
Cisco Voice CORB
OL-4276-01
C H A P T E R 5
NM)
ce

NM

and
ese

bject
Subscribing for Cisco Voice CORBA Gateway
Events

Cisco Voice CORBA Gateway sends asynchronous events to subscribed Network Management (
layer applications as CORBA Notifications via CORBA Notification Service. Orbix Notification Servi
provided by Iona Technologies is used as CORBA Notification Service.

Orbix Notification Service provides the consumer applications (notification receivers, in this case,
layer applications) an interface to filter the notifications based on the notification content.

Cisco Voice CORBA Gateway sends the following types of events:

1. Object events (Inventory events)

2. Alarm events

Two channels are created in Orbix Notification service, Object Event Channel for inventory events
Alarm Event Channel for alarm events. NM layer applications will subscribe for notifications on th
channels with Orbix Notification Service.

Cisco Voice CORBA Gateway uses Containment path (Full Distinguished Name – FDN) as the o
identifier, so NM applications do not need to have knowledge of EM specific Object Identifiers to
identify the managed objects.
5-1
A Gateway Developer Reference Guide

Chapter 5 Subscribing for Cisco Voice CORBA Gateway Events
Object Events

S

ld

vent

ge)
Object Events
Three types of Object events are sent by Cisco Voice CORBA Gateway.

• Object-Create Event: Generated when an EMS object is created in the EMS object tree

• Object-Delete Event: Generated when an EMS object is deleted from EMS object tree

• AttributeValue-Change Event: Generated when there is a change in the attribute(s) of an EM
object.

Cisco Voice CORBA Gateway creates a channel in the Orbix Notification Service with the name
“cisco.mcg.eventChannel.ObjectEventChannel-Channel” for sending Object Events.

Format of CORBA notifications for object events is shown in the following figure. Remaining body fie
is present only in case of AttributeValue-Change events.

Fixed Header:

• Domain_type – Indicates the domain type of the event and is always set to MCG

• Event_type – Specifies the type of event and for Object Events, it is always set to
GenericObjectEvent

• Event_name – No value set

Filterable body fields:

• CLASS – EMS Class name of the object responsible for the event

• PATH – The containment path of the object (Fully Distinguished Name) responsible for the e

• PARENT - The containment path of the parent object

• OID – Object Identifier in hexa-decimal format (CEMF specific format)

• EVENTTYPE – Type of Object Event (Object-Create or Object-Delete or AttributeValue-Chan

• TIMESTAMP – Time stamp when the event is generated

Table 5-1 CORBA Notifications for Object Events

domain_type (=MCG)

Fixed Headerevent_type (=GenericObjectEvent)

event_name (=no value)

CLASS Value

Filterable body fields

PATH Value

PARENT Value

OID Value

EVENTTYPE Value

TIMESTAMP Value

Attribute 1 Value

Remaining bodyAttribute 2 Value

Attribute n Value
5-2
Cisco Voice CORBA Gateway Developer Reference Guide

OL-4276-01

Chapter 5 Subscribing for Cisco Voice CORBA Gateway Events
Object Events
Remaining body:

• Attribute (1…n) – List of attributes and their values that are changed.
5-3
Cisco Voice CORBA Gateway Developer Reference Guide

OL-4276-01

Chapter 5 Subscribing for Cisco Voice CORBA Gateway Events
Alarm Events

t

vent
Alarm Events
Three types of Alarm events are sent by Cisco Voice CORBA Gateway.

• Alarm-Create Event: Generated when an Alarm is created

• Alarm-Delete Event: Generated when an Alarm is deleted

• Alarm-Change Event: Generated when there is a change in the Alarm state.

Cisco Voice CORBA Gateway creates a channel in the Orbix Notification Service with

the name “cisco.mcg.eventChannel.AlarmEventChannel-Channel” for sending Alarm Events.

Format of CORBA notifications for alarm events is shown in the following figure.

Fixed Header:

• Domain_type – Indicates the domain type of the event and is always set to MCG

• Event_type – Specifies the type of event and for Object Events, it is always set to AlarmEven

• Event_name – No value set

Filterable body fields:

• CLASS – EMS Class name of the object responsible for the event

• PATH – The containment path of the object (Fully Distinguished Name) responsible for the e

• OID – Object Identifier in hexa-decimal format (CEMF specific format)

• TIMESTAMP – Time stamp when the event is generated

• EVENTTYPE – Type of Object Event (Alarm-Creation or Alarm- Deletion or Alarm-Change)

• STATUSINFO – Status of the alarm

Table 5-2 CORBA Notifications for Alarm Events

domain_type (=MCG)

Fixed Headerevent_type (=AlarmEvent)

event_name (=no value)

CLASS Value

Filterable body fields

PATH Value

OID Value

TIMESTAMP Value

EVENTTYPE Value

STATUSINFO Value

ACKSTATUSINFO Value

SEQUENCNUBER Value

SEVERITY Value

PROBABLECAUSE Value

ADDITIONALINFO Value

SPECIFICPROBLEM Value
5-4
Cisco Voice CORBA Gateway Developer Reference Guide

OL-4276-01

Chapter 5 Subscribing for Cisco Voice CORBA Gateway Events
Alarm Events
• ACKSTATUSINFO – Acknowledgement status

• SEQUENCENUMBER – Sequence number of the alarm

• SEVERITY – Severity of the alarm

• PROBABLECAUSE – Probable cause of the alarm

• ADDITIONAL INFO – Additional information regarding the alarm
5-5
Cisco Voice CORBA Gateway Developer Reference Guide

OL-4276-01

Chapter 5 Subscribing for Cisco Voice CORBA Gateway Events
Writing an Event Consumer Application

ce
vent

e IOR
.

Writing an Event Consumer Application
Writing a consumer application requires the Notification Service libraries and IDL files. Cisco Voi
CORBA Gateway supports push consumers. The consumer for Cisco Voice CORBA Gateway’s e
channels is same as writing any other consumer applications.

The following steps are involved in writing a consumer application:

• Initialize the ORB

orb = CORBA::ORB_init(argc, argv);
CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
root_poa = PortableServer::POA::_narrow(obj);
poa_manager = root_poa->the_POAManager();
poa_manager->activate();

• Get the reference to the required channel in the notification service

Reference to the Alarm Event Channel is created in this example and is based on reading th
of the channel from a file. Instead, naming service can be used to achieve the same purpose

CosNotifyChannelAdmin::EventChannel_var
get_event_channel(CORBA::ORB_ptr orb, CORBA::ULong channel_num)
{

CosNotifyChannelAdmin::EventChannel_var ec;
CosNotifyChannelAdmin::ChannelID id;
CosNotification::AdminProperties init_admin(0);

CosNotification::QoSProperties prop(3);
prop.length(3);

prop[0].name =
CORBA::string_dup(CosNotification::EventReliability);

prop[0].value <<= (CORBA::Short)CosNotification::BestEffort;
prop[1].name =

CORBA::string_dup(CosNotification::ConnectionReliability);
prop[1].value <<= (CORBA::Short)CosNotification::BestEffort;

prop[2].name = CORBA::string_dup("MaxRetries");
prop[2].value <<= (CORBA::ULong)3;

try
{

ifstream is("/AlarmEventChannel.ref");
char ior_ref[5000];

if(is.good()) {
is >> ior_ref;

} else {
cout << "Error opening AlarmEventChannel IOR!" << endl;
exit(-1);

}
ec = CosNotifyChannelAdmin::EventChannel::_narrow(

orb->string_to_object(ior_ref));.
} catch (CORBA::SystemException& se) {

cerr << "System exception occurred while creating channel: "
<< se << endl;

exit(1);
}
return ec._retn();

}

5-6
Cisco Voice CORBA Gateway Developer Reference Guide

OL-4276-01

Chapter 5 Subscribing for Cisco Voice CORBA Gateway Events
Writing an Event Consumer Application
• Connect the consumer to the channel

There is only one channel in the current example. NotifyPushConsumer_i is the class that is
implementing the method for processing the events.

void connect_event_consumers(
CosNotifyChannelAdmin::EventChannel_ptr channel,
CORBA::ULong num_channel)

{
CosNotifyChannelAdmin::ConsumerAdmin_var ca =

channel->default_consumer_admin();
assert(!CORBA::is_nil(ca));
consumers[num_channel] = new NotifyPushConsumer_i[num_consumers];

for (CORBA::ULong i = 0; i < num_consumers; i++) {
consumers[num_channel][i].my_POA(root_poa);
consumers[num_channel][i].myid(

root_poa->activate_object(&consumers[num_channel][i]));

CosNotifyChannelAdmin::ProxyID proxy_id;
CosNotifyChannelAdmin::ClientType ctype =

CosNotifyChannelAdmin::SEQUENCE_EVENT;

CosNotifyChannelAdmin::ProxySupplier_var obj =
ca->obtain_notification_push_supplier(ctype, proxy_id);

CosNotifyChannelAdmin::SequenceProxyPushSupplier_ptr pps =
CosNotifyChannelAdmin::SequenceProxyPushSupplier::_narrow(obj);

// Set PacingInterval and MaxBatchSize QoS on the proxy
CosNotification::QoSProperties prop(2);
prop.length(2);

IT_Duration pi_tmp(1000000, 0); // wait a long time
TimeBase::TimeT pacing_interval = pi_tmp.m_ticks;
prop[0].name = CORBA::string_dup(
CosNotification::PacingInterval);
prop[0].value <<= pacing_interval;

prop[1].name = CORBA::string_dup(
CosNotification::MaximumBatchSize);
prop[1].value <<= CORBA::Long(num_events);

pps->set_qos(prop);

consumers[num_channel][i].connect(pps);

CosNotification::EventTypeSeq *eventType1=0;
eventType1 = pps->obtain_offered_types(

(CosNotifyChannelAdmin::ObtainInfoMode) 1);
cout <<"\nto get the event types offered by "

<< "ObjectEventChannel \n" <<endl;

CORBA::ULong leng=eventType1->length();
cout << "the length of event types is " <<leng <<endl;

for (int k=0; k <leng; k++) {
cout << "Domain name = "<<

(*eventType1)[k].domain_name<<endl;
cout << "Type name = "<< (*eventType1)[k].type_name<< endl;

}
CORBA::release(pps);

}
}

5-7
Cisco Voice CORBA Gateway Developer Reference Guide

OL-4276-01

Chapter 5 Subscribing for Cisco Voice CORBA Gateway Events
Writing an Event Consumer Application

esses
• Implement the push consumer class that receives the events

The class that implements the method for receiving the events has to inherit from
POA_CosNotifyComm::SequencePushConsumer class. And should override the
push_structured_events() method and implement the business logic of the application that proc
the event.

void
NotifyPushConsumer_i::push_structured_events(

const CosNotification::EventBatch& events
)

IT_THROW_DECL((CORBA::SystemException))
{

// Accept the incoming structured event and
// process it.
//
cout << endl << "Received Event " << endl;

bool rembody=FALSE;
MCG::ObjectAttributes* data;

char *event_type = 0;
char *domain_name =0;
char *event_name =0;
int variableLength=0;
int filterableLength=0;

//cout<< "\n consumer: Received Event Batch # " << m_count++<<
endl;

for (int i = 0; i < events.length(); i++)
{

domain_name =
CORBA::string_dup(events[i].header.fixed_header.event_type.domain_name)
;

event_type =
CORBA::string_dup(events[i].header.fixed_header.event_type.type_name);

event_name =
CORBA::string_dup(events[i].header.fixed_header.event_name);

cout <<"\nFIXED HEADER" <<endl;
cout << "Domain_Type: " <<domain_name <<endl;
cout <<"Event_Type: " <<event_type <<endl;
cout <<"Event_Name: " <<event_name <<endl;

if (strstr(event_type, "LOSTCONNECTION")) {
cout <<"The server is down, so the consumer exits.\n"

<<endl;
exit(1);

}
variableLength = events[i].header.variable_header.length();

cout << "\nVARIABLE HEADER" <<endl;
cout <<"Variable header length is " <<variableLength <<endl;

filterableLength = events[i].filterable_data.length();

cout <<"\nFILTERABLE BODY FIELDS"<<endl;
cout <<"Filterable body length is " <<filterableLength <<endl;

for (int k=0; k<filterableLength; k++)
{

char * cvalue;
events[i].filterable_data[k].value >>= cvalue;
5-8
Cisco Voice CORBA Gateway Developer Reference Guide

OL-4276-01

Chapter 5 Subscribing for Cisco Voice CORBA Gateway Events
Writing an Event Consumer Application

ilable

f the
cout << "Filterable Fields:" <<k<<": "
<<events[i].filterable_data[k].name << " = "<< cvalue

<<endl;

// Remainder of the body is only applicable to
// AttributeValue change events only
if (!strcasecmp(cvalue, "AttributeValue-Change"))
{

events[i].remainder_of_body >>= data;
rembody =TRUE;

}
}
if (rembody)
{

int len = data->attrs.length();
cout << "\nREMAINING BODY: with len= " << len << endl;

for(int i=0; i < len; i++)
{

cout << "Attr-" << i << "-Name: "
<< data->attrs[i].name
<< " Value: "
<< data->attrs[i].value <<endl;

}
}

}
totalEvents += events.length();
cout <<" Total events = " << totalEvents << endl;

}

• Wait for the events

The consumer application can start waiting for the events by executingorb->run() in the main method.
The events are asynchronously pushed to the consumer.

Example programs for the consumer application are shipped with the VCG package and are ava
under <VCG_INSTALL_DIR>/src directory.

The IORs of the two channels are also available in the files for convenience in the root directory o
server machine.

/AlarmEventChannel.ref – Contains IOR of Alarm Event Channel

/ObjectEventChannel.ref – Contains IOR of Object Event Channel
5-9
Cisco Voice CORBA Gateway Developer Reference Guide

OL-4276-01

Chapter 5 Subscribing for Cisco Voice CORBA Gateway Events
Writing an Event Consumer Application
5-10
Cisco Voice CORBA Gateway Developer Reference Guide

OL-4276-01

	Subscribing for Cisco Voice CORBA Gateway Events
	Object Events
	Alarm Events
	Writing an Event Consumer Application

