
Cisco SCMS SCE Subscriber API
Programmer Guide
Release 3.1
May 2007
Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

Customer Order Number:
Text Part Number: OL-8236-04

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the
document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

Cisco SCMS SCE Subscriber API Programmer Guide
© 2007 Cisco Systems, Inc. All rights reserved.

CCSP, the Cisco Square Bridge logo, Follow Me Browsing, and StackWise are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn, and iQuick
Study are service marks of Cisco Systems, Inc.; and Access Registrar, Aironet, ASIST, BPX, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, Cisco, the Cisco Certified
Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Empowering the Internet Generation,
Enterprise/Solver, EtherChannel, EtherFast, EtherSwitch, Fast Step, FormShare, GigaDrive, GigaStack, HomeLink, Internet Quotient, IOS, IP/TV, iQ Expertise, the iQ logo, iQ
Net Readiness Scorecard, LightStream, Linksys, MeetingPlace, MGX, the Networkers logo, Networking Academy, Network Registrar, Packet, PIX, Post-Routing, Pre-Routing,
ProConnect, RateMUX, ScriptShare, SlideCast, SMARTnet, StrataView Plus, SwitchProbe, TeleRouter, The Fastest Way to Increase Your Internet Quotient, TransPath, and VCO
are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship
between Cisco and any other company. (0501R)

OL-8236-04
C O N T E N T S
Audience xi

Document Revision History xi

Organization xii

Related Publications xiii

Document Conventions xiii

Obtaining Documentation, Obtaining Support, and Security Guidelines xiv

C H A P T E R 1 Getting Started 1-1

Restrictions for the SCMS SCE Subscriber API 1-2

Information About the SCMS SCE Subsriber API 1-2

Platforms 1-2

Package Content 1-2

How to Extract and Install the Package 1-3

Installing the Distribution on a UNIX Platform 1-3

Installing the Distribution on a Windows Platform 1-3

How to Setup the SCE Platform 1-3

Prerequisites 1-3

Configuring the SCE in a Pull Model 1-4

How to Configure the RDR Formatter 1-4

Configuring the RDR Formatter to Issue Quota-Related Indications 1-4

Mapping the Quota RDR Tags to a Different Category 1-4

How to Configure the RDR Server 1-5

Verifying the RDR Server Configuration 1-5

Enabling the RDR Server 1-5

Changing the RDR Server Port 1-5

How to Configure the API Disconnection Timeout 1-6

Configuring the API Disconnection Timeout 1-6

Reset the Disconnection Timeout to the Default Value 1-6

Viewing the Timeout Value 1-6

C H A P T E R 2 Concepts and Terms 2-1

Subscriber Characteristics 2-1

Subscriber ID 2-2
iii
Cisco SCMS SCE Subscriber API Programmer Guide

Contents
Anonymous Subscriber ID 2-2

Network ID 2-2

Policy Profile 2-2

Quota 2-2

Information About Subscriber Integration Models 2-2

Push Model 2-2

Pull Model 2-3

Non-blocking Model 2-3

Indications Listeners 2-4

Supported Topologies 2-4

Multi-threading Support 2-7

Auto-reconnect Support 2-7

Reliability Support 2-7

High Availability Support 2-7

Synchronization 2-7

Practical Tips 2-8

C H A P T E R 3 API Events 3-1

Information About API Events 3-1

Information About Network ID Management Events 3-2

Information About Login Events 3-2

Logout Events 3-3

Network ID Update Event 3-4

Information About Policy Profile Management Events 3-4

Profile Update Event 3-4

Information About Quota Management Events 3-5

Quota Update Event 3-5

Get Quota Status Event 3-5

Quota Status Event 3-6

Quota Below Threshold Event 3-6

Quota Depleted Event 3-6

Quota State Restore Event 3-7

Information About SCE Synchronization Procedure Events 3-7

Start Synchronization Event 3-7

End Synchronization Event 3-7

Get Subscribers Events 3-8
iv
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Contents
C H A P T E R 4 Getting Familiar with the API Data Types 4-1

Subscriber ID 4-1

Information About Network ID Mappings 4-1

Specifying IP Address Mapping 4-2

Specifying IP Range Mapping 4-2

Specifying VLAN Tag Mapping 4-2

Network ID Mappings Examples 4-3

Information About SCA BB Subscriber Policy Profile 4-3

PolicyProfile Class 4-3

Information About Subscriber Quota 4-4

SCAS_BB_Quota 4-5

SCAS_BB_QuotaOperation 4-6

Information About Bulk Operations Data Types 4-7

Bulk Iterator 4-7

SubscriberData 4-7

Login_BULK Class 4-7

Constructor 4-8

addBulkEntry Method 4-8

Examples 4-8

SubscriberID_BULK Class 4-9

Constructors 4-9

addBulkEntry Method 4-10

NetworkAndSubscriberID_BULK Class 4-10

Constructors 4-10

addBulkEntry Method 4-10

LoginPullResponse_BULK Class 4-11

Constructors 4-11

addBulkEntry Method 4-12

PolicyProfile_BULK Class 4-12

Constructors 4-12

addBulkEntry Method 4-13

Quota_BULK Class 4-13

Constructors 4-13

addBulkEntry Method 4-13

QuotaOperation_BULK Class 4-14

Constructors 4-14

addBulkEntry Method 4-14
v
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Contents
C H A P T E R 5 Programming with the SCE Subscriber API 5-1

Information About API Classes 5-1

Package com.scms.api.sce.prpc 5-1

Package com.scms.api.sce 5-1

Indications Listeners 5-2

Connection Monitoring 5-2

SCE Cascade Topology Support 5-2

Operations Result Handling 5-2

Package com.scms.common 5-2

Programming Guidelines 5-3

Programming with Callback Methods 5-3

PRPC_SCESubscriberApi Class 5-3

API Construction 5-3

Listeners Setup Operations 5-4

Advanced Setup Operations 5-5

Connecting to the SCE 5-6

Information About getApiVersion 5-6

API Finalization 5-6

Information About Indications Listeners 5-7

Information About the LoginPullListener Interface Class 5-7

Information About the loginPullRequest Callback Method 5-7

Information About the loginPullRequestBulk Callback Method 5-8

GetSubscribersBulkResponse Callback Method 5-8

Information About the LogoutListener Interface Class 5-9

Information About the logoutIndication Callback Method 5-9

Information About the logoutBulkIndication Callback Method 5-9

Information About the QuotaListenerEx Interface Class 5-9

Information About the quotaStatusIndication Callback Method 5-10

Information About the quotaStatusBulkIndication Callback Method 5-10

Information About the quotaBelowThresholdIndication Callback Method 5-11

Information About the quotaBelowThresholdIBulkndication Callback Method 5-11

Information About the quotaDepletedIndication Callback Method 5-11

Information About the quotaDepletedBulkIndication Callback Method 5-11

Information About the quotaStateRestore Callback Method 5-12

Information About the quotaStateBulkRestore Callback Method 5-12

Information About Connection Monitoring 5-12

ConnectionListener Interface 5-12

Disconnect Listener: Example 5-13

Information About SCE Cascade Topology Support 5-13
vi
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Contents
isRedundancyStatusActive Method 5-13

Information About the RedundancyStateListener Interface 5-14

Parameters 5-14

Configuring the SCE to Ignore Cascade Violation Errors 5-14

Information About Result Handling 5-15

Information About the OperationResultHandler Interface 5-15

Information About the OperationArguments Class 5-16

Information About Subscriber Provisioning Operations 5-17

Information About the login Operation 5-18

Syntax 5-18

Description 5-18

Parameters 5-19

Error Codes 5-19

Examples 5-19

Information About the loginBulk Operation 5-20

Syntax 5-20

Description 5-20

Parameters 5-20

Error Codes 5-20

Information About the loginPullResponse Operation 5-20

Syntax 5-21

Description 5-21

Parameters 5-21

Error Codes 5-21

Information About the loginPullResponseBulk Operation 5-21

Syntax 5-22

Description 5-22

Parameters 5-22

Error Codes 5-22

Information About the logout Operation 5-22

Syntax 5-22

Description 5-23

Parameters 5-23

Error Codes 5-23

Information About the logoutBulk Operation 5-23

Syntax 5-23

Description 5-23

Parameters 5-23

Error Codes 5-24

Information About the networkIdUpdate Operation 5-24
vii
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Contents
Syntax 5-24

Description 5-24

Parameters 5-24

Error Codes 5-24

Information About the networkIdUpdateBulk Operation 5-25

Syntax 5-25

Description 5-25

Parameters 5-25

Error Codes 5-25

Information About the profileUpdate Operation 5-26

Syntax 5-26

Description 5-26

Parameters 5-26

Error Codes 5-26

Information About the profileUpdateBulk Operation 5-26

Syntax 5-27

Description 5-27

Parameters 5-27

Error Codes 5-27

Information About the quotaUpdate Operation 5-27

Syntax 5-27

Description 5-27

Parameters 5-28

Error Codes 5-28

Information About the quotaUpdateBulk Operation 5-28

Syntax 5-28

Description 5-28

Parameters 5-28

Error Codes 5-29

Information About the getQuotaStatus Operation 5-29

Syntax 5-29

Description 5-29

Parameters 5-29

Error Codes 5-29

Information About the getQuotaStatusBulk Operation 5-30

Syntax 5-30

Description 5-30

Parameters 5-30

Error Codes 5-30

Information About SCE-API Synchronization 5-31
viii
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Contents
Information About the Push Model Synchronization Procedure 5-31

Information About synchronizePushStart 5-32

Information About synchronizePushEnd 5-33

Information About the Pull Model Synchronization Procedure 5-33

Information About synchronizePullStart 5-34

Information About synchronizePullEnd 5-35

Information About getSubscribersBulk 5-35

Information About Advanced API Programming 5-36

Implementing High Availability 5-36

API Code Examples 5-36

Login and Logout 5-37

Login-pull Request and login-pull Response 5-39

C H A P T E R 6 Troubleshooting 6-1

SCE Logging 6-1

Default Log Messages 6-1

Subscriber Operations Log Messages 6-2

API Client Logging 6-4

API Client Log Messages 6-4

List of Error Codes A-1
ix
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Contents
x
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

About this Guide

Revised: May 30, 2007, OL-8236-04
The SCMS SCE Subscriber API Programmer Guide is used for integrations that require direct access to
the SCE platform for subscriber provisioning purposes.

This introduction provides information about the following topics:

• Audience

• Document Revision History

• Organization

• Related Publications

• Document Conventions

• Obtaining Documentation, Obtaining Support, and Security Guidelines

Audience
This guide is intended for the networking or computer technician responsible for integrations involving
policy servers that perform subscriber provisioning with the SCE platform.

Document Revision History

Description of Changes

• Added new RedundancyStateListener interface to support cascade SCE setups. See Information
About SCE Cascade Topology Support

Description of Changes

• Added new section on Quota State Restore Event.

Cisco Service Control Release Part Number Publication Date

Release 3.1.0 OL-8236-04 May, 2007

Cisco Service Control Release Part Number Publication Date

Release 3.0.5 OL-8236-03 November, 2006
xi
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

About this Guide
Organization
• Updated SCAS_BB_Quota class.

• Updated the QuotaListenerEx interface due to deprecation of the QuotaListener interface. See
Information About the QuotaListenerEx Interface Class /

Description of Changes

• Updated API code examples. See API Code Examples.

Description of Changes

• First version of this document.

Organization
The major sections of this guide are as follows:

Cisco Service Control Release Part Number Publication Date

Release 3.0.3 OL-8236-02 May, 2006

Cisco Service Control Release Part Number Publication Date

Release 3.0 OL-8236-01 December, 2005

Table 1

Chapter Title Description

Chapter 1 Getting Started Discusses the platforms on
which the SCE Subscriber API
can be used, and how to install,
compile, and start running the
API.

Chapter 2 Concepts and Terms Describes various terms and
concepts that are utilized when
working with the SCE
Subscriber API.

Chapter 3 API Events Describes various events
accessed by the SCE Subscriber
API.

Chapter 4 Getting Familiar with the API
Data Types

Describes the various API data
types.

Chapter 5 Programming with the SCE
Subscriber API

Provides a detailed description
of the API programming
structure, classes, methods, and
interfaces.
xii
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

About this Guide
Related Publications
Related Publications
Use this API Guide in conjunction with the following Cisco documentation:

• Cisco SCMS Subscriber Manager User Guide

• Cisco Service Control Application for Broadband (SCA BB) User Guide

• Cisco SCE 1000 2xGBE Installation and Configuration Guide

• Cisco SCE 2000 4xGBE Installation and Configuration Guide

Document Conventions
This guide uses the following conventions:

• Bold is used for commands, keywords, and buttons.

• Italics are used for command input for which you supply values.

• Screen font is used for examples of information that are displayed on the screen.

• Bold screen font is used for examples of information that you enter.

• Vertical bars (|) indicate separate alternative, mutually exclusive elements.

• Square brackets ([]) indicate optional elements.

• Braces ({}) indicate a required choice.

• Braces within square brackets ([{}]) indicate a required choice within an optional element.

Note Means reader take note. Notes contain helpful suggestions or references to material not covered in the
guide.

Timesaver Means the described action saves time. You can save time by performing the action described in the
paragraph.

Chapter 6 Troubleshooting Describes the usage of the API
logging abilities for
troubleshooting the integration
with the API. API logging
enables the user to monitor the
operations being called
including the received
parameters both at the API client
and at the SCE side.

Appendix A List of Error Codes Lists the error codes that are
returned by the API.

Table 1

Chapter Title Description
xiii
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

About this Guide
Obtaining Documentation, Obtaining Support, and Security Guidelines
Caution Means reader be careful. In this situation, you might do something that could result in equipment
damage or loss of data.

Warning Means danger. You are in a situation that could cause bodily injury. Before you work on any
equipment, you must be aware of the hazards involved with electrical circuitry and familiar with
standard practices for preventing accidents. To see translated versions of warnings, refer to the
Regulatory Compliance and Safety Information document that accompanied the device.

Obtaining Documentation, Obtaining Support, and Security
Guidelines

For information on obtaining documentation, obtaining support, providing documentation feedback,
security guidelines, and also recommended aliases and general Cisco documents, see the monthly
What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical
documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html
xiv
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

C
OL-8236-04
C H A P T E R 1

Getting Started

This module discusses the platforms on which the SCE Subscriber API can be used, and how to install,
compile, and start running it.

The SCMS SCE Subscriber API provides the ability to external applications (policy servers) to connect
directly to the SCE for the purpose of subscriber provisioning.

Subscriber provisioning is a process of updating the Network IDs , Policy Profile and Quota
characteristics of the subscriber using the Subscriber ID as the correlation. For more information about
the characteristics of the subscriber in the Service Control Application for Broadband (SCA BB), see the
Subscriber Characteristics section.

The API can be installed and used concurrently on several policy servers and each of them can perform
different parts of the subscriber provisioning process as shown in the following diagram:

Figure 1-1 SCE Subscriber API Installed on Multiple Servers

The API uses the PRPC (Proprietary Remote Procedure Call) protocol as a transport for the connection
to the SCE. The PRPC is a proprietary RPC protocol designed by Cisco.

Note The API provides a connection to one SCE platform for each API instance.

AAA
Server

SCE
Subscriber

API

Subscriber ID:
Network ID

Policy
Profile
Server

SCE
Subscriber

API

Subscriber ID:
Policy Profile SCE

Platform

Quota
Provisioning

Server

SCE
Subscriber

API

Subscriber ID:
Quota

15
70

98
1-1
isco SCMS SCE Subscriber API Programmer Guide

Chapter 1 Getting Started
 Restrictions for the SCMS SCE Subscriber API
Restrictions for the SCMS SCE Subscriber API
Version 3.0.5 of the API is backward compatible with previous versions, but is not binary-compatible.
You must recompile applications that use a previous version of the API in order to use the new version.
Since the API is backward compatible, you do not need to make any changes to the application source
code.

Note If you upgrade the SCE to version 3.0.5, you must upgrade the API to version 3.0.5 and recompile the
application that uses it.

Information About the SCMS SCE Subsriber API
• Platforms

• Package Content

Platforms
The SCMS SCE Subscriber API is operable on any platform that supports Java version 1.4.

Package Content
For brevity, the installation directory sce-java-api-_<version>_<build-number>is referred to as
<installdir>.

The <installdir>/javadoc folder contains the SCE Subscriber API JAVADOC documentation.

The <installdir>/lib folder contains the sceapi.jar file, which is the API executable. It also contains
additional jar files necessary for the API operation.

Table 1-1 Layout of Installation Directory

Path Name Description

<installdir>

README API readme file

<installdir>/javadoc

index.html Index of all API specifications

(API specification files, etc.) API specification documents

<installdir>/lib

sceapi.jar SCE Subscriber API executable

asn1rt.jar Utility jar used by the API

log4j.jar Utility jar used by the API

log4j.properties Property file needed for the
logging functionalities

jdmkrt.jar Utility jar used by the API
1-2
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 1 Getting Started
 How to Extract and Install the Package
How to Extract and Install the Package
The SCMS SCE Subscriber API distribution is part of the SCMS SM-LEG distribution file and is located
in the sce_api directory.

The SCMS SCE Subscriber API is packaged in a UNIX tar file. You can extract the SCMS SCE
Subscriber API using the UNIX tar utility of most Windows compression utilities.

• Installing the Distribution on a UNIX Platform

• Installing the Distribution on a Windows Platform

Installing the Distribution on a UNIX Platform

Step 1 Extract the SCMS SM-LEG distribution file and locate the SCE Subscriber API distribution tar
sce-java-api-dist.tar.gz

Step 2 Unzip the distribution file

#>gunzip sce-java-api-dist.tar.gz

Step 3 Extract the SCE Subscriber API package tar

#>tar -xvf sce-java-api-dist.tar

Installing the Distribution on a Windows Platform

Step 1 Use a zip extractor (such as WinZip) to unzip the package.

How to Setup the SCE Platform
The following sections describe the configuration that is performed on the SCE platform to allow correct
API functioning.

• Prerequisites

• Configuring the SCE in a Pull Model

• How to Configure the RDR Formatter

• How to Configure the RDR Server

• How to Configure the API Disconnection Timeout

Prerequisites
The API connects to the PRPC server on the SCE platform. The PRPC server is a server running a
proprietary RPC protocol designed by Cisco. For more information, see the SCE User Guide .

Before using the API, ensure that:
1-3
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 1 Getting Started
 How to Setup the SCE Platform
• The SCE must be up and running, and reachable from the machine that hosts the API.

• The PRPC server on the SCE must be started.

Configuring the SCE in a Pull Model
To enable the SCE platform to issue a request for subscriber information when running in a Pull Model
(see Pull Model), configure the following using the SCE platform Command-Line Interface (CLI).

For more information about configuring the SCE platform, see the Cisco SCE 1000 2xGBE Installation
and Configuration Guide or the Cisco SCE 2000 4xGBE Installation and Configuration Guide .

Step 1 Configure the subscriber templates

(config if)#>subscriber template import CSV file

For more information about the templates and the format of the CSV file, see the Cisco Service Control
Application for Broadband User Guide .

Step 2 Configure the unmapped-subscriber groups ranges

a. Use the subscriber anonymous group import CLI to import anonymous groups from a file.

(config if)#>subscriber anonymous group import CSV file

b. Alternatively, use the subscriber anonymous group name CLI to manually define the anonymous
group

(config if)#>subscriber anonymous group name NAMEIP-range IP RANGE

How to Configure the RDR Formatter
• Configuring the RDR Formatter to Issue Quota-Related Indications

• Mapping the Quota RDR Tags to a Different Category

Configuring the RDR Formatter to Issue Quota-Related Indications

To enable the RDR formatter to issue quota-related indications, configure the RDR formatter on the SCE
platform as follows.

Step 1 Use the RDR-formatter destination CLI.

#>RDR-formatter destination 127.0.0.1 port 33001 category number 4 priority 100

Mapping the Quota RDR Tags to a Different Category

By default, Quota RDR tags are mapped to category 4. If another category is required, use the following
command.

Step 1 Use the RDR-formatter rdr-mapping CLI

#>RDR-formatter rdr-mapping tag-ID tag numbercategory-number number
1-4
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 1 Getting Started
 How to Setup the SCE Platform
Note For Quota RDR tag IDs, see the Cisco Service Control Application for Broadband User Guide .

To enable the application to issue quota-related indications, it should be enabled in the Cisco Service
Control Application for Broadband GUI . See the Cisco Service Control Application for Broadband
User Guide for configuration description.

How to Configure the RDR Server
To enable the API to receive Quota indications, the RDR server should be enabled and listening on the
same port that is configured in the RDR formatter.

• Verifying the RDR Server Configuration

• Enabling the RDR Server

• Changing the RDR Server Port

Verifying the RDR Server Configuration

To verify the RDR server configuration, do the following.

Step 1 Use the show RDR-server CLI.

#>show RDR-serverRDR server is ONLINE
RDR server port is 33001

Enabling the RDR Server

To enable the RDR server, do the following

Step 1 Use the configuration RDR-server CLI

#>configure(config)#>RDR-server Default RDR server port is 33001

Changing the RDR Server Port

To change the RDR server port, do the following.

Step 1 Use the RDR-server port CLI

#>configure(config)#>RDR-server port port
1-5
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 1 Getting Started
 How to Setup the SCE Platform
How to Configure the API Disconnection Timeout
The SCE platform allows setting the timeout for the API to reconnect to the SCE platform after it was
disconnected. During this timeout, the SCE will not free the resources and no data will be lost. After the
timeout has elapsed and the API did not reconnect, the SCE considers the API disconnected and frees
all the resources. The default timeout value is 5 minutes.

• Configuring the API Disconnection Timeout

• Reset the Disconnection Timeout to the Default Value

• Viewing the Timeout Value

Configuring the API Disconnection Timeout

To configure the API disconnection timeout, do the following:

Step 1 Use the management-agent sce-api timeout CLI

(config)# management-agent sce-api timeout timeout-in-sec

Reset the Disconnection Timeout to the Default Value

To reset the API disconnection timeout to the default value, do the following:

Step 1 Use the default management-agent sce-api timeout CLI

(config)# default management-agent sce-api timeout

Viewing the Timeout Value

To view the timeout value, do the following:

Step 1 Use the show management-agent sce-api CLI

show management-agent sce-api
1-6
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

C
OL-8236-04
C H A P T E R 2

Concepts and Terms

This module describes various terms and concepts that are utilized when working with the SCMS SCE
Subscriber API.

• Subscriber Characteristics

• Information About Subscriber Integration Models

• Non-blocking Model

• Indications Listeners

• Supported Topologies

• Multi-threading Support

• Auto-reconnect Support

• Reliability Support

• High Availability Support

• Synchronization

• Practical Tips

Subscriber Characteristics
One of the fundamental entities in the Service Control Application for Broadband (SCA BB) solution is
a subscriber . A subscriber is the entity that the SCA BB solution individually monitors, accounts, and
enforces a service configuration. The following sections briefly describe the characteristics of the
subscriber in the SCA BB. For more information about the format and usage of the subscriber's
characteristics, see the Getting Familiar with the API Data Types module.

• Subscriber ID

• Anonymous Subscriber ID

• Network ID

• Policy Profile

• Quota
2-1
isco SCMS SCE Subscriber API Programmer Guide

Chapter 2 Concepts and Terms
 Information About Subscriber Integration Models
Subscriber ID
Subscriber ID is a subscriber unique identifier, for example, a user name, IMSI (International Mobile
Subscriber Identity), or other codes that uniquely identify a subscriber.

Anonymous Subscriber ID
When working in the Pull Model integration, the SCE assigns each unknown subscriber IP address with
a temporary Subscriber ID, Anonymous Subscriber ID, until it receives the real Subscriber ID from the
Policy Server.

For more information on the Pull Model integration, see the Information About Subscriber Integration
Models section.

Network ID
The SCE correlates a certain traffic flow to a subscriber by mapping a network identifier, for example,
IP address, IP range, or VLAN, to the subscriber entity.

Policy Profile
A Policy Profile includes a set of parameters used by the SCA BB solution to define what policy is
enforced on the subscriber.

Quota
A quota includes the quota-bucket values of the service quota or quotas available for the usage of the
subscriber.

Information About Subscriber Integration Models
The following terms describe two models of a dynamic subscriber integration that the SCE platform
supports.

• Push Model

• Pull Model

Push Model
In push model integration, an external server introduces (pushes) the subscribers to the SCE platform.
This is performed whenever a new subscriber logs in to the network or the external server presumes to
know all subscribers and introduces them to the SCE box when they connect.
2-2
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 2 Concepts and Terms
 Non-blocking Model
Figure 2-1 Push Model Schematic

Pull Model
In pull model integration, the SCE platform requests subscriber data from the external entity when it
encounters traffic of an unknown subscriber, known as an anonymous subscriber. The external entity
retrieves the required subscriber information and sends it back to the SCE platform.

Figure 2-2 Pull Model Schematic

Non-blocking Model
The SCE Subscriber API is implemented using a non-blocking model. Non-blocking methods return
immediately, even before the completion of a subscriber provisioning operation. The Non-blocking
Model method is advantageous when the operation is lengthy and involves I/O. Performing the operation
in a separate thread allows the caller to continue doing other tasks and it improves overall system
performance.

The operation results are either returned to an Observer object (Listener) or may not be returned at all.

The API supports retrieval of operation results using an operation result handler described in the
Information About Result Handling section.

The following diagram illustrates the Non-blocking Model method during a subscriber provisioning
operation:

Figure 2-3 Non-blocking Model

Subscriber data
EXTERNAL ENTITY SCE

15
70

74

Subscriber data
EXTERNAL ENTITY SCE

15
70

71

Network ID (IP)

Subscriber Provisioning Operation

Operation Result

OPERATION
RESULT

HANDLER

API

SCE

15
71

01
2-3
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 2 Concepts and Terms
 Indications Listeners
Operation results can be used for operation result error logging or for inspection of the parameters used
by the operation.

Indications Listeners
The API provides the user with the ability to receive an indication when certain events occur on the SCE
platform. The API dispatches the indications received from the SCE tothe interested entities, called
listeners , by activating the relevant Listener's callback methods. The indications are separated into
several logical groups when only one listener can be defined for each group of indications.

Figure 2-4 Indication Listeners

To receive certain indications, you need to register a listener to the API that implements the required
callback functions. After the listener is registered, the API can dispatch the required indications to the
listener. The SCMS SCE Subscriber API provides three types of indications when separate listeners are
registered to the following types of the indications:

• Login-pull indications

• Logout indications

• Quota indications

For more information about listener indications, see the API Events module.

Supported Topologies
The following topologies are recommended to use with the SCMS SCE Subscriber API:

• One policy server (or two-node cluster) that is responsible for all aspects of the subscriber
provisioning process:

Figure 2-5 Supported Topologies - One Policy Server

Event X occurred
SCE

SCE
Subscriber API

SCE

15
70

61

Event X callback

Event Y callback

Event Z callback Listener
for group 3

Listener
for group 2

Listener
for group 1

Subscriber ID:
NetworkID/Policy Profile/Quota

15
70

68

Policy
Server API

SCE
2-4
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 2 Concepts and Terms
 Supported Topologies
• Three policy servers (or three two-node clusters)—Every server is responsible for a different aspect
of the subscriber provisioning process:

Figure 2-6 Supported Topologies - Three Policy Servers

• Two policy servers (or two two-node clusters) when one of the servers is responsible for two aspects
of the subscriber provisioning and the other server is responsible for one aspect only (any
combination is allowed). For example:

Figure 2-7 Supported Topologies - Two Policy Servers

• DHCP Lease Query LEG, which is responsible for mapping a Network ID to a Subscriber ID, with
one or more policy servers as described in the three policy server diagram above. The following
diagram shows the DHCP Lease Query LEG:

Policy
Server 1 API

Policy
Server 3 API

Policy
Server 2 API

Subscriber ID:
Policy Profile

Subscriber ID:
Network ID

Subscriber ID:
Quota

SCE

15
70

90

Policy
Server 1 API

Policy
Server 2 API

Subscriber ID:
Network ID & Policy Profile

Subscriber ID:
Quota

SCE

15
70

91
2-5
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 2 Concepts and Terms
 Supported Topologies
Figure 2-8 Supported Topologies - DHCP Lease Query LEG

• SCMS SM, which is responsible for mapping Network ID to Subscriber ID, with one or more policy
servers. The number of policy servers depends on whether the SM is used for policy profile
provisioning in addition to the network ID:

Figure 2-9 Supported Topologies - SM

Note The API itself does not limit the use of any topology; however, the SCE platform does not correlate
between all the entries (Policy Servers) that perform subscriber provisioning. Therefore you should be
extremely careful when using more than one Policy Server for the same provisioning purpose (for
example Network ID/Subscriber ID correlation). If you are not careful when using more than one Policy
Server, the SCE platform may receive different information for the same subscriber from the two policy
servers responsible for the same aspect of the subscriber provisioning. This may cause a loss of
synchronization with at least one policy server. For example, using two policy servers that are
responsible for providing Subscriber ID/Network ID correlation for the same subscriber will produce the
situation where the SCE is always synchronized with the policy server that performed the last update for
this subscriber.

Policy
Server API

Policy
Server API

DHCP
Lease Query

LEG

Subscriber ID:
Quota/Policy Profile

Network
ID

Subscriber
ID

DHCP
Server

SCE

15
70

53

Policy
Server API

Policy
Server

SCMS SM

API

Subscriber ID:
Quota/Policy Profile

Subscriber ID:
Network ID

SCE

15
70

86
2-6
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 2 Concepts and Terms
 Multi-threading Support
Multi-threading Support
The API supports an unlimited number (limited by the available memory) of threads calling its methods
simultaneously.

Note In a multi-threaded scenario, the order of invocation is guaranteed : the API performs operations in the
same chronological order that they were called.

Auto-reconnect Support
The API supports auto-reconnection to the SCE in case of connection failure. When this option is
activated, the API can determine when the connection to the SCE is lost. When the connection is lost,
the API activates a reconnection task that tries to reconnect to the SCE again in a configurable interval
time until reconnection is successful.

Reliability Support
The SCMS SCE Subscriber API is implemented as a reliable API. The API ensures that no requests to
the SCE are lost and no indication from the SCE is lost. The API maintains an internal storage for all
API requests that were sent to the SCE. Only after receiving an acknowledgement from the SCE that the
request was handled, it considers the request as committed and the API can remove the request from its
internal storage. If a connection failure occurs between the API and the SCE, the API accumulates all
requests in its internal storage until the connection to the SCE is reestablished. On reconnection, the API
resends all non-committed requests to the SCE, ensuring that no requests are lost.

Note The order of resending requests is guaranteed : the API resends the requests in the same chronological
order that they were called.

High Availability Support
The API provides high availability support. It assumes that the high availability scheme of the policy
server is a two-node cluster type where only one server is active at any given time. The other server, in
standby, is not connected to the SCE. For more information, see the Implementing High Availability.

Synchronization
The SCE and Policy Server must be kept synchronized concerning the subscribers for which the SCE is
handling their internal parameters. Otherwise, the SCE might confuse one of the subscriber's traffic to
another subscriber, or the subscriber's SLA (Service Level Agreement) will not be enforced because of
a change in the policy that did not reach the SCE. For more information, see Information About SCE-API
Synchronization.
2-7
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 2 Concepts and Terms
 Practical Tips
Practical Tips
When implementing the code that integrates the API with your application you should consider the
following practical tips:

• Connect once to the SCE and maintain an open API connection to the SCE at all times, using the
API many times. Establishing a connection is a timely procedure, which allocates resources on the
SCE side and the API client side.

• Share the API connection between your threads - it is better to have one connection per Policy
Server. Multiple connections require more resources on the SCE and client side.

• Do not implement synchronization of the calls to the API. The client automatically synchronizes
calls to the API.

• If the Policy Server application has bursts of logon operations, enlarge the internal buffer size
accordingly to hold these bursts (Non-Blocking flavor).

• During the integration, use the logging capabilities that are described in the SCE Logging and the
API Client Logging sections to view the API operations in the SCE's client logs and to troubleshoot
problems during the integration, if any.

• Use the debug mode for the Policy Server application that logs/prints the return values of the
operations.

• Use the automatic reconnect feature to improve the resiliency of the connection to the SCE.
2-8
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

C
OL-8236-04
C H A P T E R 3

API Events

This module describes various events accessed by the SCMS SCE Subscriber API.

• Information About API Events

Information About API Events
The API accesses a set of 'events' that are a pre-defined set of messages passed back and forth between
the Policy Server and the SCE platform:

Figure 3-1 API Events Overview

Every message can be assigned a type according to the purpose of the message:

• Request —Requests information or an action to be performed. A request is not necessarily followed
by a response.

• Response —Answers a previous request

• Indication —Indicates the other side that an event has occurred

Most of the events may be used for both push and pull models. See Information About Subscriber
Integration Models.

The events may be divided into the following Subscriber Provisioning process groups:

• Network ID management events —Includes events relating to the modification of the subscriber
Network ID mapping

• Policy Profile management events —Includes events relating to modification of the subscriber
Policy Profile parameters

• Quota management events —Includes events relating to the management of subscriber quota

Policy Server API SCEMessages

15
70

50
3-1
isco SCMS SCE Subscriber API Programmer Guide

Chapter 3 API Events
 Information About API Events
• SCE Synchronization management events —Includes events relating to the management of the SCE
synchronization process

You can perform bulk operations, which bundle many triggers for the same event on many subscribers
to one global event.

The following sections provide a general description of each type of event.

• Information About Network ID Management Events

• Information About Policy Profile Management Events

• Information About Quota Management Events

• Information About SCE Synchronization Procedure Events

Information About Network ID Management Events
• Information About Login Events

• Logout Events

• Network ID Update Event

Information About Login Events

Login events occur when the subscriber connects to the network and vary for pull and push models.

• Push Model

• Pull Model

Push Model

The push integration model assumes that the Policy Server triggers the subscriber introduction to the
SCE. For example, the server receives a subscriber login indication from an external entity such as AAA
(Authorization, Authentication, and Accounting), extracts the required subscriber attributes, and
"pushes" the information to the SCE platform:

Figure 3-2 Login Events - Push Model

The subscriber login operation may either cause the creation of a new subscriber record in the SCE or
update an existing subscriber. For example, for cable modem networks the subscriber is a cable modem
and the CPEs connected to this cable modem are configured as a list of IP addresses (potentially ranges).
In this case, the login of the new CPE connected to the same modem causes the CPE IP address to be
added to the subscriber's Network ID list.

LOGIN-REQUEST EVENT:
Subscriber ID

Network ID
Network ID add/set

Policy Profile
Quota

Policy Server SCE
15

70
75
3-2
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 3 API Events
 Information About API Events
Pull Model

The pull integration model assumes that the SCE discovers a new subscriber from the incoming data
traffic. The new subscriber is entered in the system as an anonymous subscriber and is assigned one of
the default policies. The SCE initiates a request to the external system (a login-pull request) that may
either provide the subscriber login information (a login-pull reply) or is omitted if no information exists
for this IP. The login information provided to the SCE replaces the anonymous subscriber with the actual
subscriber and enforces the correct policy.

If the external system rejects the login and the traffic keeps coming from the anonymous subscriber, the
pull request will be retried.

Figure 3-3 Login Events - Pull Model

Note Despite being classified as “Network-ID Management Event”, LOGIN-REQUEST event and
LOGIN-PULL-RESPONSE event are optimized to allow sending all subscriber information to the SCE.
It is recommended to use these events for Policy Profile and Quota updates when a single Policy Server
performs all parts of the subscriber provisioning. For multiple Policy Servers topologies, use separate
events for updating Policy Profile and Quota information described in the following sections. For more
information about topologies, see the Supported Topologies.

Logout Events

The logout event indicates that the subscriber no longer uses a certain network ID. A logout event is not
necessarily followed by the removal of the subscriber record from the SCE. For example, in cable
modem networks, when there are more than one CPE connected to the same modem, the logout of one
CPE may not lead to the removal of a subscriber if another CPE remains connected. The actual removal
of the subscriber occurs when all of the CPEs (Subscriber's network-IDs) are disconnected.

Figure 3-4 Logout Request Event

The logout event in the pull model may occur, for example, when the SCE identifies that the subscriber
is not active for a specific time interval. The SCE “logs out” the subscriber and sends a
LOGOUT-INDICATION event.

(1)LOGIN-PULL-REQUEST EVENT:

(2)LOGIN-PULL-REQUEST EVENT:

Anonymous subscriber ID
Network ID

Anonymous subscriber ID
Subscriber ID

Network ID
Network ID add/set

Policy Profile
Quota

Policy Server SCE

15
70

72

LOGOUT-REQUEST EVENT:

Subscriber ID
Network ID

Policy Server SCE

15
70

63
3-3
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 3 API Events
 Information About API Events
Figure 3-5 Logout Indication Event

The LOGOUT-INDICATION event may also follow the Logout operation. This occurs once a
subscriber is actually removed; for example, when no more valid network mappings (IP) are associated
with this subscriber.

Figure 3-6 Logout Request Event

Network ID Update Event

This event is a REQUEST from the Policy Server to the SCE to update the network ID of the subscriber
that already exists in the SCE platform. This event does not require any RESPONSE.

Figure 3-7 Network ID Update Event

Information About Policy Profile Management Events
• Profile Update Event

Profile Update Event

This event is a REQUEST from the Policy Server to the SCE to update the policy profile of the
subscriber that already exists in the SCE platform. This event does not require any RESPONSE.

Figure 3-8 Profile Update Event

LOGOUT-INDICATION EVENT:

Subscriber ID
Policy Server SCE

15
70

64

(1)LOGOUT-REQUEST EVENT:

(2)LOGOUT-INDICATION EVENT:

Subscriber ID
Network ID

Subscribers ID

Policy Server SCE

NETWORK-ID-UPDATE-REQUEST EVENT:

Subscriber ID
Network ID

Network ID set/add flag

Policy Server SCE

POLICY-PROFILE-UPDATE-REQUEST EVENT:
Subscriber ID
Policy Profile

Policy Server SCE
3-4
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 3 API Events
 Information About API Events
Note As described above, the LOGIN-REQUEST event and LOGIN-PULL-RESPONSE event can also
update the policy profile.

Information About Quota Management Events
• Quota Update Event

• Get Quota Status Event

• Quota Status Event

• Quota Below Threshold Event

• Quota Depleted Event

• Quota State Restore Event

Quota Update Event

The Quota Update Event is a REQUEST from the Policy Server to the SCE to update the quota of the
subscriber that already exists in the SCE platform. This event does not require any RESPONSE event.

Figure 3-9 Quota Update Event

Note As described above, the LOGIN-REQUEST event and LOGIN-PULL-RESPONSE event can also
update the quota.

Get Quota Status Event

The Get Quota Status Event is a REQUEST from the Policy Server to the SCE to report the quota
information of the subscriber that already exists in the SCE platform. A
QUOTA-STATUS-INDICATION event follows this event.

Figure 3-10 Get Quota Status Event

QUOTA-UPDATE-REQUEST EVENT:

Subscriber ID
Quota

Policy Server SCE

15
70

80

(1)GET-QUOTA-STATUS-REQUEST EVENT:

(2)QUOTA-STATUS-INDICATION EVENT:

Subscriber ID
Quota

Subscriber ID
Quota

Policy Server SCE

15
70

58
3-5
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 3 API Events
 Information About API Events
Note A QUOTA-STATUS-INDICATION event may be issued periodically by the SCE without a specific
request from the Policy Server. See Quota Status Event.

Quota Status Event

The SCE uses the Quota Status INDICATION event to notify the Policy Server about the remaining
quota. This event is invoked periodically in a preconfigured time interval.

Figure 3-11 Quota Status Event

Quota Below Threshold Event

The SCE uses the Quota Below Threshold INDICATION event to notify the Policy Server that the
remaining quota for certain services of the specific subscriber is below the preconfigured threshold. An
UPDATE-QUOTA-REQUEST event from the Policy Server to the SCE may follow this event, but it is
not mandatory.

Figure 3-12 Quota Below Threshold Event

Quota Depleted Event

The SCE uses the Quota Depleted INDICATION event to notify the Policy Server that the quota for
certain services of the specific subscriber is depleted. An UPDATE-QUOTA-REQUEST event from the
Policy Server to the SCE may follow this event.

Figure 3-13 Quota Depleted Event

QUOTA-STATUS-INDICATION EVENT:

Subscriber ID
Quota

Policy Server SCE

15
70

79

QUOTA-BELOW-THRESHOLD-INDICATION EVENT:

Subscriber ID
Quota

Policy Server SCE

15
70

77

QUOTA-DEPLETED-INDICATION EVENT:

Subscriber ID
Quota

Policy Server SCE

15
70

78
3-6
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 3 API Events
 Information About API Events
Quota State Restore Event

The Quota State Restore Event is an INDICATION from the SCE to the Policy Server to restore the
quota of the subscriber that exists in the SCE platform. This event is invoked immediately after a
subscriber is logged in to the SCE. A Quota Update event from the Policy Server may follow this event.

Figure 3-14 Quota State Restore Event

Information About SCE Synchronization Procedure Events
• Start Synchronization Event

• End Synchronization Event

• Get Subscribers Events

Start Synchronization Event

The Start Synchronization REQUEST event is used to notify the SCE that the synchronization process
is about to start. The SCE uses this REQUEST to perform internal operations that are required for
synchronization process preparation. This event has a push and a pull component.

Figure 3-15 Start Synchronization Event

End Synchronization Event

The End Synchronization REQUEST event is used to notify the SCE that the synchronization process
has ended. This event has a push and a pull component.

Figure 3-16 End Synchronization Event

21
00

80

QUOTA-STATE-RESTORE-INDICATION EVENT:

Subscriber ID
Policy Server SCE

START-SYNCHRONIZATION-REQUEST EVENT:
Policy Server SCE

15
70

85

END-SYNCHRONIZATION-REQUEST EVENT
Policy Server SCE

15
70

56
3-7
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 3 API Events
 Information About API Events
Get Subscribers Events

During the SCE's Pull Model synchronization process, the Policy Server is required to retrieve ALL
subscribers that the SCE is currently handling. The GET-SUBSCRIBERS-BULK-REQUEST event is a
request from the Policy Server to the SCE to retrieve the next bulk of subscribers that the SCE is
currently handling. Upon receiving this request, the SCE responds with the
GET-SUBSCRIBERS-BULKRESPONSE event that supplies the subscriber names and Network-IDs.

Figure 3-17 Get Subscribers Event

For more information, see the Pull Model and Information About the Pull Model Synchronization
Procedure.

(1)GET-SUBSCRIBERS-BULK-REQUEST EVENT:

(2)GET-SUBSCRIBERS-BULK-RESPONSE EVENT:

Bulk size
IN Iterator

Subscribers bulk
OUT Iterator

Policy Server SCE

15
70

59
3-8
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

C
OL-8236-04
C H A P T E R 4

Getting Familiar with the API Data Types

This module describes the various API data types used in the SCMS SCE Subscriber API.

• Subscriber ID

• Information About Network ID Mappings

• Information About SCA BB Subscriber Policy Profile

• Information About Subscriber Quota

• Information About Bulk Operations Data Types

Subscriber ID
Most methods of the SCE Subscriber APIs require the subscriber ID to be used as an input parameter.
The Subscriber ID is a string representing a subscriber name or a CM MAC address. This section lists
the formatting rules of a subscriber ID.

The subscriber name is case-sensitive . It may contain up to 64 characters. All printable characters with
an ASCII code between 32 and 126 (inclusive) can be used; except for 34 ("), 39 ('), and 96 (`).

For example:

String subID1="john";
String subID2="john@yahoo.com";

Information About Network ID Mappings
A network ID is a network identifier that the SCE device relates to a specific subscriber record. A typical
example of a network ID mapping is an IP address. Currently, the Cisco Service Control Engine (SCE)
supports IP address, IP range, and VLAN types of mappings.

The NetworkID class represents various types of subscriber network identification.

The API supports the following subscriber mapping types:

• IP addresses or IP ranges

• VLAN tags

Note Mixing IP addresses/IP ranges with VLAN tags for the same subscriber is not supported.
4-1
isco SCMS SCE Subscriber API Programmer Guide

Chapter 4 Getting Familiar with the API Data Types
 Information About Network ID Mappings
When using subscriber operations that involve network ID, the caller is requested to provide a
NetworkID parameter.

NetworkID class constructors are defined as follows:

public NetworkID(String mapping,short mappingType) throws Exception
public NetworkID(String[] mappings,short[] mappingTypes) throws Exception

Parameters of the NetworkID constructors are:

• A java.lang.String mapping identifier or array of mapping identifiers

• A short mapping type or array of mapping types

When passing arrays, the mappingTypes array must contain either the same number of elements as the
mappings array, or a single element.

• Use NetworkID.TYPE_IP or NetworkID.TYPE_VLAN constants if the array contains more than
one element

• Use NetworkID.ALL_IP_MAPPINGS or NetworkID.ALL_VLAN_MAPPINGS constants when a
single array element is used

Specifying IP Address Mapping
The string format of an IP address is the commonly used decimal notation:

IP-Address=[0-255].[0-255].[0-255].[0-255]

Example:

• 216.109.118.66

The mapping type of an IP address is provided in the class NetworkID:

• com.scms.common.NetworkID.TYPE_IP:

com.scms.common.NetworkID.ALL_IP_MAPPINGS specifies that all the entries in the mapping
identifiers array are IP mappings.

Specifying IP Range Mapping
The string format of an IP range is an IP address in decimal notation and a decimal specifying the number
of 1 s in a bit mask: IP-Range=[0-255].[0-255].[0-255].[0-255]/[0-32].

Examples:

• 10.1.1.10/32 is an IP range with a full mask, that is, a regular IP address.

• 10.1.1.0/24 is an IP range with a 24-bit mask, that is, all of the addresses ranging between 10.1.1.0
and 10.1.1.255.

Note The mapping type of an IP Range is identical to the mapping type of the IP address.

Specifying VLAN Tag Mapping
The string format for VLAN tag mapping is a decimal number in the following range: [2-2046]

The com.scms.common.NetworkID class provides the VLAN mapping type:
4-2
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 4 Getting Familiar with the API Data Types
 Information About SCA BB Subscriber Policy Profile
• The mapping type of an IP address is provided in the class NetworkID:

• com.scms.common.NetworkID.TYPE_VLAN:

• com.scms.common.NetworkID.ALL_VLAN_MAPPINGS specifies that all the entries in the
mapping identifiers array are VLAN mappings.

Network ID Mappings Examples
Construct NetworkID with a single IP address:

NetworkID nid = new NetworkID("1.1.1.1",NetworkID.TYPE_IP)

Construct NetworkID with a range of IP addresses:

NetworkID nid = new NetworkID("1.1.1.1/24",NetworkID.TYPE_IP)

Construct NetworkID with multiple IP addresses:

NetworkID nid = new NetworkID(new String[]{"1.1.1.1","2.2.2.2","3.3.3.3"},
NetworkID.ALL_IP_MAPPINGS)

Construct NetworkID with a single VLAN address:

NetworkID nid = new NetworkID("23",NetworkID.TYPE_VLAN)

Information About SCA BB Subscriber Policy Profile
The Policy Profile describes the subscriber policy information. A policy profile is generally comprised
of two main parts including a statically defined policy that is identified by the policy package and a set
of subscriber policy properties that might have a dynamic nature. The package ID identifies the policy
package. Most of the rules enforced on the subscriber traffic are derivedfrom the package ID.

Subscriber policy property in SCA BB is a key-value pair that affects the way the SCE analyzes and
reacts to network traffic generated by the subscriber.

More information about properties can be found in the Cisco Service Control Application Suite for
Broadband User Guide.

SCA BB version 3.0 contains the following properties:

• packageId—Defines the package ID of the subscriber

• monitor—Indicates whether to issue an Raw Data Record (RDR) for each transaction of this
subscriber

PolicyProfile Class
The API provides a PolicyProfile class to format subscriber policy profiles required for the API
operations.

The following method constructs the PolicyProfile class based on the array of policy properties:

public PolicyProfile(String[] policy)

Note The encoding of each string within the array must be as follows:

property_name=property_value

The following method allows adding a policy property to the profile according to the format described
above:
4-3
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 4 Getting Familiar with the API Data Types
 Information About Subscriber Quota
public void addPolicyProperty(String policyProperty)

Note This method is not optimized for performance. For best performance results, use the PolicyProfile
constructor.

Example:

PolicyProfile pp = new PolicyProfile(new
 String[]{"packageId=22", "monitor=1"})

Information About Subscriber Quota
The quota provisioning in SCA BB is prepared using subscriber quota buckets. Each subscriber has 16
buckets, and you can define each bucket for volume or sessions. When a subscriber uses a particular
service, the amount of consumed volume or number of sessions is subtracted from one of the buckets.
The service configuration, which is defined in the general policy definition by using the SCA BB
Console, determines which bucket to use for each service. Consumption for the volume buckets is
counted in units of L3 kilobytes and consumption for the session buckets is the number of sessions. For
example, it is possible to define that the Browsing and E-mail services consume quota from Bucket
number 1, P2P service consumes quota from Bucket number 2, and that all other services are not bound
to any particular bucket.

Quota bucket comprises from the following components:

• Bucket ID—Unique identifier of the bucket (String) as defined in the predefined policy. Valid
values are numbers in range [1-16]

• Bucket value—Quota bucket value (long)

Quota Operation dynamically modifies a subscriber's quota buckets. There are two types of quota
operations:

• ADD_QUOTA_OPERATION—Adds the new quota value to the current value of the bucket residing
on the SCE platform

• SET_QUOTA_OPERATION—Replaces the value of the quota bucket residing on the SCE platform
with the new value

Examples

Current values of subscriber A's quota at the SCE are as follows:

Figure 4-1 Subscriber Quota - Current Values

Browsing

60

P2P

1

FTP

80

15
70

87
4-4
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 4 Getting Familiar with the API Data Types
 Information About Subscriber Quota
We want to apply the following actions to the existing quota:

Figure 4-2 Subscriber Quota - Actions to Apply

After performing the quota actions, the result is:

Figure 4-3 Subscriber Quota - Results

For additional information about Subscriber Quota, see the Cisco Service Control Application for
Broadband User Guide .

The following sections describe the classes the API provides for operations that include the subscriber
quota management operations.

SCAS_BB_Quota
The SCAS_BB_Quota class implements the Quota interface, which the QuotaListenerEx interface uses
in all callback functions. See Information About the QuotaListenerEx Interface Class.

The following method constructs the SCAS_BB_Quota based on the array of IDs and values:

public SCAS_BB_Quota (String[] bucketIDs,
long[] bucketValues)

The following method constructs the SCAS_BB_Quota based on the array of IDs and values, the profile
ID, the reason, and the timestamp:

Browsing

10

P2P

5

FTP

ADDADDSET

85

15
70

88
Browsing

70

P2P

6

FTP

85

15
70

89
4-5
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 4 Getting Familiar with the API Data Types
 Information About Subscriber Quota
public SCAS_BB_Quota (String[] bucketIDs,
long[] bucketValues,
int quotaProfileId,
int reason,
long timestamp)

The following method allows retrieving of the quota buckets' IDs:

public String[] getBucketIDs()

The following method allows retrieving of the quota buckets' values:

public long[] getBucketValues()

The quotaProfileId parameter is the identifier for the quota profile, which is the package ID. The
following method allows retrieving of the quota profile ID:

public int getQuotaProfileId()

The reason parameter is relevant only for quota status events and has three possible values:

• 0—The configured time was reached, for example, every two minutes

• 1—The quota status event was triggered by a subscriber logout

• 2—The quota status event was triggered by a package change

The following method allows retrieving of the reason:

public int getReason()

The timestamp parameter contains the time (in the SCE) at which the event was generated. It is
calculated as the number of seconds from January 1, 1970 00:00 GMT.

The following method allows retrieving of the timestamp:

public long getTimestamp()

SCAS_BB_QuotaOperation
The SCAS_BB_QuotaOperation class implements the QuotaOperation interface, which is used for
Subscriber Provisioning operations that include the subscriber's quota such as login operation (see
Information About the login Operation) and update quota operation (see Information About the
quotaUpdate Operation).

The following method constructs the SCAS_BB_QuotaOperation based on the array of IDs, values and
actions:

public SCAS_BB_QuotaOperation (String[] IDs,
long[] values,
short[] actions)

The following method allows retrieving of the quota buckets' IDs:

public String[] getBucketIDs()

The following method allows retrieving of the quota buckets' values:

public long[] getBucketValues()

The following method allows retrieving of the quota buckets' actions:

public short[] getBucketActions()
4-6
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 4 Getting Familiar with the API Data Types
 Information About Bulk Operations Data Types
Information About Bulk Operations Data Types
Use bulk classes and operations when performing the same method for many subscribers each with its
own parameters. The API provides the bulk classes for result handling of bulk operations and for bulk
indications from the SCE. The bulk classes are passed to the bulk methods such as loginBulk and
logoutBulk.

The following is a list of considerations when using the bulk operations:

• All bulk classes are inherited from the common BulkBase class.

• Due to the memory constraints of the SCE, the bulk size is limited to a maximum of 100 entries.

Bulk Iterator
The BulkBase class provides an iterator to view the data contained in the bulk.

The following is the syntax for the Bulk Iterator:

Iterator getIterator()

This iterator can be used for iteration over the bulks received from the SCE in various indications (for
example, logoutBulkIndication, loginPullBulkResponseIndication, and so forth) or for inspecting the
data you provided to various operations in case an operation has failed.

The iterator provides the following methods for data retrieval:

public Object next()
public boolean hasNext()

The next() method returns a SubscriberData object.

The SubscriberData class is used for retrieving the information of a single subscriber contained within
the bulk.

SubscriberData

The SubscriberData class represents all of the operations that can be performed on a specific subscriber.
The SubscriberData class contains the following utility methods for information retrieval:

public String getSubscriberID()
public String getAnonymousID()
public String[] getMappings()
public short[] getTypes()
public boolean getAdditiveFlag()

The following sections describe various bulk data types that are available for different API operations.

Login_BULK Class
This class represents bulk of subscribers and it includes all data required for the loginBulk operation.

• Constructor

• addBulkEntry Method

• Examples
4-7
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 4 Getting Familiar with the API Data Types
 Information About Bulk Operations Data Types
Constructor

To construct the Login_BULK filled with the data use the following constructor:

public Login_BULK(String[] subscriberIDs,
NetworkID[] networkIDs,
boolean[]networkIDsAdditive,
PolicyProfile[] policy,
QuotaOperation[] quota)

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

networkID —The network identifier of the subscriber. See Information About Network ID
Mappings for more information.

networkIDAdditive —If this flag is set to TRUE, the supplied NetworkID is added to the existing
networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing networkIDs.

policy —Policy profile of the subscriber. See Information About SCA BB Subscriber Policy Profile for
more information.

quota —Quota of the subscriber. See Information About Subscriber Quota for more information.

To construct an empty Login_BULK, use the following method:

public Login_BULK()

addBulkEntry Method

Use the following method to add entries to the bulk:

public void addBulkEntry(String subscriberID,
NetworkID networkID,
boolean networkIdsAdditive,
PolicyProfile policy,
QuotaOperation quota)

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

networkID —The network identifier of the subscriber. See Information About Network ID
Mappings for more information.

networkIDAdditive —If this flag is set to TRUE, the supplied NetworkID is added to the existing
networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing networkIDs.

policy —Policy profile of the subscriber. See Information About SCA BB Subscriber Policy Profile for
more information.

quota —Quota of the subscriber. See Information About Subscriber Quota for more information.

Examples

• Login_BULK Object Usage: Example

• Manipulating Login_BULK: Example
4-8
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 4 Getting Familiar with the API Data Types
 Information About Bulk Operations Data Types
Login_BULK Object Usage: Example

This example demonstrates the usage of the Login_BULK object:

// Prepare all data for the bulk construction
String[] names = new String[5];
NetworkID[] mappings = new NetworkID[5];
boolean[] additive = new boolean[5];
PolicyProfile[] policy = new PolicyProfile[5];

for (int i=0; i<5; i++)
{
names[i]="sub_"+i;
mappings[i] = new NetworkID(”1.1.1.”+i,NetworkID.TYPE_IP);
additive[i] = true;
policy[i] = new PolicyProfile(new String[]{"packageId="+(i+1)});
}
// construct the bulk object
Login_BULK bulk = new Login_BULK(names,mappings,additive,policy,null);
// Now it can be used in loginBulk operation
sceApi.loginBulk(bulk,null);

Manipulating Login_BULK: Example

This example demonstrates an alternative way of manipulating the Login_BULK object:

// Construct the empty bulk
Login_BULK bulk = new Login_BULK ();
// Fill the bulk using addBulkEntry method:
for (int i=0; i<20; i++)
{
String name ="sub_"+i;
NetworkID mappings = new NetworkID(i+1);
boolean additive = true;
PolicyProfile policy = new PolicyProfile(
new String[]{"packageId="+(i+1)});
QuotaOperation quota = new SCAS_BB_QuotaOperation(
new String[]{“1”,”2”,”3”},
new long[]{80,80,0}
new short[]{SCAS_BB_QuotaOperation.ADD_QUOTA_OPERATION,
SCAS_BB_QuotaOperation.ADD_QUOTA_OPERATION,
SCAS_BB_QuotaOperation.SET_QUOTA_OPERATION});
bulk.addBulkEntry(name,mappings,additive,policy,quota);
}
// Now it can be used in loginBulk operation
sceApi.loginBulk(bulk,null);

SubscriberID_BULK Class
The logoutBulkIndication callback function that requires only subscriber IDs to be entered uses the
SubscriberID_BULK class. See Information About the logoutBulkIndication Callback Method.

• Constructors

• addBulkEntry Method

Constructors

To construct the SubscriberID_BULK with Subscriber IDs data, use the following constructor:

public SubscriberID_BULK(String[] subscriberIDs)

To construct an empty SubscriberID_BULK , use the following method:
4-9
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 4 Getting Familiar with the API Data Types
 Information About Bulk Operations Data Types
public SubscriberID_BULK()

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

addBulkEntry Method

Use the following method to add entries to the SubscriberID bulk:

addBulkEntry(String subscriberID)

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

NetworkAndSubscriberID_BULK Class
Use the NetworkAndSubscriberID_BULK class in bulk operations that require Subscriber IDs and
NetworkIDs in the following operations:

• getSubscribersBulkResponse callback (see the Information About the LoginPullListener Interface
Class section)

• logoutBulk operation (see Information About the logoutBulk Operation)

• networkIDUpdateBulk operation (see Information About the networkIdUpdateBulk Operation)

Constructors

To construct the NetworkAndSubscriberID_BULK with the SubscriberID and NetworkID data, use
the following constructor:

public NetworkAndSubscriberID_BULK(String[] subscriberIDs,
NetworkID[] networkIDs,
boolean[] netIdAdditive)

To construct an empty NetworkAndSubscriberID_BULK , use the following method:

public NetworkAndSubscriberID_BULK()

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

networkID —The network identifier of the subscriber. See Information About Network ID
Mappings for more information.

networkIDAdditive —If this flag is set to TRUE, the supplied NetworkID is added to the existing
networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing networkIDs.

addBulkEntry Method

Use the following method to add entries to the bulk:
4-10
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 4 Getting Familiar with the API Data Types
 Information About Bulk Operations Data Types
addBulkEntry(String subscriberID,
NetworkID networkID,
boolean netIdAdditive)

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

networkID —The network identifier of the subscriber. See Information About Network ID
Mappings for more information.

networkIDAdditive —If this flag is set to TRUE, the supplied NetworkID is added to the existing
networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing networkIDs.

LoginPullResponse_BULK Class
This class represents a bulk of subscribers and includes all data required for the loginPullResponseBulk
method.

• Constructors

• addBulkEntry Method

Constructors

To construct the LoginPullResponse_BULK containing the relevant data, use the following constructor:

public LoginPullResponse_BULK(String[] anonymousSubscriberIDs,
String[] subscriberIDs,
NetworkID[] networkIDs,
boolean[] networkIdsAdditive,
PolicyProfile[] policy,
QuotaOperation[] quota)

To construct an empty LoginPullResponse_BULK , use the following method:

public LoginPullResponse_BULK()

• Parameters

Parameters

anonymousSubscriberID —The identifier of the anonymous subscriber. This is sent by the SCE within
the loginPullRequest/loginPullBulkRequest indication (see Information About the loginPullRequest
Callback Method and Information About the loginPullRequestBulk Callback Method). See Information
About Subscriber Integration Models for more information.

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

networkID —The network identifier of the subscriber. See Information About Network ID
Mappings for more information.

networkIDAdditive —If this flag is set to TRUE, the supplied NetworkID is added to the existing
networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing networkIDs.

policy —Policy profile of the subscriber. See Information About SCA BB Subscriber Policy Profile for
more information.

quota —Quota of the subscriber. See Information About Subscriber Quota for more information.
4-11
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 4 Getting Familiar with the API Data Types
 Information About Bulk Operations Data Types
addBulkEntry Method

Use the following method to add entries to the bulk:

public addBulkEntry(String anonymousSubscriberID,
String subscriberID,
NetworkID networkID,
boolean networkIdAdditive,
PolicyProfile policy,
QuotaOperation quota)

Parameters

anonymousSubscriberID —The identifier of the anonymous subscriber. This is sent by the SCE within
the loginPullRequest/loginPullBulkRequest indication (see Information About the loginPullRequest
Callback Method and Information About the loginPullRequestBulk Callback Method). See Information
About Subscriber Integration Models for more information.

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

networkID —The network identifier of the subscriber. See Information About Network ID
Mappings for more information.

networkIDAdditive —If this flag is set to TRUE, the supplied NetworkID is added to the existing
networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing networkIDs.

policy —Policy profile of the subscriber. See Information About SCA BB Subscriber Policy Profile for
more information.

quota —Quota of the subscriber. See Information About Subscriber Quota for more information.

PolicyProfile_BULK Class
The updatePolicyProfileBulk operation uses this class that represents a bulk of subscriber IDs and
subscriber policy profiles.

• Constructors

• addBulkEntry Method

Constructors

To construct the PolicyProfile_BULK containing the relevant data, use the following constructor:

public PolicyProfile_BULK(String[] subscriberIDs, PolicyProfile[] policy)

To construct an empty PolicyProfile_BULK , use the following method:

public PolicyProfile_BULK()

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

policy —Policy profile of the subscriber. See Information About SCA BB Subscriber Policy Profile for
more information.
4-12
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 4 Getting Familiar with the API Data Types
 Information About Bulk Operations Data Types
addBulkEntry Method

Use the following method to add entries to the bulk:

public addBulkEntry(String subscriberID, PolicyProfile policy)

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

policy —Policy profile of the subscriber. See Information About SCA BB Subscriber Policy Profile for
more information.

Quota_BULK Class
The following operations use this class that represents a bulk of subscribers IDs and subscriber quota
buckets:

• getQuotaStatusBulk operation (only the bucket IDs are to be provided)

• quotaStatusBulkIndication callback method

• quotaDepletedBulkIndication callback method

• quotaBelowThresholdIndication callback method

Constructors

To construct the Quota_BULK containing the relevant data, use the following constructor:

public Quota_BULK(String[] subscriberIDs, Quota[] subscribersQuota)

To construct an empty Quota_BULK, use the following method:

public Quota_BULK()

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

quota —Quota of the subscriber. See Information About Subscriber Quota for more information.

addBulkEntry Method

Use the following method to add entries to the bulk:

public addBulkEntry(String subscriberID,Quota quota)

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

quota —Quota of the subscriber. See Information About Subscriber Quota for more information.
4-13
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 4 Getting Familiar with the API Data Types
 Information About Bulk Operations Data Types
QuotaOperation_BULK Class
The QuotaUpdateBulk operation and the login operation use this class that represents a bulk of
subscribers IDs and subscriber Quota operations.

• Constructors

• addBulkEntry Method

Constructors

To construct the QuotaOperation_BULK containing the relevant data, use the following constructor:

public QuotaOperation_BULK(String[] subscriberIDs,
QuotaOperation[]quotaOperations)

To construct an empty QuotaOperation_BULK, use the following method:

public QuotaOperation_BULK()

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

quotaOperation —The quota operation to perform on the quota of the subscriber. See Information
About Subscriber Quota for more information.

addBulkEntry Method

Use the following method to add entries to the bulk:

addBulkEntry(String subscriberID, QuotaOperation quotaOperation)

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

quotaOperation —The quota operation to perform on the quota of the subscriber. See Information
About Subscriber Quota for more information.
4-14
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

C
OL-8236-04
C H A P T E R 5

Programming with the SCE Subscriber API

This module provides a detailed description of the API programming structure, classes, methods, and
interfaces.

• Information About API Classes

• Programming Guidelines

• PRPC_SCESubscriberApi Class

• Information About Indications Listeners

• Information About Connection Monitoring

• Information About SCE Cascade Topology Support

• Information About Result Handling

• Information About Subscriber Provisioning Operations

• Information About SCE-API Synchronization

• Information About Advanced API Programming

• API Code Examples

Information About API Classes
The following list maps the classes provided by the API.

• Package com.scms.api.sce.prpc

• Package com.scms.api.sce

• Package com.scms.common

Package com.scms.api.sce.prpc
PRPC_SCESubscriberApi Class —Main API class.

Package com.scms.api.sce
• Indications Listeners

• Connection Monitoring
5-1
isco SCMS SCE Subscriber API Programmer Guide

Chapter 5 Programming with the SCE Subscriber API
 Information About API Classes
• SCE Cascade Topology Support

• Operations Result Handling

Indications Listeners

• Information About the LoginPullListener Interface Class (interface)

• Information About the LogoutListener Interface Class (interface)

• Information About the QuotaListenerEx Interface Class (interface)

Connection Monitoring

• ConnectionListener Interface (interface)

SCE Cascade Topology Support

• Information About the RedundancyStateListener Interface (interface)

Operations Result Handling

• OperationException Class (class)

• SCESubscriberApi (interface)—Contains error codes constants that can be received inside
OperationException

• Information About the OperationArguments Class (class)

• Information About the OperationResultHandler Interface (interface)

Package com.scms.common
com.scms.common package contains all data types used by the API.

• Login_BULK Class

• LoginPullResponse_BULK Class

• NetworkAndSubscriberID_BULK Class

• PolicyProfile_BULK Class

• SubscriberID_BULK Class

• SubscriberData (class)

• SCAS_BB_Quota (class)

• SCAS_BB_QuotaOperation (class)

• Information About Network ID Mappings NetworkID class

• PolicyProfile Class
5-2
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Programming Guidelines
Programming Guidelines
• Programming with Callback Methods

Programming with Callback Methods
As described in previous sections, many of the API operations are based on callback methods. The user
provides a "listener", which is called when certain events occur. The following warning defines the main
guideline for programming with callback methods.

Do not perform long operations within the thread of the callback method. Long operations should be
performed from a separate thread . Moreover, not following this recommendation might result in
resource leakage on the client's side.

This caution applies to the following operations:

• LoginPullListener callback methods

• LogoutListener callback methods

• QuotaListenerEx callback methods

• ConnectionListener callback methods

PRPC_SCESubscriberApi Class
The PRPC_SCESubscriberAPI class (resides in a com.scms.sce.api.prpc package) is the main API class
that provides the following functionality:

• Constructing the API

• Connecting the API to exactly one SCE (configuring the connection attributes)

• Registering/unregistering indications listeners

• Setting the connection listener

• Performing subscriber provisioning operations

• Disconnecting from the SCE

API Construction
The PRPC_SCESubscriberAPI provides the following constructors:

Syntax:

public PRPC_SCESubscriberApi(String apiName, String sceHost)
throws UnknownHostException
public PRPC_SCESubscriberApi(String apiName,
String sceHost,
long autoReconnectInterval)
throws UnknownHostException
public PRPC_SCESubscriberApi(String apiName,
String sceHost,
int scePort,
long autoReconnectInterval)
throws UnknownHostException
5-3
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 PRPC_SCESubscriberApi Class
Parameters:

The following is a description of the constructor arguments for the API constructors:

apiName —Specifies an API name.

Note The API name should be unique per SCE. If you construct more than one API with the same name and
connect it to a single SCE, the SCE platform will handle the APIs as one API client. Use this feature
only when high-availability is supported. For more information about high availability, see the
Implementing High Availability section.

sceHost —Can be either an IP address or a reachable hostname.

scePort —PRPC protocol TCP port to connect to the SCE (default value is 14374)

autoReconnectInterval —Defines the interval (in milliseconds) for attempting reconnection by the
reconnection task, as follows:

• If the value is 0 or less, the reconnection task is not activated (no auto-reconnect is attempted).

• If the value is greater than 0 and a connection failure exists, the reconnection task will be activated
every <autoReconnectInterval>milliseconds.

• Default value: -1 (no auto-reconnect is attempted)

Note To enable the auto-reconnect support, the connect method of the API must be called at least once.

Examples:

The following code constructs an API with an auto-reconnection interval of 10 seconds:

PRPC_SCESuscriberAPI sceApi = new PRPC_SCESuscriberAPI("MyApi",
"10.1.1.1",
10000);
sceApi.connect();

The following code constructs an API without auto-reconnection support:

PRPC_SCESuscriberAPI sceApi = new PRPC_SCESuscriberAPI("MyApi",
"10.1.1.1");
sceApi.connect();

Listeners Setup Operations

After initializing the API, it should be set-up with the utilized listeners based on the type of application
using the API, and the topology used. For more information about topologies, see the Supported
Topologies section.

The listeners setup operations may include:

• Setting a connection listener, described in more detail in Information About Connection
Monitoring section:

• public void setConnectionListener(ConnectionListener listener)

• Setting a login-pull listener, described in more detail in Information About the LoginPullListener
Interface Class section:

• public void registerLoginPullListener(LoginPullListener listener)

• Setting a logout listener, described in more detail in Information About the LogoutListener Interface
Class section:
5-4
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 PRPC_SCESubscriberApi Class
• public void registerLogoutListener(LogoutListener listener)

• Setting a quota listener, described in more detail in Information About the QuotaListenerEx
Interface Class section:

• public void registerQuotaListener(QuotaListener listener)

• Setting a redundancy state listener, described in more detail in Information About the
RedundancyStateListener Interface section:

• public void setRedundancyStateListener(RedundancyStateListener listener)

Note The listener registration to the API causes resource allocations in the SCE to support reliable delivery
of messages to the listener. Even if the application that uses the API crashes and restarts after a short
time the messages are kept and sent to the SCE when the API reconnects.

Advanced Setup Operations

The API enables initializing certain internal properties for API customization. The initialization is done
using the API init method.

Note For settings to take effect, the init method must be called before the connect method.

The following properties can be set:

• Output queue size—The internal buffer size defining the maximum number of requests that can be
accumulated by the API until they are sent to the SCE (Default: 1024)

• Operation timeout—A suggested time interval about the desired timeout (in milliseconds) on a
non-responding PRPC protocol connection (Default: 45 seconds)

Syntax

The syntax for the init method is as follows:

public void init(Properties properties)

Parameters

properties (java.util.Properties)—Enables setting the properties described in Advanced Setup
Operations :

• To set the output queue size, use prpc.client.output.machinemode.recordnum as a property key

• To set the operation timeout, use com.scms.api.sce.prpc.regularInvocationTimeout or
com.scms.api.sce.prpc.listenerInvocationTimeout as a property key

Note com.scms.api.sce.prpc.listenerInvocationTimeout is used for operations that may be invoked from
listener callback. This timeout should be shorter than
com.scms.api.sce.prpc.regularInvocationTimeout to avoid deadlocks.

Customize Properties: Example

This example shows how to customize properties during initialization:

// API construction
PRPC_SCESuscriberAPI sceApi = new PRPC_SCESuscriberAPI("MyApi",
"10.1.1.1",10000);
5-5
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 PRPC_SCESubscriberApi Class
// API initialization
java.util.Properties p = new java.util.Properties();
p.setProperty("prpc.client.output.machinemode.recordnum", 2048+"");
api.init(p);
// connect to the API
sceApi.connect();

Note The init method is called before the connect method.

Connecting to the SCE

After setting up the API, you should attempt to connect to the SCE. If the auto-reconnect feature is
activated, the API will handle any disconnection from this point on.

To connect to the SCE, use the following methods:

public void connect() throws Exception

At any time during the API operation, you can check if the API is connected to the SCE by using the
method isConnected() :

public boolean isConnected()

Note Every API instance supports a connection to exactly one SCE platform.

Information About getApiVersion

• Syntax

• Description

Syntax
public String getApiVersion()

Description

This method queries the API version. Version is a string formatted as <Major Version.Minor Version>.

API Finalization

To free the resources of both server and client, call the disconnect method:

public void disconnect()

The call to the disconnect method frees the resources in the SCE that manages the reliability of the
connection from the SCE to the API. If the application is restarting and you do not want to lose any
messages, do not use the disconnect method.

It is recommended that you use a finally statement in your main class. For example:

public static void main(String [] args) throws Exception
{
PRPC_SCESubscriberApi sceapi = new PRPC_SCE_SubscriberApi ("myApi",
"sceHost");
try
{

 …
 // Your code goes here

 }
 finally
5-6
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Indications Listeners
 {
 sceapi.disconnect();

 }
}

Information About Indications Listeners
The SCE platform issues several types of indications when certain events occur. There are three types of
indications:

• Login-pull indications

• Logout indications

• Quota indications

The indications are sent only if there are listeners that are registered to listen to those indications. For
every type of indications, a separate listener may be registered. For descriptions about the events that
trigger these indications, see the API Events chapter.

Information About the LoginPullListener Interface Class
The LoginPullListener interface defines a set of callback functions that are used only in the pull model.

Policy Servers that are responsible for the Network ID management part of the Subscriber Provisioning
process and intend to work in the pull model should register a LoginPullListener to enable to respond to
the login-pull requests from the SCE and to synchronize the SCE platform.

To enable listening to those indications, the API allows a listener to be set for these types of indications:

public void registerLoginPullListener(LoginPullListener listener)
public void unregisterLoginPullListener(LoginPullListener listener)

Note The API supports one LoginPullListener at a time. Furthermore, it is strongly recommended not to have
more than one API that has registered a LoginPullListener. This can lead to non-synchronized SCE
platforms if both SCEs respond to the same login-pull request.

LoginPullListener is an interface that is implemented to enable to register a login-pull indications
listener. It is defined as follows:

public interface LoginPullListener
{
public void loginPullRequest (String anonymousSubscriberID,
NetworkID networkID)
public void loginPullRequestBulk(NetworkAndSubscriberID_BULK subs)

public void getSubscribersBulkResponse(
NetworkAndSubscriberID_BULK subs,
SubscriberBulkResponseIterator iterator)
}

Information About the loginPullRequest Callback Method

When the SCE encounters an unknown IP address's subscriber-side traffic, it issues a request for the
subscriber login information based on the IP address (see Pull Model). The SCE expects the policy
server to respond with the configuration data of the subscriber data to which this IP was allocated.
5-7
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Indications Listeners
This request is dispatched to the registered listener and triggers the loginPullRequest callback function.
Upon this callback, the listener should retrieve the subscriber information of the subscriber matching
this IP address and activate loginPullResponse to deliver the information to the SCE (see Information
About the loginPullResponse Operation). If no information exists for this IP address, no response is
issued.

The following diagram illustrates the loginPullRequest callback method:

Figure 5-1 LoginPullRequest Callback Method

Parameters

• anonymousSubscriberID —This anonymous subscriber ID must be supplied to the
loginPullResponse operation (see Information About the loginPullResponse Operation). Also see
the Anonymous Subscriber ID.

• networkID —The network identifier of the unknown subscriber. See the Network ID section for
more information.

Information About the loginPullRequestBulk Callback Method

This callback function is the bulk version of the loginPullRequest callback function that is described in
the previous section.

Parameters

• subs —Contains pairs of NetworkIDs and anonymous IDs of several subscribers. See the
Parameters section of the loginPullRequest callback method for more information.

The Policy Server can respond to this request by the loginPullBulkResponse method activation or by
activating the loginPullResponse method for each NetworkID in the bulk. See Information About the
loginPullResponseBulk Operation and Information About the loginPullResponse Operation. To iterate
over the data contained in the subs parameter use the next() iteration method provided by the bulk class,
see Bulk Iterator.

GetSubscribersBulkResponse Callback Method

This callback method is used during the SCE synchronization process in the pull model. For a detailed
description, see Information About SCE-API Synchronization.

(2) loginPullRequest

(3) retrieve data

(1) Unknown Traffic

(4) loginPullResponse

SCE

LoginPullListener

15
70

62
5-8
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Indications Listeners
Information About the LogoutListener Interface Class
Policy Servers that are responsible for the Network ID management part of the Subscriber Provisioning
process might want to register a LogoutListener to be notified when certain subscribers are actually
removed from the SCE platform.

The API allows setting a LogoutListener to be able to receive logout indications.

public void registerLogoutListener(LogoutListener listener)
public void unregisterLogoutListener(LogoutListener listener)

Note The API supports one LogoutListener at a time.

The following sections describe callback functions of the LogoutListener interface.

• Information About the logoutIndication Callback Method

• Information About the logoutBulkIndication Callback Method

Information About the logoutIndication Callback Method

When the SCE platform identifies the logout of the last Network-ID of the subscriber identified by the
subscriberID, it issues the logout indication. This triggers a call to the logoutIndication callback
function of all registered logout indications listeners.

public void logoutIndication(String subscriberID)

Parameters

• subscriberID —A unique identifier of the subscriber. See Subscriber ID for more information. The
SCE no longer handles this subscriber ID.

Information About the logoutBulkIndication Callback Method

When the SCE platform identifies the logout of the last NetworkID of the group of subscribers, it issues
the logout bulk indication. This triggers a call to the logoutBulkIndication callback function of all
registered logout indications listeners.

public void logoutBulkIndication(SubscriberID_BULK subs)

Parameters

• subs —Contains subscriber IDs of the subscribers that were logged out. See the
SubscriberID_BULK Class section for more information.

Information About the QuotaListenerEx Interface Class

Note From version 3.0.5, the QuotaListener interface is deprecated and should be replaced with
QuotaListenerEx. For backwards compatibility, the QuotaListener interface still exists, but you should
use the QuotaListenerEx interface when integrating with version 3.0.5 of the API.

Policy Servers that are responsible for the Quota management operations in the Subscriber Provisioning
Process should be able to receive quota-related indications issued by the SCE platform.
5-9
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Indications Listeners
The API allows setting the QuotaListener to be able to receive quota indications.

public void registerQuotaListener(QuotaListener listener)
public void unregisterQuotaListener(QuotaListener listener)

Note The API supports one QuotaListener at a time.

Note The QuotaListener interface is used for backward compatibility, but it is recommended to pass an object
that implements QuotaListenerEx.

The following sections describe the callback functions of the QuotaListenerEx interface.

Note The Bulk versions of the quota callback methods are not used in this release of the API.

• Information About the quotaStatusIndication Callback Method

• Information About the quotaStatusBulkIndication Callback Method

• Information About the quotaBelowThresholdIndication Callback Method

• Information About the quotaBelowThresholdIBulkndication Callback Method

• Information About the quotaDepletedIndication Callback Method

• Information About the quotaDepletedBulkIndication Callback Method

• Information About the quotaStateRestore Callback Method

• Information About the quotaStateBulkRestore Callback Method

Information About the quotaStatusIndication Callback Method

Quota status indication delivers the remaining value of the specified set of the quota buckets for a
specific subscriber. This indication is issued by the SCE periodically or upon a call to the
getQuotaStatus operation (see the Information About the getQuotaStatus Operation section) and is
distributed to the registered listener by activating a quotaStatusIndication callback function.

public void quotaStatusIndication(String subscriberID,
Quota quota)

Parameters

• subscriberID —The unique ID of the subscriber. See the Subscriber ID section for more
information.

• quota —Quota of the subscriber. See Information About Subscriber Quota for more information.

Information About the quotaStatusBulkIndication Callback Method

Quota status bulk indication delivers the remaining value of the specified set of the quota buckets for a
group of subscribers. This indication is issued by SCE periodically or upon a call to the
getQuotaStatusBulk operation (see the Get Quota Status Event section) and is distributed to the
registered listener by activating a quotaStatusBulkIndication callback function.

public void quotaStatusBulkIndication(Quota_BULK subs)
5-10
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Indications Listeners
You can configure the period for periodically issued indications. For more information, see the Cisco
Service Control Application for Broadband User Guide .

Parameters

• subs —Contains quota data of the bulk of the subscribers. See the Quota_BULK Class section for
more information.

Information About the quotaBelowThresholdIndication Callback Method

When the quota of a subscriber drops below a pre-configured threshold, the SCE platform issues an
indication that is distributed to the registered listener by activating a quotaBelowThresholdIndication
callback function.

public void quotaBelowThresholdIndication(String subscriberID,
Quota quota)

Parameters

• subscriberID —The unique ID of the subscriber. See the Subscriber ID section for more
information.

• quota —Quota of the subscriber. See Information About Subscriber Quota for more information.

Information About the quotaBelowThresholdIBulkndication Callback Method

When the quota of a group of subscribers drops below a pre-configured threshold, the SCE platform
issues an indication that is distributed to the registered listener by activating a
quotaBelowThresholdBulkIndication callback function.

public void quotaBelowThresholdBulkIndication(Quota_BULK subs)

Parameters

• subs —Contains quota data of the bulk of the subscribers. See the Quota_BULK Class section for
more information.

Information About the quotaDepletedIndication Callback Method

When the quota of a subscriber is depleted, the SCE platform issues an indication that is distributed to
the registered listener by activating a quotaDepletedIndication callback function.

public void quotaDepletedIndication(String subscriberID,
Quota quota)

Parameters

• subscriberID —The unique ID of the subscriber. See the Subscriber ID section for more
information.

• quota —Quota of the subscriber. See Information About Subscriber Quota for more information.

Information About the quotaDepletedBulkIndication Callback Method

When the quota of a group of subscribers is depleted, the SCE platform issues an indication that is
distributed to the registered listener by activating a quotaDepletedBulkIndication callback function.

public void quotaDepletedBulkIndication (SubscriberID_BULK subs)
5-11
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Connection Monitoring
Parameters

• subs —Contains names of the subscribers whose quota was depleted. See the SubscriberID_BULK
Class section for more information.

Information About the quotaStateRestore Callback Method

When a subscriberlogs in to the policy server, the policy server performs a login operation to the SCE.
The SCE issues a request to the policy server to restore the subscriber quota in the SCE by activating a
quotaStateRestore callback function. The policy server should respond to this function with a Quota
Update Event.

public void quotaStateRestore(String subscriberID,
Quota quota)

Parameters

• subscriberID —The unique ID of the subscriber. See the Subscriber ID section for more
information.

• quota —Quota of the subscriber. See Information About Subscriber Quota for more information.
The bucket IDs array is of size 0 because when this indication is created all the quota buckets are
empty.

Information About the quotaStateBulkRestore Callback Method

When a group of subscribers log in to the policy server, the policy server performs a login operation to
the SCE. The SCE issues a request to the policy server to restore the subscriber quota in the SCE by
activating a quotaStateBulkRestore callback function. The policy server should respond to this
function with a Quota Update Event.

public void quotaStateBulkRestore(SubscriberID_BULK subs)

Parameters

• subs —Contains names of the subscribers whose quota was depleted. See the SubscriberID_BULK
Class section for more information.

Information About Connection Monitoring
The SCMS SCE Subscriber API monitors the connection to the SCE platform. A Policy Server
requesting to perform certain operations on connection establishment or disconnection from the SCE can
implement a ConnectionListener interface.

• ConnectionListener Interface

• Disconnect Listener: Example

ConnectionListener Interface
The API allows setting a connection listener.

setConnectionListener(ConnectionListener listener)

The connection listener is an interface that is defined as follows:
5-12
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About SCE Cascade Topology Support
public interface ConnectionListener {
/**
* called when the connection with the SCE is down.
*/
public void connectionIsDown();
/**
* called when the connection with the SCE is established.
*/
public void connectionEstablished();
}

The connection establishment callback is used to start the SCE synchronization. See Information About
SCE-API Synchronization for more information.

Disconnect Listener: Example
This example is a simple implementation of a disconnect listener that prints a message to stdout and
returns.

import com.scms.api.sce.ConnectionListener;
public class MyConnectionListener implements ConnectionListener {
public void connectionIsDown(){
System.out.println(“Message: connection is down.”);
return;
}
public void connectionEstablished(){
System.out.println(“Message: connection is established.”);
// activate thread that starts SCE synchronization
}
}

Information About SCE Cascade Topology Support
The SCMS SCE Subscriber API supports SCE cascade topologies. A Policy Server connected to a
cascade SCE platform is required to know which of the SCEs in the cascade setup is active and which
is standby. The Policy Server should send logon operations only to the active SCE. Similarly, the Policy
Server should perform subscriber synchronization with only the active SCE.

The standby SCE learns about the subscribers from the active SCE, which allows stateful fail-over. The
Policy Server should be able to identify a fail-over event and synchronize the SCE that became active
so that it will receive the most updated subscriber information.

In order to know which SCE is active, the Policy Server can implement a RedundancyStateListener
interface.

• isRedundancyStatusActive Method

• Information About the RedundancyStateListener Interface

• Configuring the SCE to Ignore Cascade Violation Errors

isRedundancyStatusActive Method
The API provides the isRedundnacyStatusActive method in conjunction with the
RedundancyStateListener interface in order to monitor the SCE redundancy status.

public boolean isRedundancyStatusActive()

This return value from this method has the following meaning:
5-13
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About SCE Cascade Topology Support
• TRUE—If the SCE current status is active.

• FALSE—Otherwise.

It is recommended to use this method when first connecting to the cascade SCE in order to verify
whether the SCE is active and prior to sending any logon operation to the SCE.

Information About the RedundancyStateListener Interface
In order to be able to monitor cascade SCE state changes, the API allows setting a redundancy state
listener.

setRedundancyStateListener(RedundancyStateListener listener)

The redundancy state listener defines a callback method that is called when the cascade SCE redundancy
status changes from active to standby and vice versa.

The redundancy state listener is an interface that is defined as follows:

public interface RedundancyStateListener {
public void redundancyStateChanged(SCESubscriberApi sceApi,
boolean isActive);
}

Note The Policy Server should perform a synchronization procedure on the SCE that became active. This
should be similar to the procedure that is performed by the Policy Server on connection establishment
to the SCE.

Note The API provides a connection to one SCE platform for each API instance. Therefore, for cascade
setups, two SCE Subscriber API instances are required.

Parameters

• sceApi —The API instance that represents the SCE whose status changed. This parameter enables
you to implement one listener for several SCEs.

• isActive —TRUE if the SCE became active. FALSE if the SCE became non-active.

Configuring the SCE to Ignore Cascade Violation Errors
The SCE 3.1.0 is configured by default to return an error when a logon operation is performed on a
standby SCE. Use the ignore-cascade-violation CLI on the SCE in order to change this behavior.

To configure the SCE to ignore the cascade violation, use the following CLI on the SCE platform:

(config)#>management-agent sce-api ignore-cascade-violation

To view whether the the cascade violation is ignored, use the following CLI on the SCE platform:

#>show management-agent sce-api

To configure the SCE to issue the errors in case of the cascade violation, use the following CLI on the
SCE platform:

(config)#>no management-agent sce-api ignore-cascade-violation

To configure the flag to the default value (to issue errors in case of the cascade violation) use the
following CLI on the SCE platform:
5-14
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Result Handling
(config)#>default management-agent sce-api ignore-cascade-violation

Note It is recommended to configure the SCE to ignore cascade violation only for backward compatibility
with the existing SCE API code. In order to fully utilize the cascade feature, the SCE redundancy status
should be monitored and used.

Information About Result Handling
The API enables setting a result handler for every operation allowing handling operations results in a
different manner.

The OperationResultHandler interface's handleOperationResult callback is called when a result of an
operation, which ran on the SCE, returns to the API.

If no result handling is required for a specific operation, insert null in the handler argument.

Note The same operation result handler can be passed to all operations.

Information About the OperationResultHandler Interface
This interface is implemented to receive results of operations performed through the API.

The operation result handler is called with the following single method:

public interface OperationResultHandler {
/**
* handle a result
*/
public void handleOperationResult(Object[] result,
OperationArguments handback);

}

You should implement this interface if you want to be informed about the results of operations
performed through the API.

Note The OperationResultHandler interface is the only way to retrieve results. The results cannot be returned
immediately after the API method has returned to the caller. To enable to receive operation results, set
the result handler of each operation at the time of the operation call (as displayed in the examples).

The following is the data returned from the OperationResultHandler interface:

• result —The actual result of the operation - each entry within the array can be one of the following:

– NULL —indicates success of the operation.

– OperationException —indicates operation failure (see below). For non-bulk operations, the
result array will have only one entry.

• For bulk operations, each entry of the result array corresponds to the relevant entry in the bulk
operation.
5-15
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Result Handling
• handback —The API automatically provides this object to every operation call. It contains the
information about the operation that was called, including all arguments that were passed at the time
of the call. The input arguments of the operation are retrieved by the argument name in the API
documentation. For example, this data can be used to inspect/output the parameters after the
operation failed or to repeat the operation call.

Note In operations involving bulk objects, even if the operation fails for any specific element in the bulk, the
processing of the bulk will continue until the end of the bulk.

Information About the OperationArguments Class

Use the following methods to retrieve the operation name:

public String getOperationName()

Use the following methods to retrieve the arguments names:

public String[] getArgumentNames()

Use the following method to retrieve the specific operation argument. Use the operation's arguments'
names from the operation signature as an argument:

public Object getArgument(String name)

Examples

Sample implementation of the OperationResultHandler interface:

public class MyOperationHandler implements OperationResultHandler
{
long sucessCounter = 0;
long errorCounter = 0;

public void handleOperationResult(Object[] result,
OperationArguments handback)
{
for (int index=0; index <result.length; index++)
{
if (result[index]==null)
{
// success
successCounter++;
}
else
{
// failure
errorCounter++;
// Extract error details
OperationException ex = (OperationException)result[index];
// Extract operation name
String operationName = handback.getOperationName();

// Print operation name and error message
System.out.println(“Error for operation ”+
operationName +”:” +
ex.getErrorMessage());
// Print operation arguments
String[] argNames = handback.getArgumentNames();
if (argNames!=null)
{
for (int j=0; j<argNames.length; j++)
{
System.out.println(argNames[j]+ ”=“+
5-16
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Subscriber Provisioning Operations
handback.getArgument(argNames[j]));
}
}
}
}
}
}

Note The above sample implementation can be used for both regular and bulk operations.

The following example demonstrates login operation sample result handler:

public class LoginOperationHandler implements OperationResultHandler
{

public void handleOperationResult(Object[] result,
OperationArguments handback)
{
for (int index=0; index <result.length; index++)
{
if (result[index]!=null)
{
// failure
// Extract error details
OperationException ex =
(OperationException)result[index];
// Print operation name and error message
System.out.println(“Error for login operation ”+
”:” + ex.getErrorMessage());
// Print subscriber ID parameter value
System.out.println(“subscriberID”+
handback.getArgument(“subscriberID”));
}
}
}
}

OperationException Class

The com.scms.api.sce.OperationException Java class provides all of the functional errors of the SCMS
SCE Subscriber API, which is contrary to the normal Java usage. This “contrary” approach was chosen
because of the required “cross-language and cross-protocol” nature of the SCMS SCE Subscriber API,
which should allow all future SCE API implementations to appear the same (Java, C, C++). Each
OperationException exception provides the following information:

• A unique error code (long)

• An informative message (java.lang.String)

• A server-side stack trace (java.lang.String)

See List of Error Codes for more details about error codes and their meaning.

Information About Subscriber Provisioning Operations
This section lists the methods of the API that can be used for Subscriber Provisioning purposes. The
signature of each method is followed by a description of its input parameters and its return values.

All the methods return a java.lang.IllegalStateException when called before a connection with the SCE
is established.
5-17
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Subscriber Provisioning Operations
• Information About the login Operation

• Information About the loginBulk Operation

• Information About the loginPullResponse Operation

• Information About the loginPullResponseBulk Operation

• Information About the logout Operation

• Information About the logoutBulk Operation

• Information About the networkIdUpdate Operation

• Information About the networkIdUpdateBulk Operation

• Information About the profileUpdate Operation

• Information About the profileUpdateBulk Operation

• Information About the quotaUpdate Operation

• Information About the quotaUpdateBulk Operation

• Information About the getQuotaStatus Operation

• Information About the getQuotaStatusBulk Operation

Information About the login Operation
• Syntax

• Description

• Parameters

• Error Codes

• Examples

Syntax

void login(String subscriberID,
NetworkID networkID,
boolean networkIdAdditive,
PolicyProfile policy,
QuotaOperation quotaOperation,
OperationResultHandler handler) throws Exception

Description

This operation adds or updates the subscriber to the SCE. The operation is performed according to the
following algorithm:

• If the subscriber ID does not exists in the SCE, a new subscriber is added with all the data supplied

• If the subscriber ID exists:

– If the networkIdAdditive flag is set to TRUE, the supplied NetworkID is added to the existing
networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing
networkIDs.

– policy —Policy is updated with the new policy values. Subscriber Policy entries that are not
provided within the PolicyProfile remain unchanged or created with default values.
5-18
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Subscriber Provisioning Operations
– quota —The quota is updated according to the bucket values and the operations provided, see
Information About Subscriber Quota.

• If there is a networkID congestion with another subscriber, the networkID of the other subscriber is
logged out implicitly and the new subscriber is logged in.

For relevant events description, see Push Model.

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

networkID —The network identifier of the subscriber. See Information About Network ID
Mappings for more information.

networkIDAdditive —If this flag is set to TRUE, the supplied NetworkID is added to the existing
networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing networkIDs.

policy —Policy profile of the subscriber. See Information About SCA BB Subscriber Policy Profile for
more information.

quota —Quota of the subscriber. See Information About Subscriber Quota for more information.

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

Error Codes

The following is the list of error codes that this method might return:

• ERROR_CODE_FATAL_EXCEPTION

• ERROR_CODE_RESOURCE_SHORTAGE

• ERROR_CODE_OPERATION_ABORTED

• ERROR_CODE_INVALID_PARAMETER

• ERROR_CODE_NO_APPLICATION_INSTALLED

For a description of error codes, see List of Error Codes.

Examples

This example adds the IP address 192.168.12.5 to an existing subscriber named john without affecting
any existing mappings:

login(
"john", // subscriber name
new NetworkID(new String[]{"192.168.12.5"},
SCESubscriberApi.ALL_IP_MAPPINGS),
true, // isMappingAdditive is true
null, // no policy
null); // no quota

This example adds the IP address 192.168.12.5 overriding previous mappings:

login(
"john", // subscriber name
new NetworkID(new String[]{"192.168.12.5"},
SCESubscriberApi.ALL_IP_MAPPINGS),
5-19
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Subscriber Provisioning Operations
false, // isMappingAdditive is false
null, // no policy
null); // no quota

For more examples, see the Login and Logout section.

Information About the loginBulk Operation
• Syntax

• Description

• Parameters

• Error Codes

Syntax

void loginBulk(Login_BULK subsBulk,
OperationResultHandler handler) throws Exception

Description

This operation applies the logic described in the login operation for each subscriber in the bulk.

Parameters

subsBulk —See the Login_BULK Class section.

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

Error Codes

The following is the list of error codes that this method might return:

• ERROR_CODE_FATAL_EXCEPTION

• ERROR_CODE_RESOURCE_SHORTAGE

• ERROR_CODE_OPERATION_ABORTED

• ERROR_CODE_INVALID_PARAMETER

• ERROR_CODE_NO_APPLICATION_INSTALLED

For a description of error codes, see List of Error Codes.

Information About the loginPullResponse Operation
• Syntax

• Description

• Parameters

• Error Codes
5-20
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Subscriber Provisioning Operations
Syntax

void loginPullResponse(String subscriberID,
String anonymousSubscriberID,
NetworkID networkID,
PolicyProfile policy,
QuotaOperation quota,
OperationResultHandler handler) throws Exception

Description

This operation sends subscriber login information to the SCE as a response to a loginPullRequest call
from the SCE or a loginPullBulkRequest.

For relevant events description, see Pull Model.

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

anonymousSubscriberID —The identifier of the anonymous subscriber. This is sent by the SCE within
the loginPullRequest/loginPullBulkRequest indication (see Information About the LoginPullListener
Interface Class). See the Anonymous Subscriber ID section for more information.

networkID —The network identifier of the subscriber. See Information About Network ID
Mappings for more information. This must include the network ID received by the loginPullRequest. If
this subscriber in the SCE already has other network IDs, this network ID is added to the existing ones.

policy —Policy profile of the subscriber. See Information About SCA BB Subscriber Policy Profile for
more information.

quota —Quota of the subscriber. See Information About Subscriber Quota for more information.

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

Error Codes

The following is the list of error codes that this method might return:

• ERROR_CODE_FATAL_EXCEPTION

• ERROR_CODE_RESOURCE_SHORTAGE

• ERROR_CODE_OPERATION_ABORTED

• ERROR_CODE_INVALID_PARAMETER

• ERROR_CODE_NO_APPLICATION_INSTALLED

For a description of error codes, see List of Error Codes.

Information About the loginPullResponseBulk Operation
• Syntax

• Description
5-21
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Subscriber Provisioning Operations
• Parameters

• Error Codes

Syntax

void loginPullResponseBulk(LoginPullResponse_BULK subsBulk,
OperationResultHandler handler) throws Exception

Description

This operation applies the logic described in loginPullResponse operation for each subscriber in the
bulk.

For relevant events description, see Pull Model.

Parameters

subsBulk—See the LoginPullResponse_BULK Class section.

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

Error Codes

The following is the list of error codes that this method might return:

• ERROR_CODE_FATAL_EXCEPTION

• ERROR_CODE_RESOURCE_SHORTAGE

• ERROR_CODE_OPERATION_ABORTED

• ERROR_CODE_INVALID_PARAMETER

• ERROR_CODE_NO_APPLICATION_INSTALLED

For a description of error codes, see List of Error Codes.

Information About the logout Operation
• Syntax

• Description

• Parameters

• Error Codes

Syntax

void logout(String subscriberID,
NetworkID networkID,
OperationResultHandler handler) throws Exception
5-22
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Subscriber Provisioning Operations
Description

This operation removes the specified networkID of the subscriber from the SCE. If this is the last
networkID of the specified subscriber, the subscriber is removed from the SCE. If no subscriber ID is
specified, the supplied network ID is removed from the SCE regardless to which subscriber this network
ID belongs. If no network ID is supplied, all Network IDs of this subscriber are removed.

If the subscriber record is not in the SCE, the logout operation will succeed.

For relevant events description, see Logout Events.

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

networkID —The network identifier of the subscriber. See Information About Network ID
Mappings for more information.

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

Error Codes

The following is the list of error codes that this method might return:

• ERROR_CODE_FATAL_EXCEPTION

• ERROR_CODE_OPERATION_ABORTED

For a description of error codes, see List of Error Codes.

Information About the logoutBulk Operation
• Syntax

• Description

• Parameters

• Error Codes

Syntax

void logoutBulk(NetworkAndSubscriberID_BULK subsBulk,
OperationResultHandler handler) throws Exception

Description

This operation applies the logic described in logout operation for each subscriber in the bulk.

For relevant events description, see Logout Events.

Parameters

subsBulk —See the NetworkAndSubscriberID_BULK Class section.
5-23
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Subscriber Provisioning Operations
handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

Error Codes

The following is the list of error codes that this method might return:

• ERROR_CODE_FATAL_EXCEPTION

• ERROR_CODE_OPERATION_ABORTED

For a description of error codes, see List of Error Codes.

Information About the networkIdUpdate Operation
• Syntax

• Description

• Parameters

• Error Codes

Syntax

void networkIDUpdate(String subscriberID,
NetworkID networkID,
boolean networkIdAdditive,
OperationResultHandler handler) throws Exception

Description

This operation adds or replaces an existing subscriber's network ID.

Note This operation is effective only if the subscriber record exists in the SCE. Otherwise, the operation will
fail.

For relevant events description, see Network ID Update Event.

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

networkID —The network identifier of the subscriber. See Information About Network ID
Mappings for more information.

networkIDAdditive —If this flag is set to TRUE, the supplied NetworkID is added to the existing
networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing networkIDs.

Error Codes

The following is the list of error codes that this method might return:
5-24
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Subscriber Provisioning Operations
• ERROR_CODE_SUBSCRIBER_NOT_EXIST

• ERROR_CODE_FATAL_EXCEPTION

• ERROR_CODE_RESOURCE_SHORTAGE

• ERROR_CODE_OPERATION_ABORTED

• ERROR_CODE_INVALID_PARAMETER

• ERROR_CODE_NO_APPLICATION_INSTALLED

For a description of error codes, see List of Error Codes.

Information About the networkIdUpdateBulk Operation
• Syntax

• Description

• Parameters

• Error Codes

Syntax

void networkIDUpdateBulk(NetworkAndSubscriberID_BULK subsBulk,
OperationResultHandler handler) throws Exception

Description

This operation applies the logic described in networkIDUpdate operation for each subscriber in the bulk.

For relevant events description, see Network ID Update Event.

Parameters

subsBulk —See the NetworkAndSubscriberID_BULK Class section.

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

Error Codes

The following is the list of error codes that this method might return:

• ERROR_CODE_SUBSCRIBER_NOT_EXIST

• ERROR_CODE_FATAL_EXCEPTION

• ERROR_CODE_RESOURCE_SHORTAGE

• ERROR_CODE_OPERATION_ABORTED

• ERROR_CODE_INVALID_PARAMETER

• ERROR_CODE_NO_APPLICATION_INSTALLED

For a description of error codes, see List of Error Codes.
5-25
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Subscriber Provisioning Operations
Information About the profileUpdate Operation
• Syntax

• Description

• Parameters

• Error Codes

Syntax

void profileUpdate(String subscriberID,
PolicyProfile policy,
OperationResultHandler handler) throws Exception

Description

This operation modifies an existing subscriber's policy profile. If the subscriber record does not exist in
the SCE, this operation will fail.

For relevant events description, see Profile Update Event.

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

policy —Policy profile of the subscriber. See Information About SCA BB Subscriber Policy Profile for
more information.

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

Error Codes

The following is the list of error codes that this method might return:

• ERROR_CODE_SUBSCRIBER_NOT_EXIST

• ERROR_CODE_FATAL_EXCEPTION

• ERROR_CODE_OPERATION_ABORTED

• ERROR_CODE_INVALID_PARAMETER

• ERROR_CODE_NO_APPLICATION_INSTALLED

For a description of error codes, see List of Error Codes.

Information About the profileUpdateBulk Operation
• Syntax

• Description

• Parameters
5-26
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Subscriber Provisioning Operations
• Error Codes

Syntax

void profileUpdateBulk(PolicyProfile_BULK subsBulk,
OperationResultHandler handler) throws Exception

Description

This operation applies the logic described in profileUpdate operation for each subscriber in the bulk.

For relevant events description, see Profile Update Event.

Parameters

subsBulk —See the PolicyProfile_BULK Class section.

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

Error Codes

The following is the list of error codes that this method might return:

• ERROR_CODE_SUBSCRIBER_NOT_EXIST

• ERROR_CODE_FATAL_EXCEPTION

• ERROR_CODE_OPERATION_ABORTED

• ERROR_CODE_INVALID_PARAMETER

• ERROR_CODE_NO_APPLICATION_INSTALLED

For a description of error codes, see List of Error Codes.

Information About the quotaUpdate Operation
• Syntax

• Description

• Parameters

• Error Codes

Syntax

void quotaUpdate(String subscriberID,
QuotaOperation quotaOperation,
OperationResultHandler handler) throws Exception

Description

This operation performs an operation of updating the subscriber's quota.
5-27
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Subscriber Provisioning Operations
For relevant event description, see Quota Update Event.

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

quotaOperations —Quota operation to perform on the quota of the subscriber. See Information About
Subscriber Quota for more information.

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

Error Codes

The following is the list of error codes that this method might return:

• ERROR_CODE_SUBSCRIBER_NOT_EXIST

• ERROR_CODE_FATAL_EXCEPTION

• ERROR_CODE_OPERATION_ABORTED

• ERROR_CODE_INVALID_PARAMETER

• ERROR_CODE_NO_APPLICATION_INSTALLED

For a description of error codes, see List of Error Codes.

Information About the quotaUpdateBulk Operation
• Syntax

• Description

• Parameters

• Error Codes

Syntax

void quotaUpdateBulk(QuotaOperation_BULK subsBulk,
OperationResultHandler handler) throws Exception

Description

This operation applied the logic of the quotaUpdate operation on each subscriber in the bulk.

For relevant event description, see Quota Update Event.

Parameters

subsBulk —See the QuotaOperation_BULK Class section.

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.
5-28
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Subscriber Provisioning Operations
Error Codes

The following is the list of error codes that this method might return:

• ERROR_CODE_SUBSCRIBER_NOT_EXIST

• ERROR_CODE_FATAL_EXCEPTION

• ERROR_CODE_OPERATION_ABORTED

• ERROR_CODE_INVALID_PARAMETER

• ERROR_CODE_NO_APPLICATION_INSTALLED

For a description of error codes, see List of Error Codes.

Information About the getQuotaStatus Operation
• Syntax

• Description

• Parameters

• Error Codes

Syntax

void getQuotaStatus(String subscriberID,
Quota quota,
OperationResultHandler handler) throws Exception

Description

This operation places the request to query the current remaining quota amount of the specified set of
quota buckets. The getQuotaStatusIndication including the queried data follows this request (
asynchronously). See Information About the quotaStatusIndication Callback Method.

For relevant events description, see Get Quota Status Event.

Parameters

subscriberID —The unique ID of the subscriber. See the Subscriber ID section for the subscriber ID
format description.

quota —Includes the list of names (without values) of the quota buckets to retrieve. See Information
About Subscriber Quota for more information about how to construct with buckets' names only.

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

Error Codes

The following is the list of error codes that this method might return:

• ERROR_CODE_SUBSCRIBER_NOT_EXIST

• ERROR_CODE_FATAL_EXCEPTION
5-29
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Subscriber Provisioning Operations
• ERROR_CODE_OPERATION_ABORTED

• ERROR_CODE_INVALID_PARAMETER

• ERROR_CODE_NO_APPLICATION_INSTALLED

For a description of error codes, see List of Error Codes.

Information About the getQuotaStatusBulk Operation
• Syntax

• Description

• Parameters

• Error Codes

Syntax

void getQuotaStatuBulk(Quota_BULK subsBulk,
OperationResultHandler handler) throws Exception

Description

This method is a bulk version of the getQuotaStatus method described in the previous section.

For relevant events description, see Get Quota Status Event.

Parameters

subsBulk —See the Quota_BULK Class section.

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

Error Codes

The following is the list of error codes that this method might return:

• ERROR_CODE_SUBSCRIBER_NOT_EXIST

• ERROR_CODE_FATAL_EXCEPTION

• ERROR_CODE_OPERATION_ABORTED

• ERROR_CODE_INVALID_PARAMETER

• ERROR_CODE_NO_APPLICATION_INSTALLED

For a description of error codes, see List of Error Codes.
5-30
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About SCE-API Synchronization
Information About SCE-API Synchronization
In cases when the SCE and the Policy Server have a conflict in the data about a subscriber because of
disconnection, loss of logon messages, or reboot, several problems can arise. These problems can cause
a misclassification of one the subscriber's traffic as if it was another subscriber, enforcement of the
wrong service on the subscriber's traffic, or loss of resources.

It is possible to prevent such conflicts by keeping the communication channels as reliable as possible by
performing synchronization of the subscribers' data between the SCE and the Policy Server using the
API. The Policy Server, by using the API, is always the initiator of the synchronization.

Note Performing the synchronization process from several Policy Servers at the same time will cause the
subscriber information in the SCE to be inconsistent with all servers.

The following list describes the synchronization guidelines the Policy Server must adhere to while
implementing synchronization:

• Information About the Push Model Synchronization Procedure

• Information About the Pull Model Synchronization Procedure

Information About the Push Model Synchronization Procedure
1. The Policy Server indicates to the SCE that it is starting to synchronize the SCE.

2. The Policy Server logs-in all of the subscribers the SCE should handle. Preferably, the login
operations are performed in bulks.

3. The Policy Server notifies the SCE that the synchronization has ended.

4. The SCE removes all of the subscriber data that was not part of the synchronization process.
5-31
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About SCE-API Synchronization
Figure 5-2 Push Model Synchronization Procedure

Note During the synchronization process, the regular logon operations can be performed.

The following sections describe the methods provided for use for the synchronization procedure in the
push model.

• Information About synchronizePushStart

• Information About synchronizePushEnd

Information About synchronizePushStart

• Syntax

• Description

• Parameters

Syntax
void synchronizePushStart(OperationResultHandler handler)

Description

Use this operation in the push model only to signal the SCE that synchronization with the server is about
to begin. The SCE marks all of the subscriber data with a “dirty-bit”, which is reset if this data is
re-applied as part of the synchronization process. Every call to this method restarts the synchronization
process.

API SCE

15
70

76

started synchronization

login all subscribers

finished synchronization

remove subscribers that were not part of the synchronization
5-32
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About SCE-API Synchronization
Parameters

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

Information About synchronizePushEnd

• Syntax

• Description

• Parameters

Syntax
void synchronizePushEnd(boolean success, OperationResultHandler handler)

Description

Use this operation in the push model only to signal the SCE that synchronization with the server has
ended. The SCE scans the entire subscriber database for data with the “dirty-bit” assigned at
synchronizePushStart and removes it.

Parameters

success —A flag indicating that the synchronization was successful to the SCE.

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

Information About the Pull Model Synchronization Procedure
1. The Policy Server indicates to the SCE that it is starting to synchronize the SCE

2. The Policy Server retrieves from the SCE all of the subscribers IDs and network-IDs it is currently
handling

3. The Policy Server fixes any miss-synchronization.

Algorithm

Use the following algorithm template when planning the synchronization procedure:

For each retrieved subscriber (<SubscriberID, IP address>):

• If <SubscriberID, IP address >exists in the Policy Server database:

send a policy profile and networkID update to the SCE

• Otherwise:

send a logout with the Subscriber IP to the SCE

Steps 2 and 3 are performed as a bulk at one time.
5-33
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About SCE-API Synchronization
Figure 5-3 Pull Model Synchonization Procedure

Note During the synchronization process, the regular logon operations can be performed.

The following sections describe the methods provided for use for the synchronization procedure in the
pull model.

• Information About synchronizePullStart

• Information About synchronizePullEnd

• Information About getSubscribersBulk

Information About synchronizePullStart

• Syntax

• Description

• Parameters

Syntax
void synchronizePullStart(OperationResultHandler handler)

API SCE

15
70

73

started synchronization

get all subscribers

send all subscribers

fix mis-synchronization

finished synchronization
5-34
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About SCE-API Synchronization
Description

Use this operation in the pull model only to signal the SCE that synchronization with the server should
be started.

Parameters

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

Information About synchronizePullEnd

Syntax
void synchronizePullEnd(boolean success, OperationResultHandler handler)

Description

Use this operation in the pull model only to signal the SCE that synchronization with the server has
ended.

Parameters

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

success —A flag to the SCE indicating that the synchronization was successful.

Information About getSubscribersBulk

Syntax
void getSubscribersBulk(int bulkSize,
SubscribersBulkResponseIterator iterator,
OperationResultHandler handler)

Description

Use this operation in the pull model synchronization process to retrieve a bulk of subscribers the SCE is
currently handling (see Information About the Pull Model Synchronization Procedure).

Upon receiving this request (getSubscribersBulk), the SCE issues asynchronously the
getSubscribersBulkResponse indication containing subscriberIDs and corresponding NetworkIDs (see
the LoginPullListener Interface Class section). This method supplies an iterator that is passed to the next
call of getSubscribersBulk. To signal the end of iterations, the iterator of the last bulk is null.

Figure 5-4 Get Subscribers Bulk Description

(1) getSubscribersBulk

(2) getSubscribersBulkResponse

LoginPullListener

API

SCE

15
70

60
5-35
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 Information About Advanced API Programming
Parameters

bulkSize —The size of the bulk to retrieve. Maximum bulk size is limited to 100 entries.

iterator —Iterator of the subscribers at the SCE side. This iterator is received in
getSubscribersBulkResponseIndication and it should be passed to the next call to getSubscribersBulk
method. When calling the getSubscribersBulk method for the first time, use null as an iterator (using
null indicates that you want to start from the beginning).

handler —Result handler for this operation. See Information About Result Handling for a description
of the OperationResultHandler interface.

Information About Advanced API Programming

Implementing High Availability
High availability support provided by the API assumes that the high-availability scheme of the policy
server is a type of two-node cluster where only one server is active at every given time. The other server
(standby) is not connected to the SCE.

When the active server fails, it is the responsibility of the user's two-node cluster scheme to
perform a fail-over to the standby server.

Note High-availability can be implemented separately for every policy server provisioning the SCE
platform at the same time.

In order to implement high-availability with the SCMS SCE Subscriber API, you must do the following:

• Set up a two-node cluster for two policy servers.

• Construct two API instances with the same API name each one on the different server (node) within
the cluster (For constructors description, see the API Construction section). During cluster runtime,
only one API instance should be connected to the SCE platform. When a fail-over occurs, the failed
server should disconnect from the SCE and the standby server should become active and re-connect
to the SCE within the pre-defined timeout (see the Configuring the API Disconnection
Timeout section). Because of identical API names, the SCE will behave as if the same API was
re-connected and no information will be lost.

Note Do not call the unregisterXXXListener methods implicitly in the API used on the failed policy server
as this will cause the loss of data. Calling the disconnect() method does not unregister the listeners.

API Code Examples
This section gives several code examples for the API usage:

• Login and Logout

• Login-pull Request and login-pull Response
5-36
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 API Code Examples
Login and Logout
The following example logs in a predefined number of subscribers to the SCE, and then logs them out.
This example uses auto-reconnect support; therefore, it does not define a connection listener.

The following code outline contains a sample implementation of a result handler that counts success
and failure results:

// Class responsible for operations result handling
import com.scms.api.sce.OperationArguments;
import com.scms.api.sce.OperationException;
import com.scms.api.sce.OperationResultHandler;
public class MyOperationResultHandler implements OperationResultHandler
{
long count = 0;

public void handleOperationResult(Object[] result,
OperationArguments handback)
{
for (int index=0; index <result.length; index++)
{
count++;
if (result[index]==null)
{
//print success every 100 operations
//if (++count%100 == 0)
{
System.out.println("\tsuccess "+count);
}
}
else // error - print every error
{
// failure
count++;
// Extract error details
OperationException ex =
(OperationException)result[index];
// Extract operation name
String operationName = handback.getOperationName();
// Print operation name and error message
System.out.println("Error for operation "+
operationName+": "+
ex.getMessage());
}
}
}
public synchronized void waitForLastResult(int lastResult)
{
while (count<lastResult)
{
try
{
wait(100);
}
catch (InterruptedException ie)
{
ie.printStackTrace();
}
}
}
}

Class that contains a simple LogoutListener implementation that counts the number of received logout
indications:
5-37
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 API Code Examples
import com.scms.api.sce.LogoutListener;
import com.scms.common.NetworkAndSubscriberID_BULK;
import com.scms.common.SubscriberID_BULK;
class MyLogoutListener implements LogoutListener
{
long count = 0;

public void logoutIndication(String subscriberID)
{
increaseCounter(1);
}

synchronized void increaseCounter(long value)
{
count = count + value;
}

synchronized long getCounter()
{
return count;
}
//waits for result number 'last result' to arrive
public synchronized void waitForLastResult(int lastResult)
{
while (count<lastResult)
{
try
{
wait(100);
}
catch (InterruptedException ie)
{
ie.printStackTrace();
}
}
}

public void logoutBulkIndication(SubscriberID_BULK subs)
{
increaseCounter(subs.getSize());
}
}

Class that contains the main method:

import com.scms.api.sce.prpc.PRPC_SCESubscriberApi;
import com.scms.common.*;
public class LogonPolicyServer {
public static void main (String args[]) throws Exception
{
int numSubscribersToLogin = 500;
//instantiate an API with reconnect interval of 5 seconds
PRPC_SCESubscriberApi api = new PRPC_SCESubscriberApi(
"myAPI",
args[0], // IP of the SCE
5000);
try {
// instantiate operation result handler
// we will use one handler for all operations
MyOperationResultHandler resultHandler =
new MyOperationResultHandler();
// instantiate logout listener
MyLogoutListener listener = new MyLogoutListener();
// register to logout indications
api.registerLogoutListener(listener);
5-38
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 API Code Examples
// connect to the SCE
api.connect();
//login
System.out.println("login of "+numSubscribersToLogin+
" subscribers");
PolicyProfile pp = new PolicyProfile(
new String[]{"packageId=1",
"monitor=1"});
for (int i=0; i<numSubscribersToLogin; i++)
{
api.login("sub"+i,
new NetworkID(getMappings(i), // generate ip
NetworkID.ALL_IP_MAPPINGS),
true, // additive flag
pp, // policy
null, // no quota
resultHandler);
}
// wait for subscribers to log in
resultHandler.waitForLastResult(numSubscribersToLogin);
// logout all subscribers
System.out.println("logout of "+numSubscribersToLogin+
" subscribers");
for (int i=0; i<numSubscribersToLogin; i++)
{
NetworkID nid = new NetworkID(getMappings(i),
NetworkID.ALL_IP_MAPPINGS);
api.logout("sub"+i,nid,resultHandler);
}
// wait for all subscribers to be logged out -
// but this time use
// logout listener to count the results
listener.waitForLastResult(numSubscribersToLogin);
}
finally
{
api.unregisterLogoutListener
api.disconnect();
}
}
//'automatic' mapping generator for the sample program
private static String[] getMappings(int i) {
return new String[]{ "10." +((int)i/65536)%256 + "." +
((int)(i/256))%256 + "." + (i%256)};
}
}

Login-pull Request and login-pull Response
The following code fragment demonstrates a login-pull request and login-pull response manipulations:

This class is a sample implementation of the listener for the logout and login pull indications:

import java.util.Iterator;
// result handler from the previous example
import MyOperationResultHandler;
import com.scms.api.sce.*;
import com.scms.common.*;
class MyListener implements LoginPullListener, LogoutListener
{
// indications counters
long logoutCount = 0;
5-39
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 API Code Examples
long pullCount=0;
// api instance – used to send login-pull responses to the SCE
PRPC_SCESubscriberApi api = null;

// construct operation handler -
// from previous (Login and Logout) example
MyOperationResultHandler h = new MyOperationResultHandler();
public MyListener(PRPC_SCESubscriberApi api)
{
this.api = api;
}
// Increase logout counter
public void logoutIndication(String subscriberID)
{
increaseLogoutCounter(1);
System.out.println("Got logout notification " +
getLogoutCounter());
}
// Increase logout counter
public void logoutBulkIndication(SubscriberID BULK subs)
{
System.out.println("Got logout notification");
increaseLogoutCounter(subs.getSize());
}
public void loginPullRequest (String anonymousSubscriberID,
NetworkID networkID)
{
try
{
increasePullCounter(1);
System.out.println("Got pull request" + getPullCounter());

// prepare policy
PolicyProfile pp = new PolicyProfile(
new String[]{"packageId=1",
"monitor=1"});
// Answer with pull response
// retrieve subscriber name – for example from your
// policy server database
// In this example we use fixed names based on the
// subscribers counter
api.loginPullResponse(anonymousSubscriberID,
"sub"+getPullCounter(),
networkID,
pp, // policy
null, // no quota
h); // handler from previous example
}
catch (Exception ex)
{
System.out.println(ex.getMessage());
}
}
public void loginPullRequestBulk(NetworkAndSubscriberID BULK subs)
{
try
{
increasePullCounter(subs.getSize());
System.out.println("Got pull request" + getPullCounter());
// Answer with pull response in bulk form
PolicyProfile pp = new PolicyProfile(
new String[]{"packageId=1",
"monitor=1"});
LoginPullResponse_BULK responseBulk =
5-40
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 API Code Examples
new LoginPullResponse_BULK();
Iterator subsIterator = subs.getIterator();
// iterate of the received bulk (IPs and anonymous IDs)
// and build a response bulk
int count=0;
while(subsIterator.hasNext())
{
// retrieve subscriber name – for example from your
// policy server database
// In this example we use fixed names based on the
// subscribers counter
String subName = "sub_"+count;
SubscriberData sub = (SubscriberData)subsIterator.next();
// Extract subscriber mappings from the bulk and
// constract a new NetworkID based on those mappings
NetworkID subNetId = new NetworkID(sub.getMappings(),
NetworkID.ALL_IP_MAPPINGS);
responseBulk.addEntry(sub.getAnonymousSubscriberID(),
subName,
subNetId,
true,
pp,
null);
count++;
}
//use the bulk constructed above in the bulk response
//use handler from the previous example
api.loginPullBulkResponse(responseBulk,h);
}
catch (Exception ex)
{
System.out.println(ex.getMessage());
}
}
public void getSubscribersBulkResponse(
NetworkAndSubscriberID BULK subs,
SubscruberBulkResponseIterator iterator)
{
// not implemented in this example
}

synchronized void increaseLogoutCounter(long value)
{
logoutCount = logoutCount + value;
}
synchronized void increasePullCounter(long value)
{
pullCount = pullCount + value;
}
synchronized long getPullCounter()
{
return pullCount;
}
synchronized long getLogoutCounter()
{
return logoutCount;
}
//waits for result number 'last result' to arrive
public synchronized void waitForPullResult(int lastResult) {
while (pullCount<lastResult) {
try {
wait(100);
} catch (InterruptedException ie) {
ie.printStackTrace();
5-41
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 API Code Examples
}
}
}
public synchronized void waitForLogoutResult(int lastResult) {
while (logoutCount<lastResult) {
try {
wait(100);
} catch (catch (InterruptedException ie) {
ie.printStackTrace();
}
}
}
}

Class that contains the main method:

import java.util.Iterator;
import com.scms.api.sce.*;
import com.scms.common.*;
public class LogonPolicyServer {
static PRPC_SCESubscriberApi api = null;

// This sample program waits for pull requests from the SCE
// and answers to them with pull response
// The program exists after all 500 were logged in
public static void main (String args[]) throws Exception
{
int numSubscribersToLogin = 500;
//instantiate an API with reconnect interval of 5 seconds
api = new PRPC_SCESubscriberApi("myAPI","1.1.1.1",5000);
// construct an operation result handler (from the
// previous example
MyOperationResultHandler handler =
new MyOperationResultHandler();

// instantiate logout and login-pull listener
MyListener listener = new MyListener(api);
try
{
// register to logout indications
api.registerLogoutListener(listener);
api.registerLoginPullListener(listener);
// connect to the SCE
api.connect();

// wait for login-pull requests from the SCE
// they will be issued if you have traffic for unknown
// subscribers at the SCE
System.out.println("Waiting for pull requests for "+
numSubscribersToLogin+
" subscribers");
// wait for all subscribers to be logged in
listener.waitForPullResult(numSubscribersToLogin);
//logout all subscribers
System.out.println("logout of "+numSubscribersToLogin+
" subscribers");
for (int i=0; i<numSubscribersToLogin; i++)
{
api.logout("sub"+i,null,handler);
}
// wait for all subscribers to be logged out
listener.waitForLogoutResult(numSubscribersToLogin);
}
finally
{

5-42
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 API Code Examples
api.unregisterLoginPullListener();
api.unregisterLogoutListener();
api.disconnect();
}
}
}

5-43
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 5 Programming with the SCE Subscriber API
 API Code Examples
5-44
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

C
OL-8236-04
C H A P T E R 6

Troubleshooting

This module describes the usage of the API logging abilities for troubleshooting the integration with the
API. API logging enables the user to monitor the operations being called including the received
parameters both at the API client and at the SCE side.

• SCE Logging

• API Client Logging

SCE Logging
The SCE platform provides the ability to log all of the operations called by the Policy Server into the
SCE user-log file.

• Default Log Messages

• Subscriber Operations Log Messages

Default Log Messages
The SCE issues the following messages by default without any further configuration:

• For connect operation:

<client-name>- connect operation was called, registered listeners: <type of the
listeners that were registered>

• For disconnect operation:

<client-name>- disconnected

• For registerLoginPullListener operation:

<client-name>- registered a Login Pull Listener

• For unregisterPullListener operation:

<client-name>- unregistered a Pull Listener

• For registerLogoutListener operation:

<client-name>- registered a Logout Listener

• For unregisterLogoutListener operation:

<client-name>- unregistered a Logout Listener

• For registerQuotaListener operation:

<client-name>- registered Quota Listener

• For unregisterQuotaListener operation:
6-1
isco SCMS SCE Subscriber API Programmer Guide

Chapter 6 Troubleshooting
 SCE Logging
<client-name>- unregister Quota Listener

• For synchronizePushStart operation:

<client-name>- synchronize Push Start

• For synchronizePushEnd operation:

<client-name>- synchronize Push End

• For synchronizePullStart operation:

<client-name>- synchronize Pull Start

• For synchronizePullEnd operation:

<client-name>- synchronize Pull End

Subscriber Operations Log Messages
A special flag activates subscriber operation log messages. To receive these messages, enable the flag.

To enable logging, use the following CLI at the SCE platform:

(config)# management-agent sce-api logging

To view the USERLOG file, use the following CLI at the SCE platform:

#>logger get user-log FILE NAME

Note Enabling logging causes performance degradation. Therefore, it is advisable to use logging only for
troubleshooting purposes.

To disable logging, use the following CLI at the SCE platform:

(config)#>no management-agent sce-api logging

To view whether the logging is enabled, use the following CLI at the SCE platform:

#>show management-agent sce-api

When the logging flag is enabled, the message below is issued for the following operations:

• login operation

• networkIDUpdate operation

• logout operation

• quotaUpdate operation

• loginPullResponse operation

• profileUpdate operation

• getQuotaStatus operation

<operation name>operation was called
with parameters:
subscriberID - <subscriber ID>
anonymousSubscriberID - <anonymousSubscriberID >
mappings - <mappings list>
mappings types - <mapping types list>
policy - <policy properties list>
quota - <quota operation/quota buckets list>

For the following bulk operations:

• loginBulk operation

• networkIDUpdateBulk operation

• logoutBulk operation
6-2
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 6 Troubleshooting
 SCE Logging
• quotaUpdateBulk operation

• loginPullBulkResponse operation

• profileUpdateBulk operation

• getQuotaStatuBulkRequest operation

• getSubscribersBulk

The following message is issued:

<operation name>operation was called with parameters:
bulk size - <bulk size>

The following messages are issued for the LoginPullListener:

• For loginPullRequest:

loginPullRequest operation was called with parameters:
anonymousSubscriberID - <anonymous subscriber ID>
mappings - <mappings list>
mapping types - <mapping types>

• For loginPullRequestBulk:

loginPullRequestBulk operation was called with parameters:
bulk size - <bulk size>

• getSubscribersBulkResponse

getSubscribersBulkResponse operation was called with parameters:
bulk size - <bulk size>

The following messages are issued for the LogoutListener:

• For logoutIndication:

logoutIndication operation was called with parameters:
subscriberID - <anonymous subscriber ID>

• For logoutBulkIndication:

logoutBulkIndication operation was called with parameters:
bulk size - <bulk size>

The following messages are issued for the QuotaListenerEx:

• For quotaStatusIndication:

quotaStatusIndication operation was called with parameters:
subscriberID - <Subscriber ID>
quota - <subscriber quota>

• For quotaBelowThresholdIndication:

quotaBelowThresholdIndication operation was called with parameters:
subscriberID - <Subscriber ID>
quota - <subscriber quota>

• For quotaDepletedIndication:

quotaDepletedIndication operation was called with parameters:
subscriberID - <Subscriber ID>
quota - <subscriber quota>

• For quotaStateRestore:

quotaStateRestore operation was called with parameters:
subscriberID - <Subscriber ID>
quota - <subscriber quota>

• For quotaStatusBulkIndication:

quotaStatusBulkIndication operation was called with parameters:
subs - <bulk size>

• For quotaBelowThresholdBulkIndication:

quotaBelowThresholdBulkIndication operation was called with parameters:
subs - <bulk size>
6-3
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 6 Troubleshooting
 API Client Logging
• For quotaDepletedBulkIndication:

quotaDepletedBulkIndication operation was called with parameters:
subs - <bulk size>

• For quotaStateBulkRestore:

quotaStateBulkRestore operation was called with parameters:
subs - <bulk size>

API Client Logging
The API provides the ability to log every activated operation into the apilog file located under
${user.home} directory. The logging parameters are configured using the Log4J properties files. To
enable the logging make sure this file is in the application's CLASSPATH. This file is read at startup of
the application so after changing it you must restart the application.

The following is the content of the log4.properies file:

default Log4j configuration for SCE Subscriber API
log4j.rootCategory=INFO, apiStdout
In order to enable the logging to the file Replace the above
line with the following:
log4j.rootCategory=INFO, files
stdout is set to be a ConsoleAppender.
log4j.appender.apiStdout=org.apache.log4j.ConsoleAppender
log4j.appender.apiStdout.layout=org.apache.log4j.PatternLayout
log4j.appender.apiStdout.layout.ConversionPattern=+ %d{dd-MMM HH:mm:ss.SSS} [%t] %-5p
%c%n%m%n
files is set to be a RollingFileAppender.
#log4j.appender.files=org.apache.log4j.RollingFileAppender
#log4j.appender.files.layout=org.apache.log4j.PatternLayout
#log4j.appender.files.layout.ConversionPattern=+ %d{dd-MMM yyyy HH:mm:ss.SSS} [%t] %-5p %c
%x\n%m\n
#log4j.appender.files.File=${user.home}/apilog
#log4j.appender.files.Threshold=INFO
#log4j.appender.files.ImmediateFlush=true
#log4j.appender.files.MaxFileSize=1MB
#log4j.appender.files.MaxBackupIndex=4
In order to enable debug logging uncomment the following line
#log4j.category.com.scms.api.sce.prpc=DEBUG

To enable the debug logging, uncomment the last line in the file. By default, the logging is performed to
the standard output. To direct the logging to the file, uncomment the # log4j.rootCategory=INFO, files
line as explained in the file.

API Client Log Messages
The API client issues the following messages after properly configuring the log4j.properties file:

• For API constructor:

• PRPC_SCESubscriberApi constructor was called with the following parameters:

apiName - <apiName>

host - <sceHost>

port - <scePort>

auto-reconnect - <autoReconnectInterval>

• For init operation:

init operation was called with parameters <properties>
6-4
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 6 Troubleshooting
 API Client Logging
• For setConnectionListener:

setConnectionListener operation was called

• For setRedundancyStateListener:

setRedundancyStateListener operation was called

• For isConnected:

isConnected operation was called

• For getAPIVersion:

getAPIVersion operation was called

For the following operations:

• login operation

• networkIDUpdate operation

• logout operation

• quotaUpdate operation

• loginPullResponse operation

• profileUpdate operation

• getQuotaStatus operation

The following message is issued:

<operation name>operation was called with parameters:
subscriberID - <subscriber ID>
anonymousSubscriberID - <anonymousSubscriberID>
mappings - <mappings list>
mappings types - <mapping types list>
policy - <policy properties list>
quota - <quota operation/quota buckets list>

For the following bulk operations:

• loginBulk operation

• networkIDUpdateBulk operation

• logoutBulk operation

• quotaUpdateBulk operation

• loginPullBulkResponse operation

• profileUpdateBulk operation

• getQuotaStatuBulkRequest operation

• getSubscribersBulk operation

The following message is issued:

operation name>operation was called with parameters:
bulk size - <bulk size>

• For connect operation:

connect operation was called, registered listeners:
<type of the listeners that were registered>

• For disconnect operation:

disconnect operation was called

• For registerLoginPullListener operation:

registerLoginPullListener operation was called

• For unregisterPullListener operation:

unregisterPullListener operation was called
6-5
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 6 Troubleshooting
 API Client Logging
• For registerLogoutListener operation:

registerLogoutListener operation was called

• For unregisterLogoutListener operation:

unregisterLogoutListener operation was called

• For registerQuotaListener operation:

registerQuotaListener operation was called

• For unregisterQuotaListener operation:

unregisterQuotaListener operation was called

• For synchronizePushStart operation:

synchronizePushStart operation was called

• For synchronizePushEnd operation:

synchronizePushEnd operation was called

• For synchronizePullStart operation:

synchronizePullStart operation was called

• For synchronizePullEnd operation:

synchronizePullEnd operation was called

The following messages are issued for the LoginPullListener listener callback methods:

• For loginPullRequest:

loginPullRequest operation was called with parameters:
anonymousSubscriberID - <anonymous subscriber ID>
mappings - <mappings list>
mapping types - <mapping types>

• For loginPullRequestBulk:

loginPullRequestBulk operation was called with parameters:
bulk size - <bulk size>

• For getSubscribersBulkResponse:

getSubscribersBulkResponse operation was called with parameters:
bulk size - <bulk size>

The foillowing messages are issued for the LogoutListener listener callback methods:

• For logoutIndication:

logoutIndication operation was called with parameters:
subscriberID - <anonymous subscriber ID>

• For logoutBulkIndication:

logoutBulkIndication operation was called with parameters:
bulk size - <bulk size>

The following messages are issued for the QuotaListenerEx listener callback methods:

• For quotaStatusIndication:

quotaStatusIndication operation was called with parameters:
subscriberID - <Subscriber ID>
quota - <subscriber quota>

• For quotaBelowThresholdIndication:

quotaBelowThresholdIndication operation was called with parameters:
subscriberID - <Subscriber ID>
quota - <subscriber quota>

• For quotaDepletedIndication:

quotaDepletedIndication operation was called with parameters:
subscriberID - <Subscriber ID>
quota - <subscriber quota>

• For quotaStateRestore:
6-6
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 6 Troubleshooting
 API Client Logging
quotaStateRestore operation was called with parameters:
subscriberID - <Subscriber ID>
quota - <subscriber quota>

• For quotaStatusBulkIndication:

quotaStatusBulkIndication operation was called with parameters:
subs - <bulk size>

• For quotaBelowThresholdBulkIndication:

quotaBelowThresholdBulkIndication operation was called with parameters:
subs - <bulk size>

• For quotaDepletedBulkIndication:

quotaDepletedBulkIndication operation was called with parameters:
subs - <bulk size>

• For quotaStateBulkRestore:

quotaStateBulkRestore operation was called with parameters:
subs - <bulk size>
6-7
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Chapter 6 Troubleshooting
 API Client Logging
6-8
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

Cisco S
OL-8236-04

A
 P P E N D I X A

List of Error Codes

This module lists the error codes that are returned by the API.

List of Error Codes
Error codes are used for interpreting the actual error for which an OperationException was returned.
The error code is extracted using the getErrorCode method.

A list of the error codes and their description are given in the following table.

Table A-1 List of Error Codes

Error Code Description
ERROR_CODE_NO_APPLICATION_INSTALLED Application required for the operation execution is

not installed.

ERROR_CODE_INVALID_PARAMETER One of the arguments provided to the method is
illegal.

ERROR_CODE_SUBSCRIBER_ALREADY_EXISTS The subscriber on which the operation was
performed already exists in the SCE.

ERROR_CODE_SUBSCRIBER_DOES_NOT_EXIST The subscriber on which the operation is
performed does not exist in the SCE.

ERROR_CODE_FATAL_EXCEPTION Too many errors occurred at the SCE when trying
to perform the operation.

ERROR_CODE_RESOURCE_SHORTAGE Internal error.

ERROR_CODE_OPERATION_ABORTED Internal error.

ERROR_CODE_ARRAY_ACCESS Internal error.

ERROR_CODE_ATTRIBUTE_NOT_FOUND Internal error.

ERROR_CODE_CLASS_CAST Internal error.

ERROR_CODE_CLASS_NOT_FOUND Internal error.

ERROR_CODE_CLIENT_INTERNAL_ERROR Internal error.

ERROR_CODE_CLIENT_OUT_OF_THREADS Internal error.

ERROR_CODE_ILLEGAL_STATE Internal error.

ERROR_CODE_OBJECT_NOT_FOUND Internal error.

ERROR_CODE_OPERATION_NOT_FOUND Internal error.
A-1
CMS SCE Subscriber API Programmer Guide

Appendix A List of Error Codes
 List of Error Codes
ERROR_CODE_OUT_OF_MEMORY Internal error.

ERROR_CODE_RUNTIME Internal error.

ERROR_CODE_NULL_POINTER Internal error.

ERROR_CODE_UNKNOWN Internal error.

Table A-1 List of Error Codes (continued)

Error Code Description
A-2
Cisco SCMS SCE Subscriber API Programmer Guide

OL-8236-04

	Contents
	About this Guide
	Audience
	Document Revision History
	Organization
	Related Publications
	Document Conventions
	Obtaining Documentation, Obtaining Support, and Security Guidelines

	Getting Started
	Restrictions for the SCMS SCE Subscriber API
	Information About the SCMS SCE Subsriber API
	Platforms
	Package Content

	How to Extract and Install the Package
	Installing the Distribution on a UNIX Platform
	Installing the Distribution on a Windows Platform

	How to Setup the SCE Platform
	Prerequisites
	Configuring the SCE in a Pull Model
	How to Configure the RDR Formatter
	Configuring the RDR Formatter to Issue Quota-Related Indications
	Mapping the Quota RDR Tags to a Different Category

	How to Configure the RDR Server
	Verifying the RDR Server Configuration
	Enabling the RDR Server
	Changing the RDR Server Port

	How to Configure the API Disconnection Timeout
	Configuring the API Disconnection Timeout
	Reset the Disconnection Timeout to the Default Value
	Viewing the Timeout Value

	Concepts and Terms
	Subscriber Characteristics
	Subscriber ID
	Anonymous Subscriber ID
	Network ID
	Policy Profile
	Quota

	Information About Subscriber Integration Models
	Push Model
	Pull Model

	Non-blocking Model
	Indications Listeners
	Supported Topologies
	Multi-threading Support
	Auto-reconnect Support
	Reliability Support
	High Availability Support
	Synchronization
	Practical Tips

	API Events
	Information About API Events
	Information About Network ID Management Events
	Information About Login Events
	Logout Events
	Network ID Update Event

	Information About Policy Profile Management Events
	Profile Update Event

	Information About Quota Management Events
	Quota Update Event
	Get Quota Status Event
	Quota Status Event
	Quota Below Threshold Event
	Quota Depleted Event
	Quota State Restore Event

	Information About SCE Synchronization Procedure Events
	Start Synchronization Event
	End Synchronization Event
	Get Subscribers Events

	Getting Familiar with the API Data Types
	Subscriber ID
	Information About Network ID Mappings
	Specifying IP Address Mapping
	Specifying IP Range Mapping
	Specifying VLAN Tag Mapping
	Network ID Mappings Examples

	Information About SCA BB Subscriber Policy Profile
	PolicyProfile Class

	Information About Subscriber Quota
	SCAS_BB_Quota
	SCAS_BB_QuotaOperation

	Information About Bulk Operations Data Types
	Bulk Iterator
	SubscriberData

	Login_BULK Class
	Constructor
	addBulkEntry Method
	Examples

	SubscriberID_BULK Class
	Constructors
	addBulkEntry Method

	NetworkAndSubscriberID_BULK Class
	Constructors
	addBulkEntry Method

	LoginPullResponse_BULK Class
	Constructors
	addBulkEntry Method

	PolicyProfile_BULK Class
	Constructors
	addBulkEntry Method

	Quota_BULK Class
	Constructors
	addBulkEntry Method

	QuotaOperation_BULK Class
	Constructors
	addBulkEntry Method

	Programming with the SCE Subscriber API
	Information About API Classes
	Package com.scms.api.sce.prpc
	Package com.scms.api.sce
	Indications Listeners
	Connection Monitoring
	SCE Cascade Topology Support
	Operations Result Handling

	Package com.scms.common

	Programming Guidelines
	Programming with Callback Methods

	PRPC_SCESubscriberApi Class
	API Construction
	Listeners Setup Operations
	Advanced Setup Operations
	Connecting to the SCE
	Information About getApiVersion
	API Finalization

	Information About Indications Listeners
	Information About the LoginPullListener Interface Class
	Information About the loginPullRequest Callback Method
	Information About the loginPullRequestBulk Callback Method
	GetSubscribersBulkResponse Callback Method

	Information About the LogoutListener Interface Class
	Information About the logoutIndication Callback Method
	Information About the logoutBulkIndication Callback Method

	Information About the QuotaListenerEx Interface Class
	Information About the quotaStatusIndication Callback Method
	Information About the quotaStatusBulkIndication Callback Method
	Information About the quotaBelowThresholdIndication Callback Method
	Information About the quotaBelowThresholdIBulkndication Callback Method
	Information About the quotaDepletedIndication Callback Method
	Information About the quotaDepletedBulkIndication Callback Method
	Information About the quotaStateRestore Callback Method
	Information About the quotaStateBulkRestore Callback Method

	Information About Connection Monitoring
	ConnectionListener Interface
	Disconnect Listener: Example

	Information About SCE Cascade Topology Support
	isRedundancyStatusActive Method
	Information About the RedundancyStateListener Interface
	Parameters

	Configuring the SCE to Ignore Cascade Violation Errors

	Information About Result Handling
	Information About the OperationResultHandler Interface
	Information About the OperationArguments Class

	Information About Subscriber Provisioning Operations
	Information About the login Operation
	Syntax
	Description
	Parameters
	Error Codes
	Examples

	Information About the loginBulk Operation
	Syntax
	Description
	Parameters
	Error Codes

	Information About the loginPullResponse Operation
	Syntax
	Description
	Parameters
	Error Codes

	Information About the loginPullResponseBulk Operation
	Syntax
	Description
	Parameters
	Error Codes

	Information About the logout Operation
	Syntax
	Description
	Parameters
	Error Codes

	Information About the logoutBulk Operation
	Syntax
	Description
	Parameters
	Error Codes

	Information About the networkIdUpdate Operation
	Syntax
	Description
	Parameters
	Error Codes

	Information About the networkIdUpdateBulk Operation
	Syntax
	Description
	Parameters
	Error Codes

	Information About the profileUpdate Operation
	Syntax
	Description
	Parameters
	Error Codes

	Information About the profileUpdateBulk Operation
	Syntax
	Description
	Parameters
	Error Codes

	Information About the quotaUpdate Operation
	Syntax
	Description
	Parameters
	Error Codes

	Information About the quotaUpdateBulk Operation
	Syntax
	Description
	Parameters
	Error Codes

	Information About the getQuotaStatus Operation
	Syntax
	Description
	Parameters
	Error Codes

	Information About the getQuotaStatusBulk Operation
	Syntax
	Description
	Parameters
	Error Codes

	Information About SCE-API Synchronization
	Information About the Push Model Synchronization Procedure
	Information About synchronizePushStart
	Information About synchronizePushEnd

	Information About the Pull Model Synchronization Procedure
	Information About synchronizePullStart
	Information About synchronizePullEnd
	Information About getSubscribersBulk

	Information About Advanced API Programming
	Implementing High Availability

	API Code Examples
	Login and Logout
	Login-pull Request and login-pull Response

	Troubleshooting
	SCE Logging
	Default Log Messages
	Subscriber Operations Log Messages

	API Client Logging
	API Client Log Messages

	List of Error Codes
	List of Error Codes

