes the CREATE MAPPING command.

Syntax

The syntax of the CREATE MAPPING command is:

CREATE MAPPING mapping_name (mapping [, mapping]);

Usage

Creates a mapping file named mapping_name for use by a writer. Mapping lines have the following
syntax:

{ string | integer } = { string | integer | name | real | boolean }
[ON INSERT ONLY] [CONVERT TO { INT | STRING | DATE }]

The first argument is an identifier for the destination field and the second argument is an identifier for the
source field (or a preset value).

The right-hand side of the mapping is dependent on the writer with which the mapping is to be used. Refer
to the appropriate writer section of the individual gateway guide, available on the Micromuse Support Site.

The optional ON INSERT ONLY clause determines the update behavior of the mapping. Without the ON
INSERT ONLY clause, the field is updated every time a change is made to an alert. With the ON INSERT
ONLY clause, the field is inserted at creation time (that is, when the alert appears for the first time) but is
not updated on subsequent updates of the alert even if the field value is changed.

The optional CONVERT TO type clause allows the mapping to define a forced conversion for situations
where a source field may not match the type of the destination field. The type can be INT, STRING, or
DATE. This forces the source field to be converted to the specified data type.

Example

CREATE MAPPING SYBASE_MAP
(
'Node'='@Node' ON INSERT ONLY,
'Summary'='@Summary' ON INSERT ONLY,
'Severity'='@Severity');
Netcool/OMNIbus v7 Probe and Gateway Guide 105

Chapter 5: Gateway Commands and Command Line Options
DROP MAPPING

This section describes the DROP MAPPING command.

Syntax

The syntax of the DROP MAPPING command is:

DROP MAPPING mapping_name;

Usage

Removes the mapping named mapping_name from the gateway. This command will not drop the map
if it is being used by a writer.

Example

DROP MAPPING SYBASE_MAP;

SHOW MAPPINGS

This section describes the SHOW MAPPINGS command.

Syntax

The syntax of the SHOW MAPPINGS command is:

SHOW MAPPINGS;

Usage

Lists all the mappings currently created in the gateway. This command can only be used interactively.

Example

1> SHOW MAPPINGS;
2> GO
 Name Writers
 -------------------------------- -----------
 SNMP_MAP 1
1>
106 Netcool/OMNIbus v7 Probe and Gateway Guide

Mapping Commands
SHOW MAPPING ATTRIBUTES

This section describes the SHOW MAPPING ATTRIBUTES command.

Syntax

The syntax of the SHOW MAPPING ATTRIBUTES command is:

SHOW MAPPING { ATTRIBUTES | ATTR } FOR mapping_name;

Usage

Shows the mappings (attributes) of the mapping named mapping_name. The ATTRIBUTES keyword
is interchangeable with the abbreviated ATTR keyword. This command can only be used interactively.

Example

SHOW MAPPING ATTR FOR SYBASE_MAP;
Netcool/OMNIbus v7 Probe and Gateway Guide 107

Chapter 5: Gateway Commands and Command Line Options
5.5 Filter Commands

This section describes the available filter commands for gateways.

CREATE FILTER

This section describes the CREATE FILTER command.

Syntax

The syntax of the CREATE FILTER command is:

CREATE FILTER filter_name AS filter_condition;

Usage

Creates a filter named filter_name for use by a reader. The filter specification filter_condition
is an SQL condition. SQL conditions are described in the Netcool/OMNIbus Administration Guide.

Example

CREATE FILTER HIGH_TALLY_LOG AS 'Tally > 100';
CREATE FILTER NCOMS_FILTER AS 'Agent = \'NNM\'';

LOAD FILTER

This section describes the LOAD FILTER command.

Syntax

The syntax of the LOAD FILTER command is:

LOAD FILTER FROM 'filename';

Usage

Loads a filter from a file. Filter files have the .elf file extension.

Example

LOAD FILTER FROM '/disk/filters/newfilter.elf';
108 Netcool/OMNIbus v7 Probe and Gateway Guide

Filter Commands
DROP FILTER

This section describes the DROP FILTER command.

Syntax

The syntax of the DROP FILTER command is:

DROP FILTER filter_name;

Usage

Removes the filter named filter_name from the gateway. The filter will not be dropped if it is being
used by a reader.

Example

DROP FILTER HIGH_TALLY_LOG;
Netcool/OMNIbus v7 Probe and Gateway Guide 109

Chapter 5: Gateway Commands and Command Line Options
5.6 Route Commands

This section describes the available route commands for gateways.

ADD ROUTE

This section describes the ADD ROUTE command.

Syntax

The syntax of the ADD ROUTE command is:

ADD ROUTE FROM reader_name TO writer_name;

Usage

Adds a route between a reader named reader_name and a writer named writer_name to allow alerts
to pass through the gateway.

Example

ADD ROUTE FROM NCOMS_READER TO ARS_WRITER;

REMOVE ROUTE

This section describes the REMOVE ROUTE command.

Syntax

The syntax of the REMOVE ROUTE command is:

REMOVE ROUTE FROM reader_name TO writer_name;

Usage

Removes an existing route between a reader named reader_name and a writer named writer_name.

Example

REMOVE ROUTE FROM NCOMS_READER TO ARS_WRITER;
110 Netcool/OMNIbus v7 Probe and Gateway Guide

Route Commands
SHOW ROUTES

This section describes the SHOW ROUTES command.

Syntax

The syntax of the SHOW ROUTES command is:

SHOW ROUTES;

Usage

Shows all currently configured routes in the gateway. This command can only be used interactively.

Example

1> SHOW ROUTES;
2> GO
 Reader Writer
 -------------------------------- --------------------------------
 NCOMS_READER SNMP_WRITER

1>
Netcool/OMNIbus v7 Probe and Gateway Guide 111

Chapter 5: Gateway Commands and Command Line Options
5.7 Configuration Commands

This section describes the available configuration commands for gateways.

LOAD CONFIG

This section describes the LOAD CONFIG command.

Syntax

The syntax of the LOAD CONFIG command is:

LOAD CONFIG FROM 'filename';

Usage

Loads a gateway configuration file from a file named in filename.

Example

LOAD CONFIG FROM '/disk/config/gateconf.conf';

SAVE CONFIG

This section describes the SAVE CONFIG command.

Syntax

The syntax of the SAVE CONFIG command is:

SAVE CONFIG TO 'filename';

Usage

Saves the current configuration of the gateway into a file named in filename.

Example

SAVE CONFIG TO '/disk/config/newgate.conf';

DUMP CONFIG

This section describes the DUMP CONFIG command.
112 Netcool/OMNIbus v7 Probe and Gateway Guide

Configuration Commands
Syntax

The syntax of the DUMP CONFIG command is:

DUMP CONFIG [FORCE];

Usage

Clears the current configuration. If the gateway is active and forwarding alerts, this command will not clear
the configuration unless the optional keyword FORCE is used.

Example

DUMP CONFIG;
Netcool/OMNIbus v7 Probe and Gateway Guide 113

Chapter 5: Gateway Commands and Command Line Options
5.8 General Commands

This section describes the available general commands for gateways.

SHUTDOWN

This section describes the SHUTDOWN command.

Syntax

The syntax of the SHUTDOWN command is:

SHUTDOWN [FORCE];

Usage

Instructs the gateway to shut down; all readers and writers are stopped. By default, the gateway is not shut
down if interactive changes to the configuration have not been saved. Refer to SHOW SYSTEM on page 115
for details on how to determine if the configuration has been changed interactively.

If the optional FORCE keyword is used, the gateway is shut down, even if the configuration has been
changed interactively.

Example

SHUTDOWN;

SET CONNECTIONS

This section describes the SET CONNECTIONS command.

Syntax

The syntax of the SET CONNECTIONS command is:

SET CONNECTIONS { TRUE | FALSE | YES | NO };

Usage

Enables or disables connections to the gateway using the SQL interactive interface. When set to FALSE or
NO, it is not possible to connect to the gateway with nco_sql. When set to TRUE or YES, it is possible
to connect to the gateway with nco_sql. This command determines whether interactive reconfiguration
is allowed.
114 Netcool/OMNIbus v7 Probe and Gateway Guide

General Commands

Example

SET CONNECTIONS TRUE;

SHOW SYSTEM

This section describes the SHOW SYSTEM command.

Syntax

The syntax of the SHOW SYSTEM command is:

SHOW SYSTEM;

Usage

Displays information about the current gateway settings. The parameters returned are shown in Table 20.

More parameters may be returned when in debug mode. This command can only be used interactively.

Example

1> SHOW SYSTEM;
2> GO
System Parameter Value
---------------- --------------------------------
 Version 3.6
 Server Type Gateway
 Connections ENABLED

Table 20: Show System Parameters

System Parameter Description

Version Version number of the gateway.

Server Type Type of server. Should be Gateway.

Connections Status of the SET CONNECTIONS flag. Refer to SET CONNECTIONS on page 114.

Debug Mode Status of the SET DEBUG MODE flag. Refer to SET DEBUG MODE on page 116.

Multi User Gateway multi-user mode. Should be YES.

Configuration Changed If the configuration has been changed interactively, this is set to YES.
Netcool/OMNIbus v7 Probe and Gateway Guide 115

Chapter 5: Gateway Commands and Command Line Options
 Debug Mode NO
 Multi User YES

SET DEBUG MODE

This section describes the SET DEBUG MODE command.

Syntax

The syntax of the SET DEBUG MODE command is:

SET DEBUG MODE { TRUE | FALSE | YES | NO };

Usage

Sets the debugging mode of the gateway. When set to TRUE or YES, debugging messages are sent to the log
file. The default setting is NO or FALSE. This command should only be used under the advice of Micromuse
Support.

Example

SET DEBUG MODE NO;

TRANSFER

This section describes the TRANSFER command.

Syntax

The syntax of the TRANSFER command is:

TRANSFER 'tablename' FROM readername TO writername [AS 'tableformat']
{ DELETE | DELETE condition | DO NOT DELETE }
[USE TRANSFER_MAP] [USING FILTER filter_clause];

Usage

Transfers the contents of one database table to another database table. You can use this command to transfer
tables between Sybase, Oracle, Informix, ODBC, CORBA, and Socket gateways.

The AS tableformat clause specifies the format of the destination table if it is different from the source
table format.
116 Netcool/OMNIbus v7 Probe and Gateway Guide

General Commands
The DELETE and DO NOT DELETE clauses define how the destination table is processed. By default, the
contents of the destination table are deleted before the contents of the source table are transferred. You can
optionally specify a condition that determines whether the deletion will occur. If you specify DO NOT
DELETE, the contents of the destination table are not deleted before the contents of the source table are
transferred.

 Note: The DELETE clause does not function with the Socket and CORBA gateways.

The USE TRANSFER_MAP clause instructs the gateway to use the mapping definition that is assigned as
the map to the writer used in the TRANSFER command. The USE TRANSFER_MAP clause is only
available for use with the Oracle Gateway.

An optional filter clause may be applied by specifying USING FILTER followed by the filter. Enter a valid
filter, as described in the CREATE FILTER command.

Example

TRANSFER 'alerts.conversions' FROM NCO_READER TO SYBASE_WRITER AS
'alerts.conversions' DELETE;
TRANSFER 'alerts.status' FROM NCOMS_READ TO DENCO_WRITE AS 'ncoms.status'
USING FILTER 'ServerName = \'NCOMS\'' DELETE USE TRANSFER_MAP;
Netcool/OMNIbus v7 Probe and Gateway Guide 117

Chapter 5: Gateway Commands and Command Line Options
118 Netcool/OMNIbus v7 Probe and Gateway Guide

RegularExpr_apx.fm October 11, 2004 10:49 am

Appendix A: Regular Expressions

This appendix contains information about how to use regular expressions. It contains the following section:

• How to Use Regular Expressions on page 120
Netcool/OMNIbus v7 Probe and Gateway Guide 119

Appendix A: Regular Expressions
A.1 How to Use Regular Expressions
Regular expressions are made up of normal characters and metacharacters. Normal characters include upper
and lower case letters and numbers. Regular expression pattern matching can be performed with either a
single character or a pattern of one or more characters within parentheses, called a character pattern.
Metacharacters have special meanings, described in Table A1.

Table A1: Pattern Matching Metacharacters (1 of 2)

Pattern Matching Metacharacter Description Example

* Matches zero or more instances of
the preceding character or character
pattern.

The pattern ‘goo*’ matches ‘my godness’,
‘my goodness’, and ‘my gooodness’, but
not ‘my gdness’.

+ Matches one or more instances of the
preceding character or character
pattern.

The pattern ‘goo+’ matches ‘my goodness’
and ‘my gooodness’, but not ‘my godness’.

? Matches zero or one instance of the
preceding character or character
pattern.

The pattern ‘goo?’ matches ‘my godness’
and ‘my goodness’, but not ‘my
gooodness’ or ‘my gdness’.

$ Matches the end of the string. The pattern ‘end$’ matches ‘the end’, but
not ‘the ending’.

^ Matches the beginning of the string. The pattern ‘^severity’ matches ‘severity
level 5’, but not ‘The severity is 5’.

. Matches any single character. The pattern ‘b.at’ matches ‘baat’, ‘bBat’,
and ‘b4at’, but not ‘bat’ or ‘bB4at’.

[abcd] Matches any characters in the square
brackets or in the range of characters
separated by a hyphen (-), such as
[0-9].

^[A-Za-z]+$ matches any string that
contains only upper or lower case letter
characters.

[^abcd] Matches any character except those
in the square brackets or in the range
of characters separated by a hyphen
(-), such as [0-9].

[^0-9] matches any string that does not
contain any numeric characters.

() Indicates that the characters within
the parentheses should be treated as
a character pattern.

A(boo)+Z matches ‘AbooZ’, ‘AboobooZ’,
and ‘AbooboobooZ’, but not ‘AboZ’ or
‘AboooZ’.

| Matches one of the characters or
character patterns on either side of
the vertical bar.

A(B|C)D matches ‘ABD’ and ‘ACD’, but not
‘AD’, ‘ABCD’, ‘ABBD’, or ‘ACCD’.
120 Netcool/OMNIbus v7 Probe and Gateway Guide

How to Use Regular Expressions
\ The backslash escape character
indicates that the metacharacter
following should be treated as a
regular character. The
metacharacters in this table require a
backslash before them if they appear
in a regular expression.

To match an opening square bracket,
followed by any digits or spaces, followed
by a closed bracket, use the regular
expression \[[0-9]*\].

Table A1: Pattern Matching Metacharacters (2 of 2)

Pattern Matching Metacharacter Description Example
Netcool/OMNIbus v7 Probe and Gateway Guide 121

Appendix A: Regular Expressions
122 Netcool/OMNIbus v7 Probe and Gateway Guide

OS_Table_Ref.fm October 11, 2004 10:49 am

Appendix B: ObjectServer Tables

This appendix contains ObjectServer database table information. It contains the following sections:

• Alerts Tables on page 124

• Service Tables on page 133

• ObjectServer Data Types on page 134
Netcool/OMNIbus v7 Probe and Gateway Guide 123

Appendix B: ObjectServer Tables
B.1 Alerts Tables
Alert information is forwarded to the ObjectServer from external programs such as probes, TSMs, and
monitors, stored and managed in database tables, and displayed in the event list.

alerts.status Table

The alerts.status table contains status information about problems that have been detected by
probes, TSMs, and monitors.

Table B1: Columns in the alerts.status Table (1 of 7)

Column Name Data Type Mandatory Description

Identifier varchar(255) Yes Controls ObjectServer deduplication.

Serial incr Yes The Netcool/OMNIbus serial number for the row.

Node varchar(64) Yes Identifies the managed entity from which the alarm
originated. This could be a host or device name,
service name, or other entity. For IP network devices or
hosts, the Node column contains the resolved name of
the device or host. In cases where the name cannot be
resolved, the Node column should contain the IP
address of the host or device.

NodeAlias varchar(64) No The alias for the node. For network devices or hosts,
this should be the logical (layer-3) address of the
entity. For IP devices or hosts, this should be the IP
address.

Manager varchar(64) Yes The descriptive name of the probe that collected and
forwarded the alarm to the ObjectServer. This can also
be used to indicate the host on which the probe is
running.

Agent varchar(64) No The descriptive name of the sub-manager that
generated the alert.

AlertGroup varchar(64) No The descriptive name of the type of failure indicated
by the alert (for example, Interface Status or
CPU Utilization).

AlertKey varchar(64) Yes The descriptive key that indicates the managed object
instance referenced by the alert (for example, the disk
partition indicated by a file system full alert or the
switch port indicated by a utilization alert).
124 Netcool/OMNIbus v7 Probe and Gateway Guide

Alerts Tables
Severity integer Yes Indicates the alert severity level, which provides an
indication of how the perceived capability of the
managed object has been affected. The color of the
alert in the event list is controlled by the severity value:

0 - Clear

1 - Indeterminate

2 - Warning

3 - Minor

4 - Major

5 - Critical

Summary varchar(255) Yes The text summary of the cause of the alert.

StateChange time Yes An automatically maintained ObjectServer timestamp
of the last insert or update of the alert from any source.

FirstOccurrence time Yes The time in seconds (from midnight Jan 1, 1970) when
this alert was created or when polling started at the
probe.

LastOccurrence time Yes The time when this alert was last updated at the probe.

InternalLast time Yes The time when this alert was last updated at the
ObjectServer.

Poll integer No The frequency of polling for this alert in seconds.

Table B1: Columns in the alerts.status Table (2 of 7)

Column Name Data Type Mandatory Description
Netcool/OMNIbus v7 Probe and Gateway Guide 125

Appendix B: ObjectServer Tables
Type integer No The type of alert:

0 - Type not set

1 - Problem

2 - Resolution

3 - Netcool/Visionary problem

4 - Netcool/Visionary resolution

7 - Netcool/ISMs new alarm

8 - Netcool/ISMs old alarm

11 - More Severe

12 - Less Severe

13- Information

Tally integer Yes Automatically maintained count of the number of
inserts and updates of the alert from any source.

Class integer Yes The alert class used to identify the probe or vendor
from which the alert was generated. Controls the
applicability of context-sensitive event list tools.

Grade integer No Indicates the state of escalation for the alert:

0 - Not Escalated

1 - Escalated

Location varchar(64) No Indicates the physical location of the device, host, or
service for which the alert was generated.

OwnerUID integer Yes The user identifier of the user who is assigned to
handle this alert.

The default is 65534, which is the identifier for the
nobody user.

OwnerGID integer No The group identifier of the group that is assigned to
handle this alert.

The default is 0, which is the identifier for the public
group.

Table B1: Columns in the alerts.status Table (3 of 7)

Column Name Data Type Mandatory Description
126 Netcool/OMNIbus v7 Probe and Gateway Guide

Alerts Tables
Acknowledged integer Yes Indicates whether the alert has been acknowledged:

0 - No

1 - Yes

Alerts can be acknowledged manually by a network
operator or automatically by a correlation or workflow
process.

Flash integer No Enables the option to make the event list flash.

EventID varchar(64) No The event ID (for example, SNMPTRAP-link down).
Multiple events can have the same event ID. This is
populated by the probe rules file and used by
Netcool/Precision.

ExpireTime integer Yes The number of seconds until the alert is cleared
automatically. Used by the Expire automation.

ProcessReq integer No Indicates whether the alert should be processed by
Netcool/Precision. This is populated by the probe rules
file and used by Netcool/Precision.

SuppressEscl integer Yes Used to suppress or escalate the alert:

0 - Normal

1 - Escalated

2 - Escalated-Level 2

3 - Escalated-Level 3

4 - Suppressed

5 - Hidden

6 - Maintenance

The suppression level is manually selected by
operators from the event list.

Customer varchar(64) No The name of the customer affected by this alert.

Service varchar(64) No The name of the service affected by this alert.

PhysicalSlot integer No The slot number indicated by the alert.

Table B1: Columns in the alerts.status Table (4 of 7)

Column Name Data Type Mandatory Description
Netcool/OMNIbus v7 Probe and Gateway Guide 127

Appendix B: ObjectServer Tables
PhysicalPort integer No The port number indicated by the alert.

PhysicalCard varchar(64) No The card name or description indicated by the alert.

TaskList integer Yes Indicates whether a user has added the alert to the
Task List:

0 - No

1 - Yes

Operators can add alerts to the Task List from the
event list.

NmosSerial varchar(64) No The serial number of a suppressed alert. Populated by
Netcool/Precision.

NmosObjInst integer No Populated by Netcool/Precision during alert
processing.

NmosCauseType integer No The alert state, populated by Netcool/Precision as an
integer value:

0 - Unknown

1 - Root cause

2 - Symptom

LocalNodeAlias varchar(64) Yes The alias of the network entity indicated by the alert.
For network devices or hosts, this is the logical
(layer-3) address of the entity, or another logical
address that enables direct communication with the
device. For use in managed object instance
identification.

LocalPriObj varchar(255) No The primary object referenced by the alert. For use in
managed object instance identification.

LocalSecObj varchar(255) No The secondary object referenced by the alert. For use
in managed object instance identification.

LocalRootObj varchar(255) Yes An object that is equivalent to the primary object
referenced in the alarm. For use in managed object
instance identification.

RemoteNodeAlias varchar(64) Yes The network address of the remote network entity. For
use in managed object instance identification.

Table B1: Columns in the alerts.status Table (5 of 7)

Column Name Data Type Mandatory Description
128 Netcool/OMNIbus v7 Probe and Gateway Guide

Alerts Tables
RemotePriObj varchar(255) No The primary object of a remote network entity
referenced by an alarm. For use in managed object
instance identification.

RemoteSecObj varchar(255) No The secondary object of a remote network entity
referenced by an alarm. For use in managed object
instance identification.

RemoteRootObj varchar(255) Yes An object that is equivalent to the remote entity's
primary object referenced in the alarm. For use in
managed object instance identification.

X733EventType integer No Indicates the alert type:

0 - Not defined

1 - Communications

2 - Quality of Service

3 - Processing error

4 - Equipment

5 - Environmental

6 - Integrity violation

7 - Operational violation

8 - Physical violation

9 - Security service violation

10 - Time domain violation

X733ProbableCause integer No Indicates the probable cause of the alert.

X733SpecificProb varchar(64) No Identifies additional information for the probable
cause of the alert. Used by probe rules files to specify a
set of identifiers for use in managed object instance
identification.

X733CorrNotif varchar(255) No A listing of all notifications with which this notification
is correlated.

ServerName varchar(64) Yes The name of the originating ObjectServer. Used by
gateways to control propagation of alerts between
ObjectServers.

Table B1: Columns in the alerts.status Table (6 of 7)

Column Name Data Type Mandatory Description
Netcool/OMNIbus v7 Probe and Gateway Guide 129

Appendix B: ObjectServer Tables
 Note: You can only display columns of type CHAR, VARCHAR, INCR, INTEGER, and TIME in the event
list. Do not add columns of any other type to the alerts.status table.

alerts.details Table

The alerts.details table contains the detail attributes of the alerts in the system.

ServerSerial integer Yes The serial number of the alert on the originating
ObjectServer (if it did not originate on this
ObjectServer). Used by gateways to control the
propagation of alerts between ObjectServers.

URL varchar(1024) No Optional URL which provides a link to additional
information in the vendor's device or ENMS.

MasterSerial integer No Identifies the master ObjectServer if this alert is being
processed in a desktop ObjectServer environment.

This column is added when you run nco_dbinit
with the -desktopserver option.

Note: MasterSerial must be the last column in the
alerts.status table if you are using a desktop
ObjectServer environment.

For information about the desktop ObjectServer
environment, see the Netcool/OMNIbus Installation
and Deployment Guide.

Table B1: Columns in the alerts.status Table (7 of 7)

Column Name Data Type Mandatory Description

Table B2: Columns in the alerts.details Table (1 of 2)

Column Name Data Type Description

KeyField varchar(255) Internal sequencing string for uniqueness.

Identifier varchar(255) Identifier to relate details to entries in the alerts.status table.

AttrVal integer Boolean; when false (0), just the Detail column is valid. Otherwise, the Name
and Detail columns are both valid.

Sequence integer Sequence number, used for ordering entries in the event list Event Information
window.
130 Netcool/OMNIbus v7 Probe and Gateway Guide

Alerts Tables
alerts.journal Table

The alerts.journal table provides a history of work performed on alerts.

Name varchar(255) Name of attribute stored in Detail column.

Detail varchar(255) Attribute value.

Table B2: Columns in the alerts.details Table (2 of 2)

Column Name Data Type Description

Table B3: Columns in the alerts.journal Table (1 of 2)

Column Name Data Type Description

KeyField varchar(255) Primary key for table.

Serial integer Serial number of alert that this journal entry is related to.

UID integer User identifier of user who made this entry.

Chrono time Time and date that this entry was made.

Text1 varchar(255) First block of text for journal entry.

Text2 varchar(255) Second block of text for journal entry.

Text3 varchar(255) Third block of text for journal entry.

Text4 varchar(255) Fourth block of text for journal entry.

Text5 varchar(255) Fifth block of text for journal entry.

Text6 varchar(255) Sixth block of text for journal entry.

Text7 varchar(255) Seventh block of text for journal entry.

Text8 varchar(255) Eighth block of text for journal entry.

Text9 varchar(255) Ninth block of text for journal entry.

Text10 varchar(255) Tenth block of text for journal entry.
Netcool/OMNIbus v7 Probe and Gateway Guide 131

Appendix B: ObjectServer Tables
Text11 varchar(255) Eleventh block of text for journal entry.

Text12 varchar(255) Twelfth block of text for journal entry.

Text13 varchar(255) Thirteenth block of text for journal entry.

Text14 varchar(255) Fourteenth block of text for journal entry.

Text15 varchar(255) Fifteenth block of text for journal entry.

Text16 varchar(255) Sixteenth block of text for journal entry.

Table B3: Columns in the alerts.journal Table (2 of 2)

Column Name Data Type Description
132 Netcool/OMNIbus v7 Probe and Gateway Guide

Service Tables
B.2 Service Tables
The service table contains information about Netcool/ISMs.

service.status Table

The service.status table is used to control the additional features required to support Netcool/ISMs.

Table B4: Columns in the service.status Table

Column Name Data Type Description

Name varchar(255) Name of the service.

CurrentState integer Indicates the state of the service:

0 - Good

1 - Bad

2 - Marginal

3 - Unknown

StateChange time Indicates the last time the service state changed.

LastGoodAt time Indicates the last time the service was Good (0).

LastBadAt time Indicates the last time the service was Bad (1).

LastMarginalAt time Indicates the last time the service was Marginal (2).

LastReportAt time Time of the last service status report.
Netcool/OMNIbus v7 Probe and Gateway Guide 133

Appendix B: ObjectServer Tables
B.3 ObjectServer Data Types
Each column value in the ObjectServer has an associated data type. The data type determines how the
ObjectServer processes the data in the column. For example, the plus operator (+) adds integer values or
concatenates string values, but does not act on boolean values. The data types supported by the ObjectServer
are listed in Table B5:

Table B5: ObjectServer Data Types

SQL Type Description Default Value ObjectServer ID for Data Type

INTEGER 32 bit signed integer. 0 0

INCR 32 bit unsigned auto-incrementing
integer. Applies to table columns only, and
can only be updated by the system.

0 5

UNSIGNED 32 bit unsigned integer. 0 12

BOOLEAN TRUE or FALSE. FALSE 13

REAL 64 bit signed floating point number. 0.0 14

TIME Time, stored as the number of seconds
since midnight January 1, 1970. This is the
Coordinated Universal Time (UTC)
international time standard.

Thu Jan 1
01:00:00
1970

1

CHAR(integer) Fixed size character string, integer
characters long (8192 Bytes is the
maximum).

The char type is identical in operation to
varchar, but performance is better for
mass updates that change the length of
the string.

'' 10

VARCHAR(integer) Variable size character string, up to
integer characters long (8192 Bytes is
the maximum).

The varchar type uses less storage space
than the char type and the performance
is better for deduplicatation, scanning,
insert, and delete operations.

'' 2

INTEGER64 64 bit signed integer. 0 16

UNSIGNED64 64 bit unsigned integer. 0 17
134 Netcool/OMNIbus v7 Probe and Gateway Guide

ObjectServer Data Types
 Note: You can only display columns of type CHAR, VARCHAR, INCR, INTEGER, and TIME in the event
list. Do not add columns of any other type to the alerts.status table.
Netcool/OMNIbus v7 Probe and Gateway Guide 135

Appendix B: ObjectServer Tables
136 Netcool/OMNIbus v7 Probe and Gateway Guide

probe_errors_apx.fm October 11, 2004 11:02 am

Appendix C: Probe Error Messages and
Troubleshooting Techniques

This appendix lists all of the messages that are common to all probes, including ProbeWatch and
TSMWatch messages.

Refer to the individual probe guides for information about probe-specific messages.

This appendix also includes troubleshooting information for probes.

This appendix contains the following sections:

• Generic Error Messages on page 138

• ProbeWatch and TSMWatch Messages on page 146

• Troubleshooting Probes on page 148
Netcool/OMNIbus v7 Probe and Gateway Guide 137

Appendix C: Probe Error Messages and Troubleshooting Techniques
C.1 Generic Error Messages
Probes can generate the following types of messages:

• Fatal

• Error

• Warning

• Information

• Debug

Fatal Level Messages

The probe automatically terminates when a fatal message is issued.

Table C1: Fatal Level Probe Messages (1 of 2)

Message Description Action

Connection to ObjectServer
marked DEAD - aborting...

The connection to the ObjectServer
ceased (and store and forward is not
enabled in the probe).

Check that the ObjectServer is
available.

Failed to access OMNIHOME
directory: "directory
name"

Failed to set interfaces
file location

The probe was unable to locate the
interfaces file.

Check that the OMNIHOME
environment variable is set to the
correct destination.

Failed to connect -
aborting

The ObjectServer is not available. Check that the ObjectServer is
running, that the interfaces file on the
system where the probe is installed
has an entry for the ObjectServer, and
that there is no networking problem
between the two systems.
138 Netcool/OMNIbus v7 Probe and Gateway Guide

Generic Error Messages
Error Level Messages

The probe is likely to terminate when an error message is issued.

Failed to create property

Failed to define argument

Failed to initialise

Failed to set property

Failed to process
arguments

Session create failed -
aborting

Internal errors. Refer to your support contract for
information about contacting the
helpdesk.

Failed to read rules -
aborting

A property or command line option is
pointing to a non-existent rules file.

Check that the command line option
or properties file refers to the correct
rules file.

Field "field name" not
found in status table

No matching field found
for "field name"

The rules file being used refers to a
field of the format @fieldname
which does not exist in the status
table.

Check the rules file and correct the
problem.

Unknown data type returned
from ObjectServer

The ObjectServer has returned
unknown data.

Refer to your support contract for
information about contacting the
helpdesk.

Table C1: Fatal Level Probe Messages (2 of 2)

Message Description Action

Table C2: Error Level Probe Messages (1 of 4)

Message Description Action

Can't set generic property
"property name" via
command line

Property "property name"
for option "option name"
does not exist

An option in the probe is not mapped
correctly to a property.

Check the properties file for the
named property and refer to the
probe documentation for supported
properties.

Could not send alert The probe was unable to send an
alert (usually an internal alert) to the
ObjectServer.

Check that the ObjectServer is
available.
Netcool/OMNIbus v7 Probe and Gateway Guide 139

Appendix C: Probe Error Messages and Troubleshooting Techniques
Could not set "fieldname"
field

The probe was unable to set a field
value. This may be because the
ObjectServer tables have been
modified so that default fields are no
longer present.

Check if the ObjectServer tables have
been modified.

CreateAndSet failed

CreateAndSet failed for
attr: "element name"

The probe is unable to create an
element.

Refer to your support contract for
information about contacting the
helpdesk.

Error Setting SIGINT
Handler

Error Setting SIGQUIT
Handler

Error Setting SIGTERM
Handler

The probe was unable to set up a
signal handler for either an INT ,
QUIT, or TERM.

Refer to your support contract for
information about contacting the
helpdesk.

Failed to open file: "file
name"

A file referred to in the rules file (for
example, with the table function)
does not exist.

Check the rules file and ensure the file
is available.

Failed to open message
log: "file name"

The probe is unable to open the
specified log file.

Check the command line or
properties file and correct the
problem.

Failed to open Properties
file: "properties file
name"

The probe is unable to open the
properties file.

Check the properties file or command
line to ensure the properties file is in
the specified location.

Failed to open Rules file:
"rules file name"

The rules file for the
probe is not available or
incorrectly specified.

The probe is unable to open the rules
file.

Check the properties file or command
line to ensure the rules file is in the
specified location.

No extraction data for
"regexp" - missing ()'s?

Regexp doesn't match for
"string"

A regular expression being used in
the extract function may be
missing parentheses.

The string data that is being used to
extract may not match the regular
expression.

The extract function is unable to
extract data.

Check the rules file and correct the
problem.

Table C2: Error Level Probe Messages (2 of 4)

Message Description Action
140 Netcool/OMNIbus v7 Probe and Gateway Guide

Generic Error Messages
Option "option name" used
without argument

The option used expects a value
which has not been supplied.

Check the probe documentation and
the contents of the command line.

OS Error: "error message"

Procedure "procedure
name": "error message"

Server "server name":
"error message"

There is an error in the Sybase
connection. There should be a
subsequent message from the probe
which details the effect of this error.

Refer to your support contract for
information about contacting the
helpdesk.

Properties file: "error
description" at line "line
no"

There is an error in the format of the
properties file.

Check the properties file at the
specified line number and correct the
problem.

PropGetValue failed A required property has not been set. Check the properties file.

Regular Expression Error:
"regexp"

A regular expression is incorrectly
formed in the rules file.

Check the rules file for the regular
expression and correct the problem.

Results processing failed

Unexpected return from
results processing

Unexpected value during
results processing

There is a problem with the
ObjectServer.

Refer to your support contract for
information about contacting the
helpdesk.

Rules file: "error
description" at line "line
no"

There is an error in the rules file
format or syntax.

Check the rules file at the specified
line number and correct the problem.

SendAlert failed The probe was unable to send an
alert to the ObjectServer.

Check that the ObjectServer is
available.

SessionProcess failed The probe was unable to process the
alert against the rules file.

Refer to your support contract for
information about contacting the
helpdesk.

Unknown message level
"message level string" -
using WARNING level

The properties file or command line
specified a message level which is not
supported.

Check the properties file or command
line and use a supported message
level (debug, info, warning,
error, fatal).

Unknown option: "option
name"

An option has been used on the
command line to start the probe
which is not supported by the probe.

Check the probe documentation and
the contents of the command line.

Table C2: Error Level Probe Messages (3 of 4)

Message Description Action
Netcool/OMNIbus v7 Probe and Gateway Guide 141

Appendix C: Probe Error Messages and Troubleshooting Techniques
Warning Level Messages

These messages are issued as warnings but should not cause the probe to terminate.

Unknown property "property
name" - ignored

A property specified in the properties
file does not exist in the probe.

Check the properties file for the
named property and refer to the
probe documentation for supported
properties.

Table C2: Error Level Probe Messages (4 of 4)

Message Description Action

Table C3: Warning Level Probe Messages

Message Description Action

Failed to install Client
Message Callback

Failed to install Server
Message Callback

Failed to retrieve
connection status -
attempting to continue

Results processing failed

There is a problem with the
ObjectServer.

The probe will try to continue.

Failed to set SYBASE in
environment

The probe was unable to override the
SYBASE environment variable.

Check that the SYBASE environment
variable is correctly set.

New value for field "field
name" truncated to
"number" characters

A string being copied into an alert
field has had to be truncated to fit the
field.

Check the rules file.

Type mismatch for property
"property name" - new
value ignored

A property has been set with the
wrong data type.

Check the properties file or command
line to ensure that the property is
correctly set.
142 Netcool/OMNIbus v7 Probe and Gateway Guide

Generic Error Messages
Information Level Messages

This message is for information purposes.

Debug Level Messages

Debug level messages provide information about the internal functions of the probe. These messages are
aimed at probe developers but are listed here for completeness.

Table C4: Information Level Probe Messages

Message Description Action

Using stderr for logging The probe was unable to open a log
file.

No action required. The probe is
writing messages to stderr.

Table C5: Debug Level Probe Messages (1 of 3)

Message Description Action

A value for "string"
doesn’t exist in lookup
table "table name"

A value requested from a lookup
table is not available.

No action required. The function in
the rules file will return an empty
string.

Attempted to duplicate
NULL string

Attempted to free NULL
pointer

Attempted to realloc NULL
pointer

Failed to allocate memory
(Requested size was
"number" bytes)

Failed to duplicate string

Failed to reallocate
memory block at address
"hex address" (Requested
size was "number" bytes)

An error or problem has occurred in
the memory allocation or string
handling components of the probe
library.

No action required. The library will
handle the problem.
Netcool/OMNIbus v7 Probe and Gateway Guide 143

Appendix C: Probe Error Messages and Troubleshooting Techniques
Failed to allocate command
structure

Failed to allocate context
structure

Failed to bind column

Failed to connect

Failed to describe column

Failed to fetch number of
columns

Failed to initialise
Sybase internals: "number"

Failed to send command

Failed to set appname

Failed to set command
query

Failed to set hostname

Failed to set password

Failed to set username

Got a row fail -
continuing

No columns in result set

A problem or error has occurred at
the Sybase or ObjectServer
connection level.

N/A

Failed to flush alerts
before EXIT

Problem during disconnect
before EXIT

Problem during session
destruction before EXIT

Problem during shutdown
before EXIT

A problem has occurred during probe
shutdown.

N/A

New value for field "field
name" is "value"

A field value has been set. N/A

Table C5: Debug Level Probe Messages (2 of 3)

Message Description Action
144 Netcool/OMNIbus v7 Probe and Gateway Guide

Generic Error Messages
OplInitialise() called
more than once

Multiple calls have been made to the
OplInitialise C probe API
function , which can only be called
once.

N/A

Table C5: Debug Level Probe Messages (3 of 3)

Message Description Action
Netcool/OMNIbus v7 Probe and Gateway Guide 145

Appendix C: Probe Error Messages and Troubleshooting Techniques
C.2 ProbeWatch and TSMWatch Messages
In some situations, a probe or TSM generates events of its own. These events can provide information (such
as startup or shutdown messages) or identify problems. This section describes the elements common to all
ProbeWatch and TSMWatch messages.

ProbeWatch and TSMWatch messages are processed in the rules file and converted into alerts like other
events. Table C6 shows the elements common to ProbeWatch and TSMWatch events.

Table C7 describes summary strings common to all probes and TSMs.

Refer to the individual probe guides for additional summary strings for each probe.

Table C6: Common ProbeWatch and TSMWatch Elements

Element Name Description

Summary Summary string, described in the following tables.

Node Name of the node on which the probe or TSM is running.

Agent Name of the probe or TSM.

Manager ProbeWatch or TSMWatch.

Table C7: Common ProbeWatch and TSMWatch Summary Strings

ProbeWatch/TSMWatch Message Description Cause

Going down ... The probe or TSM is shutting down. The probe or TSM is executing a
shutdown routine.

Running ... The probe or TSM has started
running.

The probe or TSM has just been
started.

Unable to get events ... The probe or TSM encountered a
problem while listening for events.

There was a problem initializing the
connection or there was a license or
connection failure after some events
were received. Refer to your support
contract for information about
contacting the helpdesk.
146 Netcool/OMNIbus v7 Probe and Gateway Guide

ProbeWatch and TSMWatch Messages
TSMWatch messages are in the same format as ProbeWatch messages. Table C8 describes summary strings
common to all TSMs.

Table C8: Common TSMWatch Summary Strings

TSMWatch Message Description Action

Connection Attempted ...

Connection Succeeded ...

Connection Failed ...

Connection Timed out ...

Connection Lost ...

Messages relating to the establishment of a TCP/IP
connection.

N/A

Disconnection Attempted ...

Disconnection Succeeded ...

Disconnection Failed ...

Messages relating to relinquishing a TCP/IP connection. N/A

Wakeup Attempted ...

Wakeup Succeeded ...

Wakeup Failed ...

Messages relating to wake up functionality. N/A

Login Attempted ...

Login Succeeded ...

Login Timed out ...

Login Failed ...

Messages relating to host login. N/A

Logout Attempted ...

Logout Succeeded ...

Logout Timed out ...

Logout Failed ...

Messages relating to host logout. N/A

Heartbeat Sent ...

Heartbeat Received ...

Heartbeat Timed out ...

Messages relating to sending/receiving heartbeat messages
to/from the host.

N/A

Resynchronisation Attempted ...

Resynchronisation Succeeded ...

Resynchronisation Failed ...

Messages relating to synchronizing current alerts between
the switch and Netcool/OMNIbus.

N/A
Netcool/OMNIbus v7 Probe and Gateway Guide 147

Appendix C: Probe Error Messages and Troubleshooting Techniques
C.3 Troubleshooting Probes
This section describes some of the common problems experienced by Netcool/OMNIbus users and explains
possible causes and solutions.

This troubleshooting information is divided into two sections:

• Common problem causes

• What to do if

Common Problem Causes

The most common causes of probe problems are:

• Incorrectly set OMNIHOME and NETCOOL_LICENSE_FILE environment variables

• Errors in the rules file, particularly in extract statements

• Configuration errors in the properties file

For information about setting the OMNIHOME and NETCOOL_LICENSE_FILE environment variables,
refer to the Netcool/OMNIbus Installation and Deployment Guide.

For information about solving rules file problems, refer to Chapter 2: Probe Rules File Syntax on page 27.

For information about probe properties, refer to Chapter 3: Probe Properties and Command Line Options on
page 59. Check that all of the properties are set correctly in the probe properties file. For example, check that
the Server property contains the correct ObjectServer or proxy server name and that the RulesFile
property contains the correct rules file name.

If you cannot solve the problem, read through the next section and make sure that you have tried all of the
most likely solutions listed there.

Table C9: Troubleshooting Probes

Section Description

Common Problem Causes on page 148 This section contains a list of common problem causes. If you are unsure
what your problem is, you should start by reading this part and following
the instructions. If you cannot solve your problem by following the
instructions in this part, move on to the section What to Do If on page 149.

What to Do If on page 149 This section describes common symptoms caused by probe problems
and step-by-step instructions to help you locate and solve the problem. If
none of the headings in this section match the symptoms of your
problem, read through the lists of instructions and make sure that you
have tried all of the most likely solutions listed there.
148 Netcool/OMNIbus v7 Probe and Gateway Guide

Troubleshooting Probes
What to Do If

The headings in this section describe the most common symptoms of probe problems. Find the heading that
most closely describes your problem and follow the instructions until you have located the cause and solved
the problem:

If none of the headings match the symptoms of your problem, read through the lists of instructions and
make sure that you have tried all of the most likely solutions listed there. If you have tried all of the suggested
problem solutions and your probe still does not work, refer to your support contract and contact the
helpdesk.

The Probe Does Not Start

If the probe does not start:

1. Run the probe in debug mode as described in Debugging Rules Files on page 55.

2. Check that the ObjectServer is running by trying to connect using nco_ping or nco_sql.

If you can connect successfully, the ObjectServer is running. If the ObjectServer is not running, this
is likely to be the cause of the problem. For more information about using the ObjectServer and
nco_sql, refer to the Netcool/OMNIbus Administration Guide.

3. Check that there are no other probes running with the same configuration using the commands:

ps -ef | grep nco_p

A list of probe processes is displayed. Check that none of the processes correspond to the same type of
probe. You cannot run two identical probe configurations because this would duplicate all of the
events forwarded to the ObjectServer.

4. Check that you have enough licenses available to start another probe by entering:

$NCLICENSE/bin/nc_print_license

Table C10: Types of Probe Problems

Problem See...

The probe does not start. page 149

The probe is not sending alerts to the ObjectServer. page 151

The probe is losing events. page 152

The probe is consuming too much CPU time. page 152

The event list fields are not being populated properly. page 153
Netcool/OMNIbus v7 Probe and Gateway Guide 149

Appendix C: Probe Error Messages and Troubleshooting Techniques
If you do not have enough licences to run another probe and you cannot stop any of the other probes,
contact the helpdesk to request another license.

5. Check that you are using the correct probe for the current version of the target software.

6. Check that there are no syntax errors in the rules file. Refer to Testing Rules Files on page 54 for more
information about how to do this.

7. Check that your system has not run out of system resources and can launch more processes. You can
do this using df -k or top. Refer to the df and top man pages for more information about using
these commands.

8. Check to see if the $OMNIHOME/var/probename.saf store and forward file exists. If it exists,
check that it has not become too large. If your disk is full, the probes and ObjectServers are not able
to work properly.

!!
 Warning: Store and forward is not designed to handle very large numbers of events. Left unattended,

a store and forward file will continue to grow until it runs out of disk space. Refer to Probe Properties
and Command Line Options on page 59 for information about setting the MaxSAFFileSize
property.

9. Check that the store and forward file has not been corrupted. If the store and forward file has been
corrupted there should be an error message in the log file
($OMNIHOME/log/probename.log). If the file is corrupted, delete it and restart the probe.

10. Check that the probe binary you are trying to run is the correct one for the current architecture by
entering:

$OMNIHOME/bin/arch/probename -version

Check that the probe version matches your system architecture.

If you are running the probe on a remote host:

11. Check that the probe host can connect to the ObjectServer host using the ping command. Try to
ping the ObjectServer host machine using the hostname and the IP address. Refer to the ping man
page for more information about how to do this.

If you cannot connect to the ObjectServer host using the ping command, there is a problem with
the connection between your probe host and your ObjectServer host.

12. Check that the ObjectServer has been configured correctly in the Server Editor (nco_xigen) and
that the interfaces information has been distributed to the ObjectServer and probe hosts. Refer to the
Netcool/OMNIbus Installation and Deployment Guide for more information.

13. Check to see if there is a firewall between the probe host and the ObjectServer host. If there is, make
sure that the firewall will allow traffic between the probe and the ObjectServer.
150 Netcool/OMNIbus v7 Probe and Gateway Guide

Troubleshooting Probes
The Probe Is Not Sending Alerts to the ObjectServer

If the probe is not sending alerts to the ObjectServer:

1. Check that the probe is running by entering:

ps -ef | grep nco_p

A list of probe processes is displayed. If the probe is not running, start the probe from the command
line.

2. Check that there are no other probes running with the same configuration by entering:

ps -ef | grep nco_p

A list of probe processes is displayed. Check that none of the processes correspond to the same type of
probe. You cannot run two identical probe configurations because this would duplicate all of the
events forwarded to the ObjectServer.

3. Read the probe properties file and check that all of the properties are set correctly. For example, check
that the Server property contains the correct ObjectServer name and that the RulesFile
property contains the correct rules file name.

4. Check that the probe event source has events to send to the ObjectServer.

5. Check that the ObjectServer you are logged in to is the same ObjectServer that the probe is
forwarding events to.

6. Check that the event source you are trying to probe is working correctly. Refer to the documentation
supplied with your element manager for more information about how to do this.

7. Check that you are using the correct probe.

8. Check that the probe is not running in store and forward mode. To do this, check the
$OMNIHOME/var/probename.saf and $OMNIHOME/var/probename.reco files to see
if they are growing. If they are, disable store and forward mode. Refer to Store and Forward Mode on
page 19 for more information.

9. Check that your system has not run out of system resources and can launch more processes. You can
do this using df -k or top. Refer to the df and top man pages for more information about using
this command.

10. Check for any discard functions in the probe rules file. The discard function must be in a
conditional statement; otherwise, all events are discarded. Refer to Deleting Elements or Events on
page 40 for more information.

If you are running the probe on a remote host:
Netcool/OMNIbus v7 Probe and Gateway Guide 151

Appendix C: Probe Error Messages and Troubleshooting Techniques
11. Check that the probe host can connect to the ObjectServer host using the ping command. Try to
ping the ObjectServer host machine using the hostname and the IP address. Refer to the ping man
page for more information about how to do this.

If you cannot connect to the ObjectServer host using the ping command, there is a problem with
the connection between your probe host and your ObjectServer host.

12. Check that the ObjectServer has been configured correctly through the Server Editor (nco_xigen)
and that the interfaces information has been distributed to the ObjectServer and probe hosts. Refer to
the Netcool/OMNIbus Installation and Deployment Guide for more information.

13. Check to see if there is a firewall between the probe host and the ObjectServer host. If there is, make
sure that the firewall will allow traffic between the probe and the ObjectServer.

The Probe Is Losing Events

If not all of the events are being forwarded to the ObjectServer:

1. Run the probe in debug mode as described in Debugging Rules Files on page 55.

2. Check that the event source you are trying to probe is working correctly. Refer to the documentation
supplied with your element manager for more information about how to do this.

3. Check that the probe event source has events to send to the ObjectServer.

4. Check that all of the properties in the properties file are set correctly. For example, check that the
Server property contains the correct ObjectServer name and that the RulesFile property
contains the correct rules file name.

5. Check for any discard functions in the probe rules file. The discard function discards events
based on specified conditions. Refer to Deleting Elements or Events on page 40 for more information.

The Probe Is Consuming Too Much CPU Time

If the probe is consuming too much CPU time:

1. Run the probe in debug mode as described in Debugging Rules Files on page 55.

2. Check that the probe can connect to the event source.
152 Netcool/OMNIbus v7 Probe and Gateway Guide

Troubleshooting Probes
3. Check to see if the $OMNIHOME/var/probename.saf store and forward file exists. If it exists,
check that it has not become too large. If your disk is full, the probes and ObjectServer will not be
able to work properly.

!!
 Warning: Store and forward is not designed to handle very large numbers of alerts. Left unattended,

a store and forward file will continue to grow until it runs out of disk space. Refer to Probe Properties
and Command Line Options on page 59 for information about setting the MaxSAFFileSize
property.

4. Check that the store and forward file has not been corrupted. If the store and forward file has been
corrupted there should be an error message in the probe log file
($OMNIHOME/log/probename.log). If the store and forward file is corrupted, delete it and
restart the probe.

The Event List Is Not Being Populated Properly

If the probe is detecting events and forwarding them to the ObjectServer but the event list fields are not
being populated correctly:

1. Run the probe in debug mode as described in Debugging Rules Files on page 55.

2. Check that fields which are not being populated properly are being correctly mapped to elements in
the rules file. Refer to Chapter 2: Probe Rules File Syntax on page 27 for more information about
configuring rules files.

3. Check that it is not a GUI problem by querying the alerts.status table using ObjectServer
SQL. Refer to the Netcool/OMNIbus Administration Guide for more information about using the
SQL interactive interface to view the table information.
Netcool/OMNIbus v7 Probe and Gateway Guide 153

Appendix C: Probe Error Messages and Troubleshooting Techniques
154 Netcool/OMNIbus v7 Probe and Gateway Guide

gate_errors_apx.fm October 11, 2004 11:01 am

Appendix D: Gateway Error Messages

This appendix lists gateway error messages. It contains the section:

• Common Gateway Error Messages on page 156
Netcool/OMNIbus v7 Probe and Gateway Guide 155

Appendix D: Gateway Error Messages
D.1 Common Gateway Error Messages
This section describes error messages that can occur in all gateways. The gateway_name in each error
message refers to the individual gateway name and indicates which gateway generated the error.

Table D1: Common Gateway Error Messages (1 of 12)

Error Description Action

Gateway_name Writer:
HashAlloc failure in _
gateway_name CacheAdd().

Gateway_name Writer:
MemStrDup() failure in _
gateway_name CacheAdd().

The gateway failed to allocate
memory.

Try to free more memory.

Gateway_name Writer: Failed
to allocate memory.

Gateway_name Writer writer_
name: Memory allocation
failed.

Gateway_name Writer: Memory
allocation failure.

Gateway_name Writer: Memory
allocation error.

Gateway_name Writer: Memory
reallocation error.

Failed to allocate memory
in writer writer_name.

The gateway failed to allocate
memory.

Try to free more memory.

Gateway_name Writer writer_
name: Could not create
serial cache - memory
problems.

Gateway_name Writer writer_
name: Failed to allocate
memory for a GPCModule
handle.

The gateway failed to allocate
memory.

Try to free more memory.
156 Netcool/OMNIbus v7 Probe and Gateway Guide

Common Gateway Error Messages
Gateway_name Writer: Failed
to lock connection mutex.

The writer failed to lock the
ObjectServer feedback connection in
order to access the connection and
feed back problem ticket data for the
associated alert. This lock failure may
be due to insufficient resources or as
a result of the underlying threading
system preventing a deadlock
between multiple threads that are
contending for the resource.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Failed
to re-acquire alert details
from OS.

This error message comes from the
gateway cache reclamation
sub-system. This message indicates
that the gateway failed to re-acquire
the trouble ticket number and
reclaim its internal cache entry from
the ObjectServer.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer:
Invalid datatype for
problem number feedback
field.

The data type is invalid. Refer to the Netcool/OMNIbus
Administration Guide for
information about data types.

Gateway_name Writer: Serial
x already in serial Cache.
Cannot add.

The gateway tried to add a serial
number that already exists.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Serial
x not found in serial
cache. Cannot Delete.

The gateway could not delete this
alert because it has already been
deleted in Netcool/OMNIbus.

You do not need to do anything.

Gateway_name Writer writer_
name: Failed to construct
path to gateway_name
Read/Write Module.

The gateway could not locate the
reader/writer module application.

Check that the module is installed in
the correct location.

Gateway_name Writer writer_
name: Failed to construct
the argument list for
gateway_name Module.

Failed to construct the argument list
for gateway module.

Check that the arguments in the
configuration file are set correctly.

Gateway_name Writer writer_
name: GPCModule creation
failed.

Failed to create the GPCModule due
to insufficient memory.

Try to free more memory.

Table D1: Common Gateway Error Messages (2 of 12)

Error Description Action
Netcool/OMNIbus v7 Probe and Gateway Guide 157

Appendix D: Gateway Error Messages
Gateway_name Writer writer_
name: Failed to start the
OS-gateway_name Writer.

Gateway_name Writer writer_
name: Failed to start the
gateway_name-OS Reader.

Failed to start the ObjectServer to
gateway reader or writer module.

Check that the module is installed in
the correct location and that the file
permissions are set correctly.

Gateway_name Writer writer_
name: Failed to shutdown
gateway_name Writer.

Failed to stop gateway writer
module.

Check the writer log file for more
information.

Gateway_name Writer writer_
name: Failed to construct
path to gateway_name
Read/Write Module.

Failed to construct the path to the
gateway read/write module
application.

Check that the module is installed in
the correct location and that the file
permissions are set correctly.

Gateway_name Writer writer_
name: Failed to find the
gateway_name Read/Write
Module [x].

Cannot find the module binary. Check that the module is installed in
the correct location and that the file
permissions are set correctly.

Gateway_name Writer writer_
name: Incorrect permissions
on the gateway_name module
binary [x].

The module’s file permissions are set
incorrectly.

Check that the module is installed in
the correct location and that the file
permissions are set correctly.

Gateway_name Writer writer_
name: Failed to create the
Serial Cache Mutex.

The gateway writer failed to create
the necessary data protection
structure for the internal serial
number cache due to insufficient
resources. This is generally due to
insufficient memory.

Try to free more memory.

Gateway_name Writer writer_
name: Failed to create the
Conn Mutex.

The gateway writer failed to create
the necessary data protection
structure for the ObjectServer
connection due to insufficient
resources.

Try to free more memory.

Gateway_name Writer writer_
name: Failed to start the
gateway_name-to-OS service
thread.

The gateway failed to spawn the
service thread.

Check that the gateway can access
the ObjectServer.

Table D1: Common Gateway Error Messages (3 of 12)

Error Description Action
158 Netcool/OMNIbus v7 Probe and Gateway Guide

Common Gateway Error Messages
Gateway_name Writer writer_
name: Failed to send a
shutdown request to the
gateway_name Writer.

The gateway did not shut down
cleanly.

Check the writer log file for more
information.

Failed to install SIGCHLD
handler.

Failed to install SIGPIPE
handler.

The gateway failed during handler
installation.

Refer to your support contract for
information about contacting the
helpdesk.

No <mapname> attribute for
gateway_name writer writer_
name.

The gateway could not find the map
name.

Check the configuration file.

<mapname> attribute is not
a name for gateway_name
writer writer_name.

Incorrect writer name given. Check the configuration file.

A MAP called <map> does not
exist for gateway_name
writer writer_name.

The gateway could not find specified
map.

Check the configuration file.

MAP <map> is invalid for
gateway_name writer writer_
name.

The given map is not valid. Check the configuration file.

Map <map> is not the
journal map and cannot
contain the <journal map
name> map item in gateway_
name Writer writer_name.

If this map is not the journal map,
then the JOURNAL_MAP_NAME
attribute is set incorrectly.

Check the JOURNAL_MAP_NAME
attribute in the gateway
configuration file.

Gateway_name Writer: Failed
to send gateway_name Event
to the gateway_name Writer
module.

The gateway failed to send a given
event.

Check the log files for more
information.

Gateway_name Writer: Failed
to wait for return from the
gateway_name Writer module.

There was an error in retrieving the
success statement.

Check the log files for more
information.

Gateway_name Writer: Failed
to read the status return
message from the gateway_
name Writer module.

The gateway failed to retrieve the
status of a module.

Check the log files for more
information.

Table D1: Common Gateway Error Messages (4 of 12)

Error Description Action
Netcool/OMNIbus v7 Probe and Gateway Guide 159

Appendix D: Gateway Error Messages
Gateway_name Writer: Failed
to send event to gateway_
name.

The module failed to send the event
to gateway.

Check the log files for more
information.

Gateway_name Writer:
gateway_name Writer Module
experienced Fatal Error.

There was a fatal error. Check the log files for more
information.

Gateway_name Writer: Failed
to send event to gateway_
name. Unknown type.

The gateway received unexpected
type.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Failed
to build serial index.

The gateway failed to build indexes. Check that the Serial column
exists in the ObjectServer
alerts.status table.

Incorrect data type for the
Serial column.

The gateway did not receive the
correct data type.

Check that the data type for the
Serial column in the ObjectServer
alerts.status table is an
integer.

Gateway_name Writer: Failed
to build server serial
index.

The gateway failed to get the server
serial index.

Check that the ServerSerial
column exists in the ObjectServer
alerts.status table.

Incorrect data type for the
Server Serial column.

The gateway did not receive the
correct data type.

Check that the data type for the
ServerSerial column in the
ObjectServer alerts.status
table is an integer.

Gateway_name Writer: Failed
to build server name index.

The gateway failed to get the server
name index.

Check that the ServerName
column exists in the ObjectServer
alerts.status table.

Incorrect data type for the
Server Name column.

The gateway did not receive the
correct data type.

Check that the data type for the
ServerName column in the
ObjectServer alerts.status
table is a string.

Gateway_name Writer: Failed
to find field <fieldnumber>
in gateway_name Event.

The gateway could not find the field
number it was looking for.

Refer to your support contract for
information about contacting the
helpdesk.

Table D1: Common Gateway Error Messages (5 of 12)

Error Description Action
160 Netcool/OMNIbus v7 Probe and Gateway Guide

Common Gateway Error Messages
Gateway_name Writer:
Invalid field name for
expansion on action SQL
[<field>].

The gateway received an invalid field
name.

Refer to the Netcool/OMNIbus
Administration Guide for
information about ObjectServer SQL.

Gateway_name Writer:
Unenclosed field expansion
request in action SQL [<sql
action>].

The gateway did not find an
enclosing bracket.

Check the action.sql file.

Gateway_name Writer: Failed
to turn counter-part
notification back-on. Fatal
error in gateway_name-to-OS
Feedback.

Gateway_name Writer: Failed
to turn counter-part
notification off.

Gateway_name-to-OS Feedback
failed.

The gateway failed to send a notify
command.

This is an internal error. Refer to your
support contract for information
about contacting the helpdesk.

Gateway_name Writer: Failed
to send SQL command to
ObjectServer.

Gateway_name-to-OS Feedback
failed.

The gateway failed to send the SQL
command to the ObjectServer.

Check the ObjectServer log file.

Failed to find the column
<column_name> in map <map_
name>.

The gateway failed to find the given
column.

Check that the given column name is
entered correctly in the
configuration file and that it appears
in the ObjectServer
alerts.status table.

Gateway_name Writer: Failed
to lock the cache mutex.

The writer failed to lock the
ObjectServer feedback connection in
order to access the connection and
feed back problem ticket data
changes for the associated alert.

This lock failure may be due to
insufficient resources or as a result of
the underlying threading system
preventing a deadlock between
multiple threads that are contending
for the resource.

Failed to find cached
problem ticket for serial
<serial number> using map
<map name>.

The gateway failed to find the
specified cache problem ticket
number.

Check that the specified ticket was
originally created by the gateway.

Table D1: Common Gateway Error Messages (6 of 12)

Error Description Action
Netcool/OMNIbus v7 Probe and Gateway Guide 161

Appendix D: Gateway Error Messages
Gateway_name Writer: Failed
to unlock the cache mutex.

After access to the cache, an attempt
to unlock the data structures
protection lock failed. This message
indicates that the gateway is in a
position which will lead to a
deadlock situation.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Cache
add error.

The gateway could not add the serial
to the serial cache due to insufficient
resources.

Try to free more memory.

Gateway_name Writer writer_
name: Failed to create
gateway_name Event for
journal update.

The gateway failed to create the
journal event update.

Check the writer log file.

Gateway_name Writer writer_
name: Failed to send
journal update event to
gateway_name.

The gateway failed to send journal
event update.

Check the writer log file.

<attribute name> attribute
is not a string for
gateway_name writer writer_
name.

An attribute in the writer was of an
incorrect data type.

Check the writer definition in the
configuration file.

No <attribute name>
attribute for gateway_name
writer writer_name given.

The gateway failed to find the
attribute.

Add the attribute to the writer
definition in the configuration file.

Gateway_name Writer writer_
name: Failed to find the
<counterpart attribute>
attribute for the writer.
This is necessary due to
bi-directional nature.

An attempt to find the necessary
counterpart attribute failed.

Check the configuration file.

Gateway_name Writer writer_
name: Is not a name for an
Object Server reader.

The gateway found an incorrect data
type.

Check the configuration file.

Gateway_name Writer writer_
name: Reader <reader> was
not found for counter part.

The reader was not found. Check the counterpart configuration
in the configuration file.

Table D1: Common Gateway Error Messages (7 of 12)

Error Description Action
162 Netcool/OMNIbus v7 Probe and Gateway Guide

Common Gateway Error Messages
Gateway_name Writer writer_
name: Failed to send SKIP
Command.

This command failed to disable IDUC
on a bidirectional connection.

Refer to your support contract for
information about contacting the
helpdesk.

Connection to feedback
server failed.

The gateway failed to make
connection.

Check the ObjectServer log file.

Failed to set the death
call on the feedback
connection.

The gateway failed to set the
necessary property.

This is an internal error. Refer to your
support contract for information
about contacting the helpdesk.

Writer counterpart error. The gateway failed to find the
counterpart attribute for gateway
writer.

Check the counterpart configuration
in the configuration file.

Gateway_name Writer: Failed
to stat() the action SQL
file "filename".

The gateway failed to stat the file
in order to determine its size.

Check the file access permissions for
the specified action file.

Gateway_name Writer: Empty
action SQL file "filename".

File "filename" is empty. Check the action SQL file.

Gateway_name Writer: Failed
to open the action SQL file
"filename".

The gateway failed to open the file. Check the file permissions.

Gateway_name Writer: Failed
to read the action SQL file
"filename".

The gateway failed to read the file. Check the file permissions.

Gateway_name Writer: No
Action SQL find in file
"filename".

There is no action SQL in the file. Check the file.

Gateway_name Writer writer_
name: Failed to read the
conversions table.

The gateway failed to read the
conversions table.

Check the file permissions.

Table D1: Common Gateway Error Messages (8 of 12)

Error Description Action
Netcool/OMNIbus v7 Probe and Gateway Guide 163

Appendix D: Gateway Error Messages
Gateway_name Writer: Failed
to find PM %s in cache for
return PMO event.

The gateway has received a Problem
Management Open return event
from gateway for the problem ticket.
When an attempt was made to look
up the problem ticket number in the
writer’s cache, in order to determine
the serial number of the ticket’s
associated alert, no record could be
reclaimed or found.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Open
Feedback Failed.

The gateway failed to construct the
open action SQL statement or send
the SQL action command to the
server.

Check the ObjectServer SQL file.

Gateway_name Writer: No
Update action SQL for
gateway_name Update event.

There is no update action SQL
statement.

Check the configuration file.

Gateway_name Writer: Failed
to find PM %s in cache for
return PMU event.

The gateway has received a Problem
Management Update return event
from gateway for the problem ticket.
When an attempt was made to look
up the problem ticket number in the
writer’s cache in order to determine
the serial number of the ticket’s
associated alert, no record could be
reclaimed or found.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Update
Feedback Failed.

The gateway failed to construct the
open action SQL statement or send
the SQL action command to the
server.

Check the ObjectServer log file.

Gateway_name Writer: Failed
to find PM %s in cache for
return PMJ event.

The gateway has received a Problem
Management Journal return event
from gateway for the problem ticket.
When an attempt was made to look
up the problem ticket number in the
writer’s cache in order to determine
the serial number of the ticket’s
associated alert, no record could be
reclaimed or found.

Refer to your support contract for
information about contacting the
helpdesk.

Table D1: Common Gateway Error Messages (9 of 12)

Error Description Action
164 Netcool/OMNIbus v7 Probe and Gateway Guide

Common Gateway Error Messages
Gateway_name Writer:
Journal Feedback Failed.

The gateway failed to construct the
open action SQL statement or send
the SQL action command to the
server.

Check the ObjectServer log file.

Gateway_name Writer: Failed
to find PM %s in cache for
return PMC event.

The gateway has received a Problem
Management Close return event
from gateway for the problem ticket.
When an attempt was made to look
up the problem ticket number in the
writer’s cache in order to determine
the serial number of the ticket’s
associated alert, no record could be
reclaimed or found.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Close
Feedback Failed.

The gateway failed to construct the
open action SQL statement or send
the SQL action command to the
server.

Check the ObjectServer log file.

Received error code <code>
from Reader/Writer Module -
[<message>].

The gateway received an error
message.

Check the module log files.

Gateway_name Writer: Failed
to read gateway_name event
from gateway_name Reader
Module.

The gateway failed to read the event
sent by the gateway reader module.

Check the reader log files.

Gateway_name Writer:
Received event of type
<event type> which was
unexpected.

The gateway received an unknown
event type.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer:
Received invalid known
message from Reader/Writer
Module for this system.

The gateway received an invalid
known message.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer:
Received unknown message
from Reader/Writer Module.

The gateway received an invalid
unknown message.

Refer to your support contract for
information about contacting the
helpdesk.

Table D1: Common Gateway Error Messages (10 of 12)

Error Description Action
Netcool/OMNIbus v7 Probe and Gateway Guide 165

Appendix D: Gateway Error Messages
Gateway_name Writer: Failed
to block on data feed from
gateway_name Reader Module.

The gateway failed to block due to a
shutdown request. This message is
displayed when the gateway is
shutting down.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Fatal
thread termination.
Stopping gateway.

A thread exited unexpectedly. Check the gateway log files.

<attribute name> attribute
is not a string for
gateway_name writer writer_
name - IGNORED

An attribute name is not recognized.
The gateway will ignore it.

Check the gateway log files.

<attribute name> attribute
must be set to TRUE or
FALSE for writer writer_
name.

An attribute name has not been set
to TRUE or FALSE.

Check the gateway configuration
file.

Gateway_name Writer writer_
name: Failed to shutdown
gateway_name Reader/Writer
Modules.

The gateway failed to shut down
reader/writer modules.

Check the module log file.

Gateway_name Writer writer_
name: Failed to disconnect
feedback connection.

The disconnect of feedback channel
failed.

Check the ObjectServer log file.

Failed to create gateway_
name event structure for a
problem management open
event in writer writer_
name.

The gateway writer failed to allocate
a gateway event structure for a
problem management open event
due to insufficient memory
resources.

Try to free more memory.

Gateway_name Writer:
FEEDBACK FAILED!!

The gateway failed to store the
problem number.

Check the ObjectServer log file.

Failed to create journal
for gateway_name writer
writer_name (from INSERT)

The gateway failed to create journal. Check the writer log file.

Failed to create gateway_
name event structure for a
problem management update
event in writer writer_
name.

The gateway writer failed to allocate
a gateway event structure for a
problem management update event
due to insufficient memory
resources.

Try to free more memory.

Table D1: Common Gateway Error Messages (11 of 12)

Error Description Action
166 Netcool/OMNIbus v7 Probe and Gateway Guide

Common Gateway Error Messages
Gateway_name Writer writer_
name: Failed to delete
problem ticket from cache
for serial <serial number>.

The gateway failed to delete serial
number from cache.

This is an internal error. You can
ignore it.

Failed to create gateway_
name event structure for a
PMC event in writer writer_
name.

The gateway writer failed to allocate
a gateway event structure for a
Problem Management Close event
due to insufficient memory
resources.

Try to free more memory.

Table D1: Common Gateway Error Messages (12 of 12)

Error Description Action
Netcool/OMNIbus v7 Probe and Gateway Guide 167

Appendix D: Gateway Error Messages
168 Netcool/OMNIbus v7 Probe and Gateway Guide

Index
probe_gateIX.fm October 11, 2004 10:49 am

Index

Symbols
$ symbol

in probe rules files 28

% symbol
in probe rules files 29

@ symbol
in gateway mappings 81
in probe rules files 17, 28

@Identifier 17, 18

@Tally 18

A
ADD ROUTE gateway command 81, 110

alerts.details table 130

alerts.journal table 131

alerts.status table 124

API probes 12

arithmetic functions
in probe rules files 43

arithmetic operators
in probe rules files 37

arrays
in probe rules files 30

AUTH_PASSWORD gateway command 89

AUTH_USER gateway command 89

B
bidirectional gateways 73

bit manipulation operators
in probe rules files 38

BOOLEAN data type 134

C
CHAR data type 134

command line options
gateways 96
probes 61

comparison operators
in probe rules files 38

configuration commands
gateways 112

configuration files
gateways 79
nco_gate.conf 79

CORBA probes 13

correlation of events 18

COUNTERPART attribute in gateways 76

CREATE FILTER gateway command 82, 108

CREATE MAPPING gateway command 105

D
data types 134

database probes 12

date functions
in probe rules files 44

debugging
probes 20, 148
rules files 55

deduplication 18, 47

deleting
elements in probe rules files 40

details function
in probe rules files 48

device probes 11

DROP FILTER gateway command 109
Netcool/OMNIbus v7 Probe and Gateway Guide 169

Index
DROP MAPPING gateway command 106

DUMP CONFIG gateway command 87, 112

E
editing

probe properties 60

elements 17
in probe rules files 28

encrypting
passwords for gateway target systems 89
passwords for the ObjectServer 20, 89

error messages
gateways 156
probes 137

exists function
in probe rules files 39

extract function
in probe rules files 57

F
fields

Identifier 18
in probe rules files 28
in probes 17
ObjectServer 123
Tally 18

filters
commands 108
in gateways 82

G
gateways

ADD ROUTE command 110
bidirectional 73
command line options 96
configuration commands 112
COUNTERPART attribute 76
CREATE FILTER command 108
CREATE MAPPING command 105

DROP FILTER command 109
DROP MAPPING command 106
DUMP CONFIG command 112
dumping configurations interactively 87
encrypting target system passwords 89
error messages 156
filter commands 108
filter description 82
general commands 114
introduction 70
LOAD CONFIG command 112
LOAD FILTER command 108
loading configurations interactively 87
log files 91
mapping commands 105
mapping description 81
reader commands 98
reader description 76, 79
reader/writer modules 76
REMOVE ROUTE command 110
route commands 110
route description 77, 81
SAVE CONFIG command 112
saving configurations interactively 87
secure mode 88
SET CONNECTIONS command 114
SET DEBUG MODE command 116
SHOW MAPPING ATTRIBUTES command 107
SHOW MAPPING command 106
SHOW READERS command 99
SHOW ROUTES command 111
SHOW SYSTEM command 115
SHOW WRITER ATTRIBUTES command 103
SHOW WRITER TYPES command 103
SHOW WRITERS command 102
SHUTDOWN command 114
START READER command 98
START WRITER command 101
STOP READER command 99
STOP WRITER command 102
store and forward mode 88
TRANSFER command 116
170 Netcool/OMNIbus v7 Probe and Gateway Guide

Index
writer commands 101
writer description 80

Generic probe 20

I
Identifier field 16, 18

IDUC 98

IF statements in rules files 32, 56

include files
in probe rules files 34

INCR data type 134

INTEGER data type 134

INTEGER64 data type 134

J
Java probes 13

L
LOAD CONFIG gateway command 87, 112

LOAD FILTER gateway command 108

log file probes 11

log function
in probe rules files 49

logical operators
in probe rules files 39

lookup tables
in probe rules files 45

M
mappings

commands 105
in gateways 81

math functions
in probe rules files 43

math operators
in probe rules files 37

messagelevel command line option 55

messagelog command line option 55

metacharacters 119

miscellaneous probes 13

N
nco_g_crypt 20, 61, 89

nco_gate 96

nco_gate.conf file 79

nco_gate.log file 91

nco_gwconv 93

nco_objserv 60

ncoadmin user group 86, 96

nested IF statements in rules files 56

O
ObjectServer

data types 134

ON INSERT ONLY flag in gateways 82

P
password encryption 20, 89

pattern matching 119

Ping probe 15

probes
API 12
arithmetic functions in rules files 43
arithmetic operators in rules files 37
arrays in rules files 30
bit manipulation operators in rules files 38
command line options 61
comparison operators in rules files 38
components 14
CORBA 13
data acquisition 17
database 12
date functions in rules files 44
debugging 20, 148
debugging rules files 55
Netcool/OMNIbus v7 Probe and Gateway Guide 171

Index
deduplication in rules files 47
deleting elements in rules files 40
details function in rules files 48
device 11
editing properties 60
elements in rules files 28
error messages 137
executable file 14
fields in rules files 28
Identifier field 18
IF statements in rules files 32
include files in rules files 34
introduction 10
Java 13
log file 11
log function in rules files 49
logical operators in rules files 39
lookup tables in rules files 45
math functions in rules files 43
math operators in rules files 37
miscellaneous 13
operation 19
properties file 14
properties in rules files 29
raw capture 20
rules file 16
rules file processing 28
secure mode 20
service function in rules files 51
setlog function in rules files 49
store and forward 19
string functions in rules files 41
string operators in rules files 37
SWITCH statement in rules files 32
syntax testing 54
temporary elements in rules files 28
testing rules files 54
testing syntax 54
time functions in rules files 44
troubleshooting 148
types 11
update function in rules files 47

using a specific probe 22

properties
in probe rules files 29
probes 61

R
raw capture mode in probes 20

RawCapture property
in probe rules files 30

readers
commands 98
in gateways 76, 79

REAL data type 134

regmatch in rules files 57

regular expressions 57, 119

REMOVE ROUTE gateway command 110

routes
commands 110
in gateways 77, 81

rules file processing 28
bit manipulation operators 38
comparison operators 38
date functions 44
deduplication 18
deleting elements 40
details function 48
exists function 39
extract function 57
IF statements 32
log function 49
logical operators 39
lookup tables 45
math functions 43
math operators 37
nested IF statements 56
regmatch 57
rules file examples 56
setlog function 49, 51
string functions 41
string operators 37
172 Netcool/OMNIbus v7 Probe and Gateway Guide

Index
SWITCH statement 32
time functions 44
update function 47

rules files 55

S
SAVE CONFIG gateway command 87, 112

saving
gateway configurations interactively 87

secure command line option 20, 88

secure mode
in gateways 88
in probes 20

service function
in probe rules files 51

service.status table 133

SET CONNECTIONS gateway command 87, 114

SET DEBUG MODE gateway command 116

setlog function
in probe rules files 49

SHORT data type 134

SHOW MAPPING ATTRIBUTES gateway
command 107

SHOW MAPPINGS gateway command 106

SHOW READERS gateway command 99

SHOW ROUTES gateway command 111

SHOW SYSTEM gateway command 87, 115

SHOW WRITER ATTRIBUTES gateway command 103

SHOW WRITER TYPES gateway command 103

SHOW WRITERS gateway command 102

SHUTDOWN gateway command 114

START READER gateway command 79, 98

START WRITER gateway command 80, 101

STOP gateway command 87

STOP READER gateway command 99

STOP WRITER gateway command 80, 102

store and forward mode
in gateways 88

in probes 19

string functions
in probe rules files 41

string operators
in probe rules files 37

SWITCH statement in rules files 32

Syntax probe 54

T
Tally field 18

temporary elements
in probe rules files 28

testing
probe syntax 54
rules files 54

time functions
in probe rules files 44

tokens 17

TRANSFER gateway command 116

troubleshooting
gateways 156
probes 148

U
UNSIGNED data type 134

UNSIGNED64 data type 134

update function
in probe rules files 47

UTC data type 134

V
VARCHAR data type 134

W
writers

commands 101
in gateways 80
Netcool/OMNIbus v7 Probe and Gateway Guide 173

Index
174 Netcool/OMNIbus v7 Probe and Gateway Guide

backmatter.fm October 11, 2004

Contact Information
Corporate

Region Address Telephone Fax World Wide Web

USA Micromuse Inc. (HQ)
139 Townsend Street
San Francisco
CA 94107
USA

1-800-Netcool (638 2665)

+1 415 538 9090

+1 415 538 9091 http://www.micromuse.com

EUROPE Micromuse Ltd.
Disraeli House
90 Putney Bridge Road
London SW18 1DA
United Kingdom

+44 (0) 20 8875 9500 +44 (0) 20 8875 9995 http://www.micromuse.co.uk

ASIA-PACIFIC Micromuse Ltd.
Level 2
26 Colin Street
West Perth
Perth WA 6005
Australia

+61 (0) 8 9213 3400 +61 (0) 8 9486 1116 http://www.micromuse.com.au

Technical Support

Region Telephone Fax

USA 1-800-Netcool (800 638 2665)

+1 415 538 9090 (San Francisco)

+1 415 538 9091

EUROPE +44 (0) 20 8877 0073 (London, UK) +44 (0) 20 8875 0991

ASIA-PACIFIC +61 (0) 8 9213 3470 (Perth, Australia) +61 (0) 8 9486 1116

E-mail World Wide Web

GLOBAL support@micromuse.com http://support.micromuse.com

License Generation Team

E-Mail World Wide Web

licensing@micromuse.com http://support.micromuse.com/helpdesk/licenses
Netcool/OMNIbus v7 Probe and Gateway Guide 175

mailto:licensing@micromuse.com
http://www.micromuse.com
mailto:support@micromuse.com
http://support.micromuse.com/helpdesk/licenses
http://www.micromuse.co.uk
http://support.micromuse.com
http://www.micromuse.com.au

Contact Information
176 Netcool/OMNIbus v7 Probe and Gateway Guide

	Contents
	Preface
	Audience
	About the Netcool/OMNIbus v7 Probe and Gateway Guide
	Associated Publications
	Netcool®/OMNIbus™ Installation and Deployment Guide
	Netcool®/OMNIbus™ User Guide
	Netcool®/OMNIbus™ Administration Guide
	Netcool®/OMNIbus™ Probe and Gateway Guide
	Online Help

	Typographical Notation
	Note, Tip, and Warning Information
	Syntax and Example Subheadings

	Operating System Considerations

	Chapter 1: Introduction to Probes
	1.1 Probe Overview
	1.2 Types of Probes
	Device Probes
	Log File Probes
	Database Probes
	API Probes
	CORBA Probes
	Miscellaneous Probes

	1.3 Probe Components
	Executable File
	Properties File
	Rules File

	1.4 Probe Architecture
	1.5 Creating a Unique Identifier
	Deduplication with Probes

	1.6 Probe Features
	Store and Forward Mode
	Raw Capture Mode
	Secure Mode
	Peer-to-Peer Failover

	1.7 Using a Specific Probe
	Running a Probe on UNIX
	Running a Probe on Windows

	Chapter 2: Probe Rules File Syntax
	2.1 Elements, Fields, Properties, and Arrays in Rules Files
	Assigning Values to ObjectServer Fields
	Assigning Temporary Elements in Rules Files
	Assigning Property Values to Fields
	Assigning Values to Properties
	Using Arrays

	2.2 Conditional Statements in Rules Files
	The IF Statement
	The SWITCH Statement

	2.3 Including Multiple Rules Files
	2.4 Rules File Functions and Operators
	Math and String Operators
	Bit Manipulation Operators
	Comparison Operators
	Logical Operators
	Existence Function
	Deleting Elements or Events
	String Functions
	Math Functions
	Date and Time Functions
	Host and Process Utility Functions
	Lookup Table Operations
	Update on Deduplication Function
	Details Function
	Message Logging Functions
	Sending Alerts to Alternate ObjectServers and Tables
	Service Function
	Monitoring Probe Loads

	2.5 Testing Rules Files
	2.6 Debugging Rules Files
	2.7 Rules File Examples
	Enhancing the Summary Field
	Populating Multiple Fields
	Nested IF Statements
	Regular Expression Match
	Regular Expression Extract
	Numeric Comparisons
	Simple Numeric Expressions
	Strings and Numerics in One Expression
	Using Load Functions to Monitor Nodes

	Chapter 3: Probe Properties and Command Line Options
	3.1 Probe Properties and Command Line Options

	Chapter 4: Introduction to Gateways
	4.1 Introduction to Gateways
	4.2 Types of Gateways
	4.3 ObjectServer Gateways
	Unidirectional ObjectServer Gateway
	Bidirectional ObjectServer Gateway
	ObjectServer Gateway Writers and Failback (Alert Replication Between Sites)

	4.4 Database, Helpdesk, and Other Gateways
	Gateway Components
	Unidirectional Gateways
	Bidirectional Gateways

	4.5 Gateway Configuration
	Gateway Configuration File
	Reader Commands
	Writer Commands
	Route Commands
	Mapping Commands
	Filter Commands

	4.6 Running a Gateway
	Running a Gateway on UNIX
	Running a Gateway on Windows

	4.7 Configuring Gateways Interactively
	Saving Configurations Interactively
	Dumping and Loading Gateway Configurations Interactively

	4.8 Gateway Features
	Store and Forward Mode
	Secure Mode
	Encrypting Target System Passwords

	4.9 Gateway Debugging
	4.10 Other Gateway Writers and Failback
	4.11 Conversion Table Utility
	Adding a Conversion
	Updating a Conversion
	Deleting a Conversion

	Chapter 5: Gateway Commands and Command Line Options
	5.1 Gateway Command Line Options
	5.2 Reader Commands
	START READER
	STOP READER
	SHOW READERS

	5.3 Writer Commands
	START WRITER
	STOP WRITER
	SHOW WRITERS
	SHOW WRITER TYPES
	SHOW WRITER ATTRIBUTES

	5.4 Mapping Commands
	CREATE MAPPING
	DROP MAPPING
	SHOW MAPPINGS
	SHOW MAPPING ATTRIBUTES

	5.5 Filter Commands
	CREATE FILTER
	LOAD FILTER
	DROP FILTER

	5.6 Route Commands
	ADD ROUTE
	REMOVE ROUTE
	SHOW ROUTES

	5.7 Configuration Commands
	LOAD CONFIG
	SAVE CONFIG
	DUMP CONFIG

	5.8 General Commands
	SHUTDOWN
	SET CONNECTIONS
	SHOW SYSTEM
	SET DEBUG MODE
	TRANSFER

	Appendix A: Regular Expressions
	A.1 How to Use Regular Expressions

	Appendix B: ObjectServer Tables
	B.1 Alerts Tables
	alerts.status Table
	alerts.details Table
	alerts.journal Table

	B.2 Service Tables
	service.status Table

	B.3 ObjectServer Data Types

	Appendix C: Probe Error Messages and Troubleshooting Techniques
	C.1 Generic Error Messages
	Fatal Level Messages
	Error Level Messages
	Warning Level Messages
	Information Level Messages
	Debug Level Messages

	C.2 ProbeWatch and TSMWatch Messages
	C.3 Troubleshooting Probes
	Common Problem Causes
	What to Do If

	Appendix D: Gateway Error Messages
	D.1 Common Gateway Error Messages

	Index
	Contact Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f00200063007200650061007400650020004d006900630072006f006d007500730065002000500044004600200064006f00630075006d0065006e00740073002e0020004c0061007300740020006d006f006400690066006900650064002000620079003a000d004d00690063006800610065006c00200048006f006c0074000d006f006e003a0020000d00310035002f00310030002f00320030003000330020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

