
ATM
78-6278-03, Cisco IOS Release 12.0(10)W5(18)
A P P E N D I X C
ions.

tring
called

sses

ny

ion of
te

part

rally,
Regular Expressions

This appendix explains regular expressions and how to use them in ATM switch router configurat
(Refer to theATM Switch Router Software Configuration Guidefor more information.) It also provides
details for composing regular expressions. This appendix has the following sections:

• Understanding General Concepts

• Using Regular Expressions

• Creating Regular Expressions

• Working with Practical Examples

Understanding General Concepts
A regular expression is a pattern to match against an input string. You specify the pattern that a s
must match when you compose a regular expression. Matching a string to the specified pattern is
“pattern matching.” Pattern matching either succeeds or fails.

For example, you can specify in an X.25 routing table that incoming packets with destination addre
beginning with 3107 are routed to serial interface 0. In this example, the pattern to match is the3107
specified in the X.25 routing table. The string is the initial portion of the destination address of a
incoming X.25 packet. When the destination address string matches the3107pattern, pattern matching
succeeds and the Cisco IOS software routes the packet to serial interface 0. When the initial port
the destination address does not match3107, then pattern matching fails and the software does not rou
the packet to serial interface 0.

If a regular expression can match two different parts of an input string, it will match the earliest
first.

Using Regular Expressions
Cisco ATM switch router configurations use several implementations of regular expressions. Gene
you use regular expressions in the following ways:

• To specify chat scripts for asynchronous lines in the dial-on-demand routing (DDR) feature

• To specify routes in a routing table for the X.25 switching feature

• To filter packets and routing information in DECnet and Border Gateway Protocol (BGP)
C-1
 Switch Router Command Reference

Appendix C Regular Expressions
Creating Regular Expressions

e

o use
e

o help
use

S
21
e
d the
uting

the

use

s in

ous

fer

egular
, or
cribes
Specifying Chat Scripts
On asynchronous lines, chat scripts send commands for modem dialing and logging in to remot
systems. You use a regular expression in themodem chat-scriptcommand to specify the name of the
chat script that the Cisco IOS software is to execute on a particular asynchronous line. You can als
regular expressions in thedialer map command to specify a “modem” script or “system” script to b
used for a connection to one or multiple sites on an asynchronous interface.

For configuration information on chat scripts, refer to the “Configuring DDR” chapter in theRouter
Products Configuration Guide. For details on themodem chat-scriptanddialer map commands, refer
to the “Asynchronous DDR Preparation Commands” chapter of theDial Solutions Command Reference.

Specifying Routes in a Routing Table
As described in the “Understanding General Concepts” section, you can use regular expressions t
specify routes in an X.25 routing table. When you create entries in an X.25 routing table, you can
regular expressions in thex25 routecommand to help specify routes for incoming calls. When an ATM
switch router receives an incoming call that should be forwarded to its destination, the Cisco IO
software consults the X.25 routing table to determine the route. The software compares the X.1
network interface address (or destination address) field and the Call User Data (CUD) field of th
incoming packet with the routing table to determine the route. When the destination address an
CUD of the incoming packet match the X.121 and CUD regular expressions you specified in the ro
table, the ATM switch router forwards the call.

For details on creating an X.25 routing table, refer to the “Configuring X.25 and LAPB” chapter in
Router Products Configuration Guide. Also, see thex25 route command in the “X.25 and LAPB
Commands” chapter of theWide-Area Networking Command Reference.

Filtering Packets and Routing Information
You can use regular expressions in access lists for both DECnet and BGP. In DECnet, you can
regular expressions in theaccess-list command to filterconnect initiate packets. With these packets,
you can filter packets by DECnet object type, such as MAIL. In BGP, you use regular expression
the ip as-path access-list command for path filtering by neighbor. Using regular expressions, you
specify an access list filter on both incoming and outbound updates based on the BGP autonom
system paths.

For configuration information on filtering connect initiate packets and path filtering by neighbor, re
to the “Configuring DECnet” and “Configuring IP Routing Protocols” chapters in theRouter Products
Configuration Guide.

For detailed information on theaccess-listandip as-path access-listcommands, refer to the “DECnet
Commands” and “IP Routing Protocols” chapters of theNetwork Protocol Command Reference.

Creating Regular Expressions
A regular expression can be a single-character pattern or a multiple-character pattern. That is, a r
expression can be a single character that matches the same single character in the input string
multiple characters that match the same multiple characters in the input string. This section des
C-2
ATM Switch Router Command Reference

78-6278-03, Cisco IOS Release 12.0(10)W5(18)

Appendix C Regular Expressions
Creating Regular Expressions

g more

mple,

t (!) or
 when

eceding
hing a
creating both single-character patterns and multiple-character patterns. It also discusses creatin
complex regular expressions using multipliers, alternation, anchoring,
and parentheses.

Single-Character Patterns
The simplest regular expression is a single character that matches itself in the input string. For exa
the single-character regular expression3 matches a corresponding3 in the input string. You can use any
letter (A–Z, a–z) or number (0–9) as a single-character pattern. The following examples are
single-character regular expression patterns:

A

k

5

You can use a keyboard character other than a letter or a number—such as an exclamation poin
a tilde (~)—as a single-character pattern, but certain keyboard characters have special meaning
used in regular expressions. Table C-1 lists the keyboard characters with special meaning.

To use these special characters as single-character patterns, remove the special meaning by pr
each character with a backslash (\). The following examples are single-character patterns matc
dollar sign, an underscore, and a plus sign, respectively:

\$

_

\+

Table C-1 Characters with Special Meaning

Character Special Meaning

period . Matches any single character, including white space.

asterisk * Matches 0 or more sequences of the pattern.

plus sign + Matches 1 or more sequences of the pattern.

question
mark

? Matches 0 or 1 occurrences of the pattern.

caret ^ Matches the beginning of the input string.

dollar sign $ Matches the end of the input string.

underscore _ Matches a comma (,), left brace ({), right brace (}),
left parenthesis, right parenthesis, the beginning of
the input string, the end of the input string, or a
space.

brackets [] Designates a range of single-character patterns.

hyphen - Separates the end points of a range.
C-3
ATM Switch Router Command Reference

78-6278-03, Cisco IOS Release 12.0(10)W5(18)

Appendix C Regular Expressions
Creating Regular Expressions

u can

. To
ckets

plify

it with

o so,

habet,

wing

. You
rs that

eir

e

 the
You can specify a range of single-character patterns to match against a string. For example, yo
create a regular expression that matches a string containing one of the following letters:a, e, i, o, and
u. One and only one of these characters must exist in the string for pattern matching to succeed
specify a range of single-character patterns, enclose the single-character patterns in square bra
([]). The order of characters within the brackets is not important. For example,[aeiou] matches any
one of the five vowels of the lowercase alphabet, while[abcdABCD] matches any one of the first four
letters of the lowercase or uppercase alphabet.

You can simplify ranges by entering only the end points of the range, separated by a dash (-). Sim
the previous range as follows:

[a-dA-D]

To add a hyphen as a single-character pattern in your range, include another hyphen and precede
a backslash:

[a-dA-D\-]

You can also include a right square bracket (]) as a single-character pattern in your range. To d
enter the following:

[a-dA-D\-\]]

The previous example matches any one of the first four letters of the lowercase or uppercase alp
a hyphen, or a right square bracket.

You can reverse the matching of the range by including a caret (^) at the start of the range. The follo
example matches any letterexcept the ones listed:

[^a-dqsv]

The following example matches anything except a right square bracket (]) or the letterd:

[^\]d]

Multiple-Character Patterns
When creating regular expressions, you can also specify a pattern containing multiple characters
create multiple-character regular expressions by joining letters, numbers, or keyboard characte
do not have special meaning. For example,a4% is a multiple-character regular expression. Precede
keyboard characters that have special meaning with a backslash (\)when you want to remove th
special meaning.

With multiple-character patterns, order is important. The regular expressiona4% matches the character
a followed by the number4 followed by a percent (%) sign. If the input string does not havea4% in
that order, pattern matching fails. The multiple-character regular expressiona. uses the special meaning
of the period character (.) to match the lettera followed by any single character. With this example, th
stringsab, a!, or a2 are all valid matches for the regular expression.

You can remove the special meaning of the period character by preceding it with a backslash. In
expressiona\. only the stringa. matches the regular expression.
C-4
ATM Switch Router Command Reference

78-6278-03, Cisco IOS Release 12.0(10)W5(18)

Appendix C Regular Expressions
Creating Regular Expressions

ial
owing

ltiple
our

ples”

wing

pairs
You can create a multiple-character regular expressions containing all letters, all digits, all spec
keyboard characters, or a combination of letters, digits, and other keyboard characters. The foll
examples are all valid regular expressions:

telebit

3107

v32bis

Multipliers
You can create more complex regular expressions that instruct the Cisco IOS software to match mu
occurrences of a specified regular expression. To do so, you use some special characters with y
single- and multiple-character patterns. Table C-2 lists the special characters that specify “multi
of a regular expression.

The following example matches any number of occurrences of the lettera, including none:

a*

The following pattern requires that at least one lettera be present in the string to be matched:

a+

The following pattern matches the stringbb or bab:

ba?b

The following string matches any number of asterisks (*):

**

To use multipliers with multiple-character patterns, enclose the pattern in parentheses. In the follo
example, the pattern matches any number of the multiple-character stringab:

(ab)*

As a more complex example, the following pattern matches one or more instances of alphanumeric
(but not none; that is, anempty string is not a match):

([A-Za-z][0-9])+

Table C-2 Special Characters Used as Multipliers

Character Description

* Matches 0 or more single- or multiple-character
patterns.

+ Matches 1 or more single- or multiple-character
patterns.

? Matches 0 or 1 occurrences of the single- or
multiple-character pattern.
C-5
ATM Switch Router Command Reference

78-6278-03, Cisco IOS Release 12.0(10)W5(18)

Appendix C Regular Expressions
Creating Regular Expressions

re
 of the

. For

ing or
tain

he

 input

letters

hes the

t

u can
The order for matches using multipliers (*, +, or ?) is longest construct first. Nested constructs a
matched from outside to inside. Concatenated constructs are matched beginning at the left side
construct. Thus, the regular expression matchesA9b3, but not 9Ab3 because the letter appears first in
the construct.

Alternation
Alternation allows you to specify alternative patterns to match against a string. You separate the
alternative patterns with a vertical bar (|). Exactly one of the alternatives can match the input string
example, the regular expressioncodex|telebitmatches the stringcodexor the stringtelebit, but not both
codex andtelebit.

Anchoring
You can instruct the Cisco IOS software to match a regular expression pattern against the beginn
the end of the input string. That is, you can specify that the beginning or end of an input string con
a specific pattern. You “anchor” these regular expressions to a portion of the input string using t
special characters shown in Table C-3.

Note another use for the ^ symbol. As an example, the following regular expression matches an
string only if the string starts withabcd:

^abcd

Whereas the following expression is a range that matches any single letter, as long as it is not the
a, b, c, or d:

[^abcd]

With the following example, the regular expression matches an input string that ends with.12:

$\.12

Contrast these anchoring characters with the special character underscore (_). Underscore matc
beginning of a string (^), the end of a string ($), parentheses (()), space (), braces ({ }),
comma (,), or underscore (_). With the underscore character, you can specify that a pattern exis
anywhere in the input string. For example,_1300_matches any string that has1300somewhere in the
string. The string’s1300 can be preceded by or end with a space, brace, comma, or underscore.
So{1300_ matches the regular expression, but21300 and13000 do not.

Using the underscore character, you can replace long regular expression lists. For example, yo
replace the following list of regular expressions with simply_1300_:

^1300$

Table C-3 Special Characters Used for Anchoring

Character Description

^ Matches the beginning of the input string.

$ Matches the end of the input string.
C-6
ATM Switch Router Command Reference

78-6278-03, Cisco IOS Release 12.0(10)W5(18)

Appendix C Regular Expressions
Working with Practical Examples

ions

 in the

emory
. The
re than
and \2

r #2

the

ith the

cified
nes 1
^1300(space)

(space)1300

{1300,

,1300,

{1300}

,1300,

(1300

Parentheses for Recall
As shown in the “Multipliers” section, you use parentheses with multiple-character regular express
to multiply the occurrence of a pattern. You can also use parentheses around a single- or
multiple-character pattern to instruct the IOS software to remember a pattern for use elsewhere
regular expression.

To create a regular expression that recalls a previous pattern, you use parentheses to instruct m
of a specific pattern and a backslash (\) followed by an integer to reuse the remembered pattern
integer specifies the occurrence of a parentheses in the regular expression pattern. If you have mo
one remembered pattern in your regular expression, then \1 uses the first remembered pattern
uses the second remembered pattern, and so on.

The following regular expression uses parentheses for recall:

a(.)bc(.)\1\2

This regular expression matches the lettera followed by any character (call it character #1) followed by
bc, followed by any character (character #2), followed by character #1 again, followed by characte
again. In this way, the regular expression can matchaZbcTZT. The software identifies character #1 as
Z and character #2 asT and then usesZ andT again later in the regular expression.

The parentheses do not change the pattern; they only instruct the software to recall that part of
matched string. The regular expression(a)b still matches the input stringab, and(^3107) still matches
a string beginning with3107, but now the Cisco IOS software can recall thea of theab string and the
starting3107 of another string for use later.

Working with Practical Examples
This section shows you practical examples of regular expressions. The examples correspond w
various ways you can use regular expressions in your configurations.

Specifying Chat Scripts Example
The following example uses regular expressions in themodem chat-script command to specify chat
scripts for lines connected to Telebit and U.S. Robotics modems. The regular expressions aretelebit.*
andusr.* . When the chat script name (the string) matches the regular expression (the pattern spe
in the command), then the Cisco IOS software uses that chat script for the specified lines. For li
C-7
ATM Switch Router Command Reference

78-6278-03, Cisco IOS Release 12.0(10)W5(18)

Appendix C Regular Expressions
Working with Practical Examples

 to
that

on of
1) to

 the
and 6, the Cisco IOS software uses the chat script namedtelebitfollowed by any number of occurrences
(*) of any character (.). For lines 7 and 12, the software uses the chat script namedusr followed by any
number of occurrences (*) of any character (.).

! Some lines have Telebit modems
line 1 6
modem chat-script telebit.*
! Some lines have US Robotics modems
line 7 12
modem chat-script usr.*

X.25 Switching Feature Example
In the following X.25 switching feature example, thex25 route command causes all X.25 calls to
addresses whose first four Data Network Identification Code (DNIC) digits are 1111 to be routed
serial interface 3. Note that the first four digits (^1111) are followed by a regular expression pattern
the Cisco IOS software is to remember for use later. The \1 in the rewrite pattern recalls the porti
the original address matched by the digits following the 1111 but changes the first four digits (111
2222.

x25 route ^1111(.*) substitute-dest 2222\1 interface serial 3

DECnet Access List Example
In the following DECnet example, the regular expression is^SYSTEM$. The access list permits access
to all connect initiate packets that match the access identification of SYSTEM.

access-list 300 permit 0.0 63.1023 eq id ^SYSTEM$

BGP IP Access Example
The following BGP example contains the regular expression^123.*. The example specifies that BGP
neighbor with IP address 128.125.1.1 is not sent advertisements about any path through or from
adjacent autonomous system 123.

ip as-path access-list 1 deny ^123 .*

router bgp 109
network 131.108.0.0
neighbor 129.140.6.6 remote-as 123
neighbor 128.125.1.1 remote-as 47

neighbor 18.125.1.1 filter-list 1 out
C-8
ATM Switch Router Command Reference

78-6278-03, Cisco IOS Release 12.0(10)W5(18)

	C
	Regular Expressions

	Understanding General Concepts
	Using Regular Expressions
	Specifying Chat Scripts
	Specifying Routes in a Routing Table
	Filtering Packets and Routing Information

	Creating Regular Expressions
	Single-Character Patterns
	Table�C-1 Characters with Special Meaning

	Multiple-Character Patterns
	Multipliers
	Table�C-2 Special Characters Used as Multipliers

	Alternation
	Anchoring
	Table�C-3 Special Characters Used for Anchoring

	Parentheses for Recall

	Working with Practical Examples
	Specifying Chat Scripts Example
	X.25 Switching Feature Example
	DECnet Access List Example
	BGP IP Access Example

