

Technical Specifications

This chapter provides Technical Specifications of the Cisco ONS 15302.

6.1 Mechanical Overview

The equipment is provided as a subrack suitable for mounting within a 485mm (19-in.) and 600mm (23.6-in) equipment cabinet.

Figure 6-1 shows the outer dimensions of the ONS 15302 system equipment.

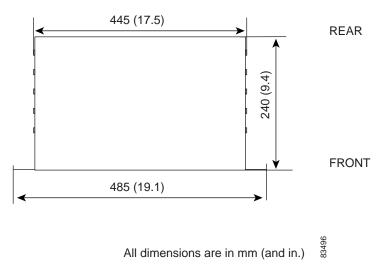
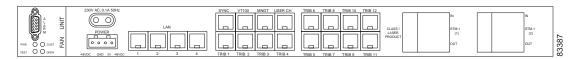



Figure 6-1 Outer Dimensions of the ONS 15302 System

Figure 6-2 and Figure 6-3 display the two different views of the ONS 15302 with the different LEDs and connectors.

Figure 6-2 View of the ONS 15302 with the Connector Array in Front

Figure 6-3	View of the ONS 15302 with the WAN Module in Front
------------	--

	LAN 2 PWR 2 3 COFER 2 4 TEST 2	VT 102	
--	---	--------	--

6.2 Interfaces

The table below show the relationship between the type of interface and the logical names use in this document.

Interface	No. of interfaces	Logical name
Optical/Electrical	2	Aggregate Port
Tributary	12	Tributary Port
Ethernet	5	LAN Ports and Management Port
(Ethernet)	4	WAN ports
Alarm	6	4 alarm input and 2 alarm out
Synchronization	1	Sync Port
EIA/TIA 232	1	ONSCLI Port
Power supply	2	-48V DC and 230V AC
User Channel	1	User Channel Port
Indicators	8	4 Traffic Indicators, Power Indicator, Operator Indicator, Customer Indicator, Test Indicator

Table 6-1 ONS 15302 Interfaces

6.3 Light Emitting Diodes (LEDs)

The LED indicators are used to visualize the ONS 15302 status:

 Table 6-2
 LED Functionality on the WAN Module Side

Identity	Color	State On	State Flashing	State Off
PWR (Power)	Green	Presence of power	NA	Power failure
OPER (Operation)	Red	Alarm detected on aggregate interface	NA	No alarm detected on aggregate interface
CUST (Customer)	Red	Alarm detected on tributary or LAN interface	NA	No alarm detected on tributary or LAN interface
TEST (Test)	Yellow		One or more test are activated	

Identity	Color	State On	State Flashing	State Off
LAN 1	Green	Link is present	Traffic is present	Link down
LAN 2	Green	Link is present	Traffic is present	Link down
LAN 3	Green	Link is present	Traffic is present	Link down
LAN 4	Green	Link is present	Traffic is present	Link down

Table 6-2 LED Functionality on the WAN Module Side (continued)

Table 6-3 LED Functionality on the Connector Array Side

Identity	Position	Color	State On	State Flashing	State Off
PWR (Power)		Green	Presence of power	NA	Power failure
OPER (Operation)		Red	Alarm detected on aggregate interface	NA	No alarm detected on aggregate interface
CUST (Customer)		Red	Alarm detected on tributary or LAN interface	NA	No alarm detected on tributary or LAN interface
TEST (Test)		Yellow		One or more test are activated	
LANn (n-1,2,3,4)	Left	Green	100 MBits/s (Mbps)	NA	NA
LANn (n-1,2,3,4)	Left	Yellow	10 MBits/s (Mbps)	NA	NA
LANn (n-1,2,3,4)	Right	Green	Link OK	Ethernet traffic in operation	Link down

6.4 Optical Aggregate Line Interface

The ONS 15302 aggregate line interface is bidirectional with a transmit (Tx) and a receive (Rx) direction. The two fibre variant is a short haul (SH), ITU-T Rec. G.957 S-1.1 compliant variant. The transmission cable can be either Single Mode (SM) or Multi Mode fibre (MM) type.

ONS 15302 is also available in protected variants with duplicated optical interfaces and protection switching logic to maintain traffic in case of fibre faults.

The optical interfaces are located at connector array side and equipped with SC connectors.

Parameters

The definitions of optical parameters and reference points S and R refer to ITU-T G.957. Reference point S means transmit direction while R is the receive direction of the fibre.

Parameter	Short Haul (S-1.1)	Unit
Type of fibre: ITU-T Rec. G.652	10/125	micrometer
Type of fibre: ITU-T Rec. G.651	50/125	micrometer
IEC 739-2	62.5/125	micrometer
Modulation rate on optical line	155 520	kbit/s
Wavelength range	1270 to 1335	nm
Transmitter at reference point S		
Source type	MLM	
Spectral characteristics (max. RMS width)	3	nm
Mean launched power (max.)	-8	dBm
Mean launched power (min.)	-12	dBm
Min. extinction ratio	8.2	dB
Optical path between S and R		
Attenuation range	0 to 17	dB
Max. tolerable dispersion	280	ps/nm
Min. optical return loss	NA	
Max. discrete reflectance between S and R	NA	
Receiver at reference point R		
Min. sensitivity (BER < 1 in 1010)	-30	dBm
Min. overload	0	dBm
Max. optical path penalty	1	dB
Max. reflectance at R	NA	

Table 6-4Optical Power Budget ONS 15302

Factory testing to Power Budget: Mean Launched Power adjusted to -10 dBm. Receiver sensitivity test: Max. signal level -32 dBm at R point at BER < 1 in 10 exp -10. Initial equipment margin: >3 dB.

 Table 6-5
 Example of Cable Planning for ONS 15302 (Cable Loss)

Cable Loss, according to ITU-T Rec. G.957	Single Mode fibre Acc. to ITU-T G.652	Multi Mode fibre Acc. to ITU-T G.651
Fibre Cable Attenuation	0.5 dB/km	1.0 dB/km
Cable Margin (Mc)	Incl. in	3 dB
Loss in Optical Distribution Frame	Incl. in	1 dB

Cable Dispersion:		
Maximum Chromatic Dispersion Coefficient	3.5 ps/nm km	6 ps/nm km
Modal bandwidth	—	800 MHz km
Overall bandwidth (Requirement >80 MHz)	_	84 MHz (9km)

Table 6-6 Example of Cable Planning for ONS 15302 (Cable Dispersion)

 Table 6-7
 Typical Link Spans for ONS 15302

ONS 15302 type of fibre	Mode	Loss Limited Span	Dispersion Limited Span	Overall Link Span
Short-Haul	SM	34 km	80 km	34 km
Short-Haul	MM	13 km	9 km	9 km

Jitter on the Tx optical output signal is lower than the values specified in ITU-T Rec. G.813, (Table 6-8).

Table 6-8 Optical Output Jitter Requirements as given in ITU-T Rec. G.813.

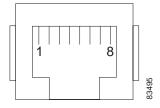
Filter bandwidth	Jitter limit
500 Hz to 1.3 MHz	0.50 Uipp
65 kHz to 1.3 MHz	0.10 Uipp

The input aggregate port tolerates the input jitter and wander specified in ITU-T Rec. G.825, (Table 6-9). This applies in the whole operating optical range of the receiver.

Table 6-9 Maximum Tolerable Input Jitter on the Optical Rx Interface.

Frequency range	Jitter limit
500 Hz to 6.5 kHz	1.5 Uipp
6.5 kHz to 65 kHz	Decaying, slope equal to 20 dB/decade
65 kHz to 1.3 MHz	0.15 Uipp

6.5 Tributary Ports


Connectors

The connectors are RJ-45 connectors, with the following pinout

Pin	Signal
1	RxD+
2	RxD-
3	GND
4	TxD+
5	TxD-
6	Screen, (the outer screen is always connected to ground)
7	NC
8	NC

Table 6-10 Pinout Tributary Interface

Figure 6-4 Tributary 120 Ohm Interface Connector

Parameters

The next tables displays the parameters of the tributary port

Table 6-11 Tributary input jitter parameters is compliant to the ITU-T G.823 02/00 table 16 requirements.

Table 6-11 Tributary Input Jitter Parameters

Frequency range	Jitter limit
20 Hz to 2.4 kHz	1.5 Uipp
2.4 kHz to 18 kHz	Decaying, slope equal to 20 dB/decade
18 kHz to 100 kHz	0.2 Uipp

Table 6-12 Tributary input reflection loss is complaint to ITU-T G.703

Table 6-12 Tributary Input Reflection Loss

Frequency range	Reflection loss
51 kHz to 102 kHz	12 dB
102 kHz to 2048 kHz	18 dB
2048 kHz to 3072 kHz	14 dB

The requirements for output jitter in the absence of input jitter and pointer movements are shown in Table 6-13. The output jitter is complaint to requirements ITU-T G.783.

Table 6-13 Tributary Output Jitter without Pointer Movements

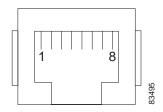
Filter bandwith	Jitter output (p-p)
20 Hz to 100 kHz	< 0.25 UI
700 Hz to 100 kHz	< 0.075 UI

The requirements for output jitter in the absence of input jitter but with pointer movements are shown in Table 6-14. The output jitter is complaint to requirements ITU-T G.783

Table 6-14 Tributary Output Jitter with Pointer Movements

Filter bandwith	Jitter output (p-p)
20 Hz to 100 kHz	< 0.4 UI
700 Hz to 100 kHz	< 0.075 UI

6.6 LAN Ports and Management Port


Connectors

The connectors are RJ-45 connectors, with the following pinout:

Pin	Signal
1	TxD+
2	TxD-
3	RxD+
4	NC
5	NC
6	RxD-
7	NC
8	NC

 Table 6-15
 Pinout Ethernet Ports

Figure 6-5 LAN Ports and Management Connector

Note

In order to conform to the requirements of EN50081-1 Class B it is recommended to use a STP cable for connection to the Management port. If a UTP cable is used the unit conform to EN50081-1 Class A.

6.7 Alarm Interface

Connectors

The alarm interface connector is a DS-9 connector, with the following pinout

Table 6-16 Pinout Alarm Interface

Pin	Signal
1	Gnd
2	Alarm input 1 (aux 1)
3	Alarm input 2 (aux 2)
4	Alarm input 3 (aux 3)
5	Alarm input 4 (aux 4)
6	Alarm input return
7	Alarm output 1
8	Alarm output return
9	Alarm output 2

Parameters

Table 6-17Electrical Specification at Alarm Input

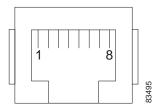
Parameter	Value
Nominal open contact voltage	3.3 V
Nominal closed contact current	1 mA
Maximum closed contact resistance	0.8 kohm
Minimum open contact resistance	10 kohm

Table 6-18 Electrical Specification at Alarm Output

Parameter	Value
Maximum load bias referred to common return	+/- 75 V
Maximum load current	50 mA
Common return to earth	+/- 250 V
Maximum contact resistance	50 ohm

6.8 Synchronization Port

ONS 15302 has one 2048 kHz synchronization output port and input port.


Connectors

Both input and output is provided on 8 pin RJ-45 connector, with the following pinout

Pin	Signal
1	Sync input +
2	Sync input –
3	GND
4	Sync output +
5	Sync output –
6	Screen (the outer screen is always connected to ground)
7	NC
8	NC

Table 6-19 Pinout Synchronization Port

Figure 6-6 Synchronization Connector

Parameters

Table 6-20 Synchronization Input Jitter Parameters

Frequency range	Jitter limit
20 Hz to 2.4 kHz	1.5 Uipp
2.4 kHz to 18 kHz	Decaying, slope equal to 20 dB/decade
18 kHz to 100 kHz	0.2 Uipp

Table 6-21 Synchronization Input Reflection Loss Parameters

Frequency	Reflection loss
2048 kHz	15 dB

Table 6-22	Synchronization Output Jitter Parameters
------------	--

Filter bandwidth	Jitter output (p-p)
20 Hz to 100 kHz	< 0.05UI

6.9 ONSCLI Port

The ONSCLI Port is accessible from both side of the unit by means of two parallel connectors.

Connectors

The EIA/TIA 232 interface for ONS 15302 is provided using a RJ-45 connector, with the following pinout Table 6-13.

Pin	Signal
1	GND
2	TxD
3	RxD
4	DB_TxD (are only used for debug purposes)
5	NC
6	RTS
7	DB_RxD (are only used for debug purposes)
8	NC

Table 6-23 Pinout CLI Connector

Figure 6-7 ONSCLI Port Connector

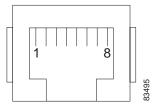


Table 6-24 CLI Connector Pinout (RJ-45 to DS-9)

RJ-45 Connector		DS-9 Connector	
Pin 1	GND	Pin 5	NC
Pin 2	Тх	Pin 2	Rx
Pin 3	Rx	Pin 3	Tx
Pin 4	NC		
Pin 5	NC		

RJ-45 Connector		DS-9 Connecto	DS-9 Connector	
Pin 6	CTS	Pin 8	CTS	
Pin 7	NC			
Pin 8	RTS	Pin7	RTS	

Table 6-24 CLI Connector Pinout (RJ-45 to DS-9) (continued)

Pin 4 and 7 are only used for debug purposes.

Parameters

The interface is running at a data rate of 19.200 baud.

6.10 Power Supply

ONS 15302 supports two different power supplies:

- Single phase 230 V 50 Hz AC mains supply
- -48 V DC supply

Connectors

The -48V DC supply input on the ONS 15302 is provided via a 4 pin power connector, with the following pinout Table 6-25.

Table 6-25	Pinout Power Supply Connector
------------	-------------------------------

Pin	Signal	
1	-48V (supply 1)	
2	GND	
3	0V (-48V return)	
4	-48V (Supply 2)	

The 230V mains supply input on the ONS 15302 is provided via a standard connector according to EN60320.

Parameters

The -48V DC input and the 230V mains input are according to the specifications given in the table below

Table 6-26 Power Supply Parameters

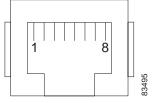
Parameter	Limit
Power dissipation	Less than 40W
Fuse	1.5A

Parameter	Limit
Battery voltage range	-36 to -72 V DC
Mains voltage	230V AC +/- 10%

Table 6-26	Power Supply Parameters (continued)
------------	-------------------------------------

6.11 User Channel

A user channel is provided for transportation of general data. The port is balanced V.11 and support synchronous 64 kBit/s or asynchronous 19.2 kBit/s by configuration.


Connectors

The user channel interface for ONS 15302 is provided using a RJ-45 connector, with the following pinout Table 6-27

Pin	Signal
1	TxD+
2	TxD-
3	RxD+
4	TxCLK-
5	TxCLK+
6	RxD-
7	RxCLK+
8	RxCLK-

 Table 6-27
 Pinout User Channel Connector

Figure 6-8 User Channel Port Connector

6.12 Fan Unit

The main feature of the fan unit is to ventilate the 19"/1U cabinet used for ONS 15302. The fan unit is a plug in device consisting of a circuit board with two fans. The air is sucked in via two circular openings in the left sidewall, and emerges via holes in the right side cabinet wall. Two fans are used to improve reliability and give a lifetime of 10 years for this module.

Make sure that there is minimum 10 cm free space around the air intake (placed in the left sidewall)

Parameters

Fan operation is shown in the table below. Threshold temperatures are approximate and depend on ventilation conditions.

The ventilation holes must not be blocked.

Table 6-28 Fan Operation and Alarm

Conditions	Behavior	Alarms
Ambient temperature below 50 to 60 degrees C	Normal operation	No Alarm
Failure of a fan, no fan tray present or fans stopped by obstruction	Trying to start the other fan or no fan is running	FAN alarm
Ambient temperature above 50 to 60 degrees C	Fan running on full speed	TEMP alarm
Every ~24-hours	Working fan is interleaved with the other fan	

The TEMP alarm will always be cleared if ambient temperature fall below 45 degrees C

6.13 Reliability

The overall error ratio of a tributary channel is better than $10 \exp -10$.

According to MIL-HDBK-217F with a correction factor adjustment related to the following conditions:

- Ground benign
- +35 degrees C ambient temperature
- Stress value 0.5

Table 6-29 Reliability

Equipment	MTBF [Years]
ONS 15302 non-redundant optics	40
ONS 15302 redundant optics	47