
 1 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

Cisco Pre-Paid Debitcard
Multi-Language
Programmer’s Reference
Version: 9/29/00

This document contains information about the Multi-Language feature, including the following
sections:

• Overview of the Multi-Language Feature, page 1

• Prerequisites, page 1

• Multi-Language Feature Implementation, page 3

• Cisco Connection Online, page 16

• Call Flow Example, page 17

Overview of the Multi-Language Feature
The baseline prepaid debitcard application supports the playing of pre-recorded static and dynamic
prompts for English, Spanish, and Chinese (Mandarin). The building of the dynamic prompts for
these languages is performed as part of the Cisco Internetwork Operating System (IOS). If an
additional language is needed, it has to be delivered as a change to the Cisco IOS and follow the
Cisco IOS release process. This can be a very time-consuming and costly process. The
Multi-Language feature provides the user with the ability to accommodate languages, other than
those originally implemented in the Cisco IOS, by making changes within the debitcard Tool
Command Language (TCL) application. Because the modifications are at the script level, the user
can implement any defined language. Script changes are relatively easy when the language’s
dynamic prompt rules are supplied and translated into the script.

Language exceptions are defined as languages outside the originally supported three languages. This
document concentrates on the building of dynamic prompts for language exceptions, rather than
static prompts, because the script handles static prompts the same way for all languages. When a
language is selected, the script prepends a language prefix and passes that prompt to the interactive
voice response (IVR) Application Programming Interface (API) playPrompt verb.

Prerequisites
To use the Multi-Language feature you need the following:

• The Multi-Language feature script debitcard_multi-lang_Cisco.1.1.0.0.tcl or later

• Complete set of professionally recorded language prompts for each configured language.
Languages available with the Multi-Language feature debitcard script are English (en), Spanish
(sp), Mandarin (ch), Thai (th), Cantonese (ca), Japanese (ja), and Russian (ru).

• Cisco IOS Release 12.1(3)xi or later.

• The Multi-Language feature is based on the debitcard application; therefore, it requires a
RADIUS billing server for AAA.

 2 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

Restrictions and Configuration
• When you configure the languages, you must configure them sequentially. You cannot skip

language numbers. However, the languages themselves can be configured in any order. Refer to
the following example:

router# call application voice debit
tftp://dirt/script/debitcard_multi-lang_Cisco.1.1.0.0.tcl
router# call application voice debit uid-len 6
router# call application voice debit language 1 en
router# call application voice debit language 2 th
router# call application voice debit language 3 ru
router# call application voice debit language 4 ja
router# call application voice debit language 5 ca
router# call application voice debit language 6 sp
router# call application voice debit language 7 ch
router# call application voice debit set-location en 0 tftp://dirt/au/en/
router# call application voice debit set-location th 0 tftp://dirt/au/th/
router# call application voice debit set-location ru 0 tftp://dirt/au/ru/
router# call application voice debit set-location ja 0 tftp://dirt/au/ja/
router# call application voice debit set-location ca 0 tftp://dirt/au/ca/
router# call application voice debit set-location sp 0 tftp://dirt/au/sp/
router# call application voice debit set-location ch 0 tftp://dirt/au/ch/

• When setting up the language selection prompts associated with the configured languages, you
must put all the actual files in the language 1 configured directory. Refer again to the above
example. The files th_lang_sel2.au, ru_lang_sel3.au, ja_lang_sel4, ca_lang_sel5, sp_lang_sel6
and ch_lang_sel7 must all reside in directory tftp://dirt/au/en/. All other language prompts reside
in the individual language directories.

• The maximum amount that the script handles for $amt and creditTime converted to hours and
minutes is 999,999.99.

Related Documentation
• TCL IVR API Version 1.0 Programmer's Guide

Version 1.0 commands for writing TCL scripts for the Cisco IVR feature on the Cisco AS5300
gateway.

• TCL IVR API Version 2.0 Programmer's Guide
Version 2.0 commands for writing TCL scripts for the Cisco IVR feature on the Cisco AS5300
gateway.

• RADIUS Vendor-Specific Attributes Voice Implementation Guide
Reference of Cisco RADIUS VSAs for use with VoIP call authorization.

 3 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

Developer Support
Developers using this programmer’s guide may be interested in joining the Cisco Developer Support
Program. This new program has been developed to provide you with a consistent level of support
that you can depend on while leveraging Cisco interfaces in your development projects.

A signed Developer Support Agreement is required to participate in this program. For more details,
and access to this agreement, please visit us at
http://www.cisco.com/warp/public/779/servpro/programs/ecosystem/devsup/ or contact
developer-support@cisco.com.

Multi-Language Feature Implementation
The Multi-Language feature is built on the application infrastructure of the debitcard script. The
script is rewritten, but the call flow from debitcard is essentially unmodified. The original call flow
is followed through all procedures for selecting a language, collecting a card number, performing
authorization, and placing a call. The modifications necessary for the Multi-Language feature were
made to procedures do_get_dest and do_second_authorization to accommodate the playing of
pre-recorded dynamic creditAmount and creditTime for the new languages.

How to Use the Multi-Language Feature
This section of the document includes information on how to use the feature:

Step 1 Build the language's master prompt spreadsheet. This will be used to determine the
language exceptions and how the language should build dynamic prompts.

Step 2 Determine what numbering structure the language belongs to. Is itSSDHTT, SDDHTT,
or another form? Refer to the example in Table 1 to determine if modifications in
procedure do_whole_part are required.

Step 3 Based on the numbering structure, modify the necessary procedures. If a language has a
dynamic prompt exception for a digit, as defined in Table 1, then add the language prefix
to the switch in the necessary procedure (do_tens, do_hundreds, do_thousands, or
do_hthousands). See “Modifying the Existing Script” on page 4. Under most
circumstances, the switch default case should not have to be modified.

Table 1 Language Exception Number Translation Form

Testing and Debugging Your Multi-Language Script
Sample test tools and cases are bundled with the script.

Digit 1 Digit 2 Digit 3 Digit 4 Digit 5 Digit 6

Cantonese (ca) S S D H T T

Thai (th) S D D H T T

Japanese (ja) S S D H T T

Russian (ru) S D D H T T

 4 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

Modifying the Existing Script
Modification of the existing script is based on the specific constructs of the required language. Each
modification is different but is made to some or all of the procedures:

• do_get_dest

• do_second_authorization

• do_whole_part

• do_decimal_part

• do_creditTime_prompt

• do_tens

• do_hundreds

• do_thousands

• do_hthousands

The modifications are made by adding a new TCL switch case for the language prefix with the TCL
statements that define the language dynamic prompt to the switch statement.

New TCL Procedures
Included in this guide are seven new TCL procedures that can be used to build the language-specific
dynamic prompts, while modifications were made in procedures do_get_dest and
do_second_authorization. To implement a language exception, the procedures do_get_dest and
do_second_authorization, as well as at least some of the other seven procedures, must be modified.

Proc do_get_dest
This modified procedure is used after successful first authorization. A TCL switch statement is
included that directs the flow to the language exception procedures or uses the default for Cisco IOS
implemented languages. For the TCL implemented language exceptions, this procedure separates
the billing server returned amount (creditAmt) into two parts and calls the prompt building
procedures of do_whole_part and do_decimal_part.

Note Some TCL script implementations must be based on the returned values from the RADIUS
billing server for creditAmt and creditTime.

 5 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

Example 1 Sample Modifications to Procedure do_get_dest

switch -regexp $prefix {
 {ru} {set newlist [split $amt .]
 set gender m

 do_whole_part

 if {$len == 1} {
 switch -regexp $numbers(tens) {

{0} { }
{1} {lappend prompt "[set prefix]_dollar.au"}
{[2-4]} {lappend prompt "[set prefix]_2-4_dollars.au"}
{[5-9]} {lappend prompt "[set prefix]_5-20_dollars.au"}

}
 } else {

switch -regexp $numbers(tens) {
{[0-9]*[0|2-9][2-4]} {lappend prompt "[set prefix]_2-4_dollars.au"}
{[0-9]*[2-9][1]} {lappend prompt "[set prefix]_dollar.au"}
default {lappend prompt "[set prefix]_5-20_dollars.au"}

}
 }

 set gender f
 do_decimal_part

 if {[string length [lindex $newlist 1]] == 1} {
switch -regexp [lindex $newlist 1] {

{0} { }
default {lappend prompt "[set prefix]_5-20_cents.au"}

}
 } else {

switch -regexp [lindex $newlist 1] {
{00} { }
{[0|2-9][1]} {lappend prompt "[set prefix]_cent.au"}
{[0|2-9][2-4]} {lappend prompt "[set prefix]_2-4_cents.au"}
default {lappend prompt "[set prefix]_5-20_cents.au"}

}
 }
 puts "\t\t**** playPrompt param3 info [set prefix]_you_have.au $prompt [set prefix]_enter_dest.au"
 set ev [eval [list playPrompt param3 info [set prefix]_you_have.au] $prompt [list %s1000 [set
prefix]_enter_dest.au]]
 }
 default {set ev [playPrompt param3 info [set prefix]_you_have.au %a$amt %s1000 [set
prefix]_enter_dest.au]}
}

Proc do_second_authorization
This is a modified procedure, used after successful authorization to play the dynamic prompt for
creditTime. A TCL switch statement is included that directs the flow to the language exception
procedures or uses the default for Cisco IOS implemented languages.

 6 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

Proc do_whole_part
This new procedure separates the whole number string into its numeric prompt components for tens,
hundreds, thousands, and hundred thousands. This is explained in more detail in Table 1 on page 3.
This procedure places these values in the numbers array and calls the appropriate procedure based
on the arrays index containing a value, as shown in the following example.

Example 2 Example of Procedure do_whole_part

global amt
 global prefix
 global prompt
 global numbers
 global len
 global newlist

 set numbers(tens) ""
 set numbers(hundreds) ""
 set numbers(thousands) ""
 set numbers(hthousands) ""

 set len [string length [lindex $newlist 0]]

 set separate [split [lindex $newlist 0] ""]

 puts "\t\t**** TTS whole part: [lindex $newlist 0]"

Do the number group translation

 switch -regexp $len {
{1} { set numbers(tens) [lindex $separate 0]}
{2} { set numbers(tens) [join [list [lindex $separate 0] [lindex $separate 1]] ""]}
{3} { set numbers(hundreds) [lindex $separate 0]

set numbers(tens) [join [list [lindex $separate 1] [lindex $separate 2]] ""]}
{4} { set numbers(thousands) [lindex $separate 0]

set numbers(hundreds) [lindex $separate 1]
set numbers(tens) [join [list [lindex $separate 2] [lindex $separate 3]] ""]}

{5} {switch -regexp $prefix {
{ca} -
{ja} {set numbers(hthousands) [lindex $separate 0]

set numbers(thousands) [lindex $separate 1]}
default {set numbers(thousands) [join [list [lindex $separate 0] [lindex $separate 1]] ""

]}
}
set numbers(hundreds) [lindex $separate 2]
set numbers(tens) [join [list [lindex $separate 3] [lindex $separate 4]] ""]

}
{6} {switch -regexp $prefix {

{ca} -
{ja} {set numbers(hthousands) [join [list [lindex $separate 0] [lindex $separate 1]] ""]

set numbers(thousands) [lindex $separate 2]}
default {set numbers(hthousands) [lindex $separate 0]

set numbers(thousands) [join [list [lindex $separate 1] [lindex $separate 2]] ""]}
}
set numbers(hundreds) [lindex $separate 3]
set numbers(tens) [join [list [lindex $separate 4] [lindex $separate 5]] ""]

}
 }
 foreach index {hthousands thousands hundreds tens} {

 if {[string compare $numbers($index) ""] != 0} {

 puts "\t\t**** Executing do_$index $numbers($index)"
 do_$index
 }

 7 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

Proc do_tens
This new procedure is used to build the language dynamic prompt for the value stored in the
numbers (tens) array index. In this procedure, the language exception code is written if the language
handles the tens numbers different than the default method.

Example 3 Example of Procedure do_tens

proc do_tens {} {
 global prompt
 global prefix
 global numbers
 global len
 global gender

 if {$numbers(tens) != 0} {
switch -regexp $prefix {

{th} {if {$len == 1} {
lappend prompt "[set prefix]_$numbers(tens).au"

 } else {set separate [split $numbers(tens) ""]
switch -regexp $numbers(tens) {

{00} { }
{10} {lappend prompt "[set prefix]_$numbers(tens).au"}
{[0][1-9]} {lappend prompt "[set prefix]_[lindex $separate 1].au"}
{[1][1-9]} {lappend prompt "[set prefix]_10.au" "[set prefix]_[lindex

$separate 1].au" }
{[2][0]} {lappend prompt "[set prefix]_20.au"}
{[2][1-9]} {lappend prompt "[set prefix]_20.au" "[set prefix]_[lindex

$separate 1].au"}
{[3-9][0]} {lappend prompt "[set prefix]_[lindex $separate 0].au" "[set

prefix]_10.au"}
default {lappend prompt "[set prefix]_[lindex $separate 0].au" "[set

prefix]_10.au" "[set prefix]_[lindex $separate 1].au"}
}

 }
}
default {if {$len == 1} {

 switch -regexp $numbers(tens) {
{0} { }
default {lappend prompt "[set prefix]_$numbers(tens).au"}

}
} else {set separate [split $numbers(tens) ""]

switch -regexp $numbers(tens) {
{00} { }
{[0][1-9]} {lappend prompt "[set prefix]_[lindex $separate 1].au"}
default {lappend prompt "[set prefix]_$numbers(tens).au"}

}
}

 }
}

}
return 0

}

 8 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

Proc do_hundreds
This new procedure is used to build the language dynamic prompt for the value stored in the
numbers (hundreds) array index. In this procedure, the language exception code is written if the
language handles the hundreds numbers different than the default method, as shown in the following
example.

Example 4 Example of Procedure do_hundreds

proc do_hundreds {} {
 global prompt
 global prefix
 global numbers

 if {$numbers(hundreds) == 0} {
switch -regexp $prefix {

{ca} { if {$numbers(tens) >= 10 } {
 lappend prompt "[set prefix]_0.au"

} else {
return 0

}
 }

default {return 0}
}

 } else {
switch -regexp $prefix {

{ru} {lappend prompt "[set prefix]_$numbers(hundreds)00.au"}
{ja} {switch -regexp $numbers(hundreds) {

1 {lappend prompt "[set prefix]_hyaku.au"}
3 {lappend prompt "[set prefix]_san_byaku.au"}
6 {lappend prompt "[set prefix]_ro_pyaku.au"}
8 {lappend prompt "[set prefix]_happyaku.au"}
default {lappend prompt "[set prefix]_$numbers(hundreds).au" "[set

prefix]_hyaku.au"}
}

}
 default {lappend prompt "[set prefix]_$numbers(hundreds).au" "[set prefix]_hundred.au"}
}

 }

 return 0
}

 9 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

Proc do_thousands
This new procedure is used to build the language dynamic prompt for the value stored in the
numbers (thousands) array index. In this procedure, the language exception code is written if that
language handles the thousands numbers different than the default method. The language form
explained in Table 1 on page 3 has an effect on how the language is implemented in this procedure.
The procedure has to know if the numbers (thousands) array index contains a one- or two-digit
number.

Example 5 Example of Procedure do_thousands

proc do_thousands {} {
 global prompt
 global prefix
 global numbers
 global len

 if {$numbers(thousands) == 0} {
switch -regexp $prefix {

{ca} {if {($numbers(hundreds) == 0) && ($numbers(tens) >= 10) } {
 lappend prompt "[set prefix]_0.au"

}
}
{th} -
{ja} { }
default {lappend prompt "[set prefix]_thousand.au"}

}
 } else {

switch -regexp $prefix {
{th} {if {$len == 4} {

lappend prompt "[set prefix]_$numbers(thousands).au" "[set prefix]_thousand.au"
 } else {

set separate [split $numbers(thousands) ""]
switch -regexp $numbers(thousands) {

{00} { }
{[0][1-9]} {lappend prompt "[set prefix]_[lindex $separate 1].au" "[set

prefix]_thousand.au"}
{[1-9][0]} {lappend prompt "[set prefix]_[lindex $separate 0].au" "[set

prefix]_ten_thousand.au"}
default {lappend prompt "[set prefix]_[lindex $separate 0].au" "[set

prefix]_ten_thousand.au" "[set prefix]_[lindex $separate 1].au" "[set prefix]_thousand.au"}
}

}
}
{ja} {switch -regexp $numbers(thousands) {

1 {lappend prompt "[set prefix]_thousand.au"}
3 {lappend prompt "[set prefix]_san_zen.au"}
8 {lappend prompt "[set prefix]_ha_ssen.au"}
default {lappend prompt "[set prefix]_$numbers(thousands).au" "[set

prefix]_thousand.au"}
}

}
default {lappend prompt "[set prefix]_$numbers(thousands).au" "[set prefix]_thousand.au"}

}
 }

 return 0
}

 10 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

Proc do_hthousands
This new procedure is used to build the language dynamic prompt for the value stored in the
numbers (hthousands) array index. In this procedure, the language exception code is written if that
language handles the hundred thousand numbers different than the default method. The language
form explained in Table 1 on page 3 has an effect on how the language is implemented in this
procedure. The procedure has to know if the numbers (hthousands) array index contains a one- or
two-digit number.

Example 6 Example of Procedure do_hthousands

proc do_hthousands {} {
 global prompt
 global prefix
 global numbers

 set hlen [string length $numbers(hthousands)]
 switch -regexp $prefix {

{th} {lappend prompt "[set prefix]_$numbers(hthousands).au" "[set prefix]_hundred_thousand.au"}
{ca} {if {$hlen == 1} {

lappend prompt "[set prefix]_$numbers(hthousands).au" "[set prefix]_ten_thousand.au"
} else {set separate [split $numbers(hthousands) ""]

switch -regexp $numbers(hthousands) {
{[1][1-9]} {lappend prompt "[set prefix]_10.au" "[set prefix]_[lindex

$separate 1].au" "[set prefix]_ten_thousand.au"}
{[2-9][0]} {lappend prompt "[set prefix]_[lindex $separate 0].au" "[set

prefix]_10.au" "[set prefix]_ten_thousand.au"}
default {lappend prompt "[set prefix]_[lindex $separate 0].au" "[set

prefix]_10.au" "[set prefix]_[lindex $separate 1].au" "[set prefix]_ten_thousand.au"}
}

}
}
{ja} {switch $numbers(hthousands) {

1 {lappend prompt "[set prefix]_ichi_man.au"}
default {lappend prompt "[set prefix]_$numbers(hthousands).au" "[set prefix]_man.au"}

}
}
{ru} {lappend prompt "[set prefix]_$numbers(hthousands)00.au"}
default {lappend prompt "[set prefix]_$numbers(hthousands).au" "[set prefix]_hundred.au"}

}

 return 0
}

 11 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

Proc do_decimal_part
This new procedure separates the decimal number string into its numeric prompt components
following the languages rules for tens. This is explained in more detail later in this section.

Example 7 Example of Procedure do_decimal_part

proc do_decimal_part {} {
 global newlist
 global prompt
 global prefix
 global gender

Do the decimal translation

 puts "\t\t*** TTS decimal part: [lindex $newlist 1]"

 switch -regexp $prefix {
{th} {if {[string length [lindex $newlist 1]] == 1} {

switch -regexp [lindex $newlist 1] {
{0} { }
default {lappend prompt "[set prefix]_[lindex $newlist 1]0.au"}

}
 } else {set separate [split [lindex $newlist 1] ""]

switch -regexp [lindex $newlist 1] {
{00} { }

 {[0][1-9]} {lappend prompt "[set prefix]_[lindex $separate 1].au"}
 {10} {lappend prompt "[set prefix]_[lindex $newlist 1].au"}
 {[1][1-9]} {lappend prompt "[set prefix]_10.au" "[set prefix]_[lindex $separate 1].au" }
 {[2][0]} {lappend prompt "[set prefix]_20.au"}
 {[2][1-9]} {lappend prompt "[set prefix]_20.au" "[set prefix]_[lindex $separate 1].au"}
 {[3-9][0]} {lappend prompt "[set prefix]_[lindex $separate 0].au" "[set prefix]_10.au"}
 default {lappend prompt "[set prefix]_[lindex $separate 0].au" "[set prefix]_10.au" "[set

prefix]_[lindex $separate 1].au"}
 }

 }
}
default {if {[lindex $newlist 0] > 0 && [lindex $newlist 1] > 0} {

 lappend prompt "[set prefix]_and.au"
 }
 if {[string length [lindex $newlist 1]] == 1} {
 switch -regexp [lindex $newlist 1] {

 {0} { }
 default {lappend prompt "[set prefix]_[lindex $newlist 1]0.au"}

 }
 } else {set separate [split [lindex $newlist 1] ""]

 switch -regexp [lindex $newlist 1] {
 {00} { }
 {[0][1-9]} {lappend prompt "[set prefix]_[lindex $separate 1].au"}
 default {lappend prompt "[set prefix]_[lindex $newlist 1].au"}
 }

 }
}

 }
 return 0
}

 12 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

How the Procedures Work
In procedures do_get_dest and do_second_authorization, a TCL switch statement was added to the
branch if the selected language is a language exception (refer to Modifying the Existing Script,
page 4). If not, the script executes the default case for playPrompt as previously implemented in the
debitcard script. If the selected language is a language exception the switch statement in procedure
do_get_dest starts the prompt building process.

Example 1 on page 5 shows the switch statement and language exception (ru). The default statement
for the switch is the standard execution of playPrompt from previous debitcard applications. The
switch statement is used in the else part of nested if for amount. It is implemented if the creditAmt
returned from the billing server is greater than 0 and less than or equal to the maximum amount
allowed (999,999.99).

Following the Flow
• In Example 1, the exception code shown in the first statement splits the value for creditAmt

($amt) returned from the billing server into two parts, a whole part and a decimal part. After the
split function, we are left with a two-element list. The string contained in list element 0
represents the whole part of the $amt variable, and the string contained in list element 1
represents the decimal portion.

• Next, as shown in Example 2 on page 6, we start the dynamic prompt building process with a
procedure call to do_whole_part. The do_whole_part procedure makes a determination on the
size and characteristic of the number being passed. The string representing the whole part of the
creditAmt can be said to have a four-part characteristic. based on its length and characters
representing a tens, a hundreds, a thousands, and a hundred thousands place.

Depending on the language form, a dynamic prompt for a language can be shown as a 6-digit
whole number of the formSDDHTT, whereS represents the hundred thousands position,DD
represents the thousands position,H represents the hundreds position andTT represent the tens
position. Another form of dynamic prompt for a language also can be shown as a 6-digit whole
number of the formSSDHTT, whereS represents the ten thousands position,D represents the
thousands position,H represents the hundreds position, andTT represents the tens position.

• Example 4 on page 8 shows where the switch builds the numbers array differently based on a
string length of 5 or 6 (refer to Table 1 on page 3 regarding the difference of language exception
number translation). In this example, the default case builds the numbers array around the
SDDHTT form, while the exceptions are built for Cantonese (ca) and Japanese (ja), where the
numbers array uses the formSSDHTT.

• When the whole part number form is established, a value is entered for the numbers array
indexes. If a value is stored in the numbers index for tens, hundreds, thousands, or hthousands,
the procedure is called to build the dynamic prompt. Example 3 on page 7 shows one way to
handle theTT numbers using the procedure do_tens. In this example, the exception is for Thai
(th). In the procedure the default case appends to the prompt list the language prefix and the value
stored in numbers (tens) with some exceptions for string length. For Thai (th) there are
exceptions for several different string combinations. The procedures do_hundreds,
do_thousands, and do_hthousands are similar in design.

After the procedures do_tens, do_hundreds, do_thousands, and do_hthousands append the
number files to build the dynamic prompt the call flow returns to the do_get_dest switch, where
the script appends the language’s currency denomination.

• The flow then proceeds to build the dynamic prompt for the decimal part. The do_decimal_part
procedure shown in Example 7 on page 11, follows most of the same rules as do_tens procedure
for most languages; but in some cases, there are different word gender rules. There are also some
differences in handling the split decimal part strings. The string returned from the billing server
for decimal part for numbers of ".10", ".20", ".30", and so on, is returned as .1, .2 and .3, and so
on. Some special handling is needed when you append the necessary prompt. You can see this in
the switch where string lengths are 1.

 13 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

Example 8 Example of Procedure do_second_authorization Modifications

switch -regexp $ev {
{authorized} {if {[string compare $creditTime uninitialized] == 0} {

 set ev [playPrompt param2 info [set prefix]_no_aaa.au]
 set state end

 } elseif {$creditTime == "umlimited"} {
 set noTimeLimit 1
 # play mesg only if time left is 20 secs > warntime

 } elseif {[expr $creditTime - $warnTime] < 20} {
 set noPlay 1

 switch -regexp $prefix {
 {th} -
 {ca} -
 {ru} -
 {ja} { # Convert creditTime to hours and minutes

 # Build prompt and play creditTime

 do_creditTime_prompt

 }
 default {set ev [playPrompt param2 info [set prefix]_you_have.au %t$creditTime]}
 }

 } else {
 switch -regexp $prefix {

 {th} -
 {ca} -
 {ru} -
 {ja} { # Convert creditTime to hours and minutes

 # Build prompt and play creditTime

 do_creditTime_prompt

 }
 default {set ev [playPrompt param2 info [set prefix]_you_have.au %t$creditTime]}
 }

 }
 set state do_place_call
 return 0

}

After the procedure do_decimal_part appends the number files to build the decimal number portion
of the dynamic prompt, the call flow returns and the script appends the language’s currency
denomination for the decimal currency.

The billing server value for creditTime is handled in the procedure do_second_authorization, see
Example 8 on page 13. The language modification is simply a call to the procedure
do_creditTime_prompt. This was made a separate procedure to minimize lines of code. The
procedure do_second_authorization had two places where almost identical operations were
performed, so a separate procedure was created to handle the operations.

 14 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

Proc do_creditTime_prompt
This new procedure is used after successful second authorization. It converts the billing server
returned creditTime value of seconds to a two-element list whose whole part is hours and whose
decimal part is minutes. The procedure follows the same process described previously for building
the language dynamic prompts.

Example 9 Example of Procedure do_creditTime_prompt

proc do_creditTime_prompt {} {
 global creditTime
 global prefix
 global param2
 global len
 global prompt
 global newlist
 global numbers
 global gender

 # Convert creditTime to hours and minutes

 set prompt ""
 set newlist [list [expr {int([expr {$creditTime / 3600}])}] [expr {int([expr {$creditTime % 3600} /
60])}]]

Gender is used to determine correct word structure in Russian prompt building

 set gender m

 do_whole_part

 switch $prefix {
 {ru} {if {$len == 1 } {

 switch -regexp $numbers(tens) {
 {0} { }
 {1} {lappend prompt "[set prefix]_hour.au"}
 {[2-4]} {lappend prompt "[set prefix]_2-4_hours.au"}
 {[5-9]} {lappend prompt "[set prefix]_5-20_hours.au"}

 }
 } else {

 switch -regexp $numbers(tens) {
 {[0-9]*[0|2-9][2-4]} {lappend prompt "[set prefix]_2-4_hours.au"}
 {[0-9]*[2-9][1]} {lappend prompt "[set prefix]_hour.au"}

 default {lappend prompt "[set prefix]_5-20_hours.au"}
 }
 }

 }
 default {if {[lindex $newlist 0] == 1 } {
 lappend prompt "[set prefix]_hour.au"
 } elseif {[lindex $newlist 0] > 1 } {
 lappend prompt "[set prefix]_hours.au"
 }
 }

 }

 15 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

Example 10 Example of Procedure do_creditTime_prompt (continued)

set list_index_1 [lindex $newlist 1]

 # Do the decimal translation to build prompt for minutes

 switch -regexp $prefix {
 {ru} {set gender f

 do_decimal_part

 if {[string length [lindex $newlist 1]] == 1} {
 switch -regexp [lindex $newlist 1] {

 {0} { }
 default {lappend prompt "[set prefix]_5-20_minutes.au"}

 }
 } else {
 switch -regexp [lindex $newlist 1] {

 {00} { }
 {[0|2-9][1]} {lappend prompt "[set prefix]_minute.au"}
 {[0|2-9][2-4]} {lappend prompt "[set prefix]_2-4_minutes.au"}
 default {lappend prompt "[set prefix]_5-20_minutes.au"}

 }
 }

 puts "\t\t*** playPrompt param2 info [set prefix]_you_have.au $prompt"
 set ev [eval [list playPrompt param2 info [set prefix]_you_have.au] $prompt]
 }
 default {do_decimal_part

 if {[lindex $newlist 1] == 1 } {
 lappend prompt "[set prefix]_minute.au"
 } elseif {[lindex $newlist 1] > 1 } {
 lappend prompt "[set prefix]_minutes.au"
 }

 puts "\t\t*** playPrompt param2 info [set prefix]_you_have.au $prompt"
 set ev [eval [list playPrompt param2 info [set prefix]_you_have.au] $prompt]

 }
 }
}

 16 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

Cisco Connection Online
Cisco Connection Online (CCO) is Cisco Systems’ primary, real-time support channel.
Maintenance customers and partners can self-register on CCO to obtain additional information and
services.

Available 24 hours a day, 7 days a week, CCO provides a wealth of standard and value-added
services to Cisco’s customers and business partners. CCO services include product information,
product documentation, software updates, release notes, technical tips, the Bug Navigator,
configuration notes, brochures, descriptions of service offerings, and download access to public and
authorized files.

CCO serves a wide variety of users through two interfaces that are updated and enhanced
simultaneously: a character-based version and a multimedia version that resides on the World Wide
Web (WWW). The character-based CCO supports Zmodem, Kermit, Xmodem, FTP, and Internet
e-mail, and it is excellent for quick access to information over lower bandwidths. The WWW
version of CCO provides richly formatted documents with photographs, figures, graphics, and
video, as well as hyperlinks to related information.

You can access CCO in the following ways:

• WWW: http://www.cisco.com

• WWW: http://www-europe.cisco.com

• WWW: http://www-china.cisco.com

• Telnet: cco.cisco.com

• Modem: From North America, 408 526-8070; from Europe, 33 1 64 46 40 82. Use the
following terminal settings: VT100 emulation; databits: 8; parity: none; stop bits: 1; and
connection rates up to 28.8 kbps.

For a copy of CCO’s Frequently Asked Questions (FAQ), contact cco-help@cisco.com. For
additional information, contact cco-team@cisco.com.

Note If you are a network administrator and need personal technical assistance with a Cisco
product that is under warranty or covered by a maintenance contract, contact Cisco’s Technical
Assistance Center (TAC) at 800 553-2447, 408 526-7209, or tac@cisco.com. To obtain general
information about Cisco Systems, Cisco products, or upgrades, contact 800 553-6387,
408 526-7208, or cs-rep@cisco.com.

Documentation CD-ROM
Cisco documentation and additional literature are available in a CD-ROM package, which ships
with your product. The Documentation CD-ROM, a member of the Cisco Connection Family, is
updated monthly. Therefore, it might be more current than printed documentation. To order
additional copies of the Documentation CD-ROM, contact your local sales representative or call
customer service. The CD-ROM package is available as a single package or as an annual
subscription. You can also access Cisco documentation on the World Wide Web at
http://www.cisco.com, http://www-china.cisco.com, or http://www-europe.cisco.com.

If you are reading Cisco product documentation on the World Wide Web, you can submit comments
electronically. ClickFeedback in the toolbar and selectDocumentation. After you complete the
form, clickSubmit to send it to Cisco. We appreciate your comments.

Glossary
For a list of other internetworking terms, seeInternetworking Terms and Acronyms document that
is available on the Documentation CD-ROM and Cisco Connection Online (CCO) at the following
URL: http://www.cisco.com/univercd/cc/td/doc/cisintwk/ita/index.htm.

 17 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

Call Flow Example
Following is an example of the call flow for this feature:

 18 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

AcceptCall

Play Prompt
"Welcome to

Debitcard Demo"
prefix_welcome.au

of lang > 1

Play Prompt
language selection for each

configured language
prefix_lang_sel1.au,...,

prefix_lang_sel7.au

DIGIT COLLECTION
select_language

DO_GET_CARDNUMBER

retries >
RetryCnt?

retries >
RetryCnt?

Play Prompt
"You have entered an invalid

selection", and language
selection for each configured

language
prefix_lang_sel1.au,...,

prefix_lang_sel7.au
Play Prompt

"Please hang up and try
again later"

prefix_generic_final.au

End

No

Yes

No

Valid digit
collected ?

Success

Play Prompt
"You didn't enter any digits",
and language selection for
each configured language

prefix_lang_sel1.au,...,
prefix_lang_sel7.au

Yes
Fail

No No

Yes

Yes

DIGIT COLLECTION
select_language

DIGIT COLLECTION
select_language

37
73

6

 19 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

DO_GET_CARDNUMBER

Play Prompt
"Please enter your card number,

followed by pound"
prefix_enter_card_num.au

DIGIT COLLECTION
get_card_number

Digits collected
match card length?

Retries >
retryCnt?

Play Prompt
"You have entered an invalid
of digits,please enter your
card # followed by pound"

prefix_invalid_digits_acct.au

DO_FIRST_AUTHORIZATION

Retries >
retryCnt?

Play Prompt
"You did not enter any

digits, please enter your
card # followed by pound"
prefix_no_card_entered.au

Play Prompt
"Please hang up and try

again later"
prefix_generic_final.au

End

Success

Fail

No

Yes

No

No

Yes

Yes

DIGIT COLLECTION
get_card_number

DIGIT COLLECTION
get_card_number

37
73

7

 20 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

DO_FIRST_AUTHORIZE

Retries >
RetryCnt?

DO_GET_CARD_NUMBERDO_FIRST_AUTHORIZE_FAIL

cardnumber
authorized?

authorized

get returncode

get creditAmt
returncode =

"Ukown variable
name

authorization
failed

playPrompt
prefix_no_aaa.au

end

Yes

No

NoYes

DO_GET_DEST

37
73

8

 21 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

DO_GET_DEST

Get Credit Amount

Play Prompt
"You have zero

balance"
prefix_zero_bal.au

Play Prompt
"You have $$"

Play Prompt
"You have more

than a million
dollars"

prefix_invalid_amt.
au

amt = 0 amt > 999999.99

Play Prompt
"Please enter the

destination number you
wish to reach"

prefix_enter_dest.au

DIGIT COLLECTION
get_dest

SECOND _AUTHORIZE

of retries
>RetryCnt?

Play Prompt
"We are unable to connect
your call, please try again

later"
prefix_final.au

End

Success

Fail

Yes

End

Is language
ch,sp or en

Yes
split amt into
two element
list for whole

part and
decimal part

DO_WHOLE_PART

append the [set
prefix]_dollars.au to the

prompt list variable
based on the language

rules

No

DO_DECIMAL_PART

append the [set
prefix]_cents.au to the

prompt list variable
based on the language

rules

37
73

9

 22 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

DO_SECOND_AUTHORIZE

GET CREDIT TIME

Credit Time -
Warn Time <20

Set NoPlay

Play Prompt
"Your call will be

disconnected after
mm.ss"

Play Prompt
"You have mm.ss"

DO_PLACE_CALL

DO_PLACE_CALL_FAIL

Play Prompt
"The party you have

called is busy. Please
enter new number or
hang up or try again

later."
prefix_dest_busy.au

DO_ACTIVE

DO_GET_DEST

Is NoPlay set?

Play Prompt
"You have mm.ss"

Warn Time expired

Play "Out of time"

End

of retries
>RetryCnt

Play Prompt
"Invalid destination,
please enter your

destination number"
prefix_author_fail.au

Play Prompt
"Destination

unreachable, please
try again later"
prefix_final.au

DIGIT COLLECTION
Get_dest

End

Success Fail

Yes

Fail

Success

DO_GET_DEST

Yes

No

No Yes

Long # entered

prefix ==
ch,en,sp

No

Yes
DO_CREDITTIME_

PROMPT

No

prefix ==
ch,en,sp

No

Yes

37
74

0

 23 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

DO_CREDITTIME_PROMPT

Convert creditTime
seconds to hours,

minutes and seconds

DO_WHOLE_PART

append the [set
prefix]_hours.au to the

prompt list variable
based on the language

rules

DO_DECIMAL_PART

append the [set
prefix]_minutes.au to

the prompt list variable
based on the language

rules

Return

37
74

1

 24 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

DO_WHOLE_PART

determine length of
whole part string

Build array values for
numbers(tens)

numbers(hundreds)
numbers(thousands)

numbers(hthousands)
based on language

rules

numbers(tens)
has value

numbers(hundreds)
has value

numbers(thousands)
has value

numbers(hthousand)
has value

Yes

No

Yes Yes Yes

NoNo

DO_TENS DO_HUNDREDS DO_THOUSANDS DO_HTHOUSANDS

Return

37
74

2

 25 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

DO_TENS

numbers(tens)
= 0

Build
prompt list
based on
language

rules

No

Yes

DO_HUNDREDS

numbers(hundreds) =
0

Are there language
exceptions for 0 in

the tens field

Yes

ReturnNo

Are there language
exceptions for 0 in
the hundreds field

Build
prompt list
based on
language

rules

Yes

No

ReturnNo

Yes

37
74

3

 26 Cisco Pre-Paid Debitcard Multi-Language Programmer’s Reference

DO_THOUSANDS

numbers(thousands)
= 0

Build
prompt list
based on
language

rules

No

Yes

DO_HTHOUSANDS

numbers(hthousands) =
0

Are there language
exceptions for 0 in

the tens field

Yes

ReturnNo

Are there language
exceptions for 0 in
the hundreds field

Build
prompt list
based on
language

rules

Yes

No

ReturnNo

Yes

37
74

4

	Overview of the Multi-Language Feature
	Prerequisites
	Restrictions and Configuration
	Related Documentation
	Developer Support

	Multi-Language Feature Implementation
	How to Use the Multi-Language Feature
	Testing and Debugging Your Multi-Language Script
	Modifying the Existing Script

	Cisco Connection Online
	Documentation CD-ROM
	Glossary
	Call Flow Example

