13. Sockets
Why build networking functionality into your Perl scripts? You might want to access your email remotely, or write a simple script that updates files on a FTP site. You might want to check up on your employees with a program that searches for Usenet postings that came from your site. You might want to check a web site for any recent changes, or even write your own home-grown web server. The network is the computer these days, and Perl makes network applications easy. Perl programmers have their choice of modules for doing common tasks with network protocols; Chapter 14, Email Connectivity , through Chapter 17, The LWP Library , cover the modules for writing email, news, FTP, and web applications in Perl. If you can do what you want with the available modules, you're encouraged to jump to those chapters and skip this one. However, there will be times that you'll have to wrestle with sockets directly, and that's where this chapter comes in. Sockets are the underlying mechanism for networking on the Internet. With sockets, one application (a server ) sits on a port waiting for connections. Another application (the client ) connects to that port and says hello; then the client and server have a chat. Their actual conversation is done with whatever protocol they choose - for example, a web client and server would use HTTP, an email server would use POP3 and SMTP, etc. But at the most basic level, you might say that all network programming comes down to opening a socket, reading and writing data, and closing the socket again. You can work with sockets in Perl at various levels. At the lowest level, Perl's built-in functions include socket routines similar to the system calls in C of the same name. To make these routines easier to use, the Socket module in the standard library imports common definitions and constants specific to your system's networking capabilities. Finally, the IO::Socket module provides an object interface to the socket functions through a standard set of methods and options for constructing both client and server communications programs. Sockets provide a connection between systems or applications. They can be set up to handle streaming data or discrete data packets. Streaming data continually comes and goes over a connection. A transport protocol like TCP (Transmission Control Protocol) is used to process streaming data so that all of the data is properly received and ordered. Packet-oriented communication sends data across the network in discrete chunks. The message-oriented protocol UDP (User Datagram Protocol) works on this type of connection. Although streaming sockets using TCP are widely used for applications, UDP sockets also have their uses. Sockets exist in one of two address domains: the Internet domain and the Unix domain. Sockets that are used for Internet connections require the careful binding and assignment of the proper type of address dictated by the Internet Protocol (IP). These sockets are referred to as Internet-domain sockets. Sockets in the Unix domain create connections between applications either on the same machine or within a LAN. The addressing scheme is less complicated, often just providing the name of the target process. In Perl, sockets are attached to a filehandle after they have been created. Communication over the connection is then handled by standard Perl I/O functions. 13.1 Built-in Socket FunctionsPerl provides built-in support for sockets. The following functions are defined specifically for socket programming. For full descriptions and syntax, see Chapter 5, Function Reference .
Regular functions that read and write filehandles can also be used for sockets,
i.e.,
The socket functions tend to use hard-coded values for some
parameters, which severely hurt portability.
Perl solves this problem with a module called Socket, included in the standard library.
Use this module for any socket applications that you build with the built-in functions
(i.e., The next few sections describe Perl socket programming using a combination of the built-in functions together with the Socket module. After that, we describe the use of the IO::Socket module. 13.1.1 Initializing a Socket
Both client and server use the Theuse Socket; socket(SH, PF_INET, SOCK_STREAM, getprotobyname('tcp')) || die $!;
PF_INET
argument indicates that the socket will connect to addresses
in the Internet domain (i.e., IP addresses). Sockets with a Unix domain
address use
PF_UNIX
.
Because this is a streaming connection using TCP, we specify
The third argument indicates the protocol used for
the connection. Each protocol has a number assigned to it by the system;
that number is passed to
Finally, if the socket call fails, the program will 13.1.2 Client Connections
On the client side, the next step is to make a connection with a server
at a particular port and host. To do this, the client
uses the
The
Assuming that the The$data = "Hello"; send (FH, $data);
print
function allows a wider variety of expressions
for sending
data to a filehandle.
To read incoming data from a socket, use either theselect (FH); print "$data";
recv
function
or the "diamond"
input operator regularly used on filehandles. For example:
After the conversation with the server is finished, userecv (FH, $buffer); $input = <FH>;
close
or
shutdown
to close the connection and destroy the socket.
13.1.3 Server Connections
After creating a socket with the
We start out by creating a socket for the server: The filehandlemy $proto = getprotobyname('tcp'); socket(FH, PF_INET, SOCK_STREAM, $proto) || die $!;
$FH
is the generic filehandle for the socket.
This filehandle only receives requests from clients; each specific connection
is passed to a different filehandle by
accept
, where the rest
of the communication occurs.
A server-side socket must be bound to a port on the local machine
by passing a port and an address data structure to the Themy $sin = sockaddr_in (80, INADDR_ANY); bind (FH, $sin) || die $!;
listen
function tells the operating system that the server is ready
to accept incoming network connections on the port. The first argument is
the socket filehandle. The second argument gives a queue length, in case
multiple clients are connecting to the port at the same time. This number
indicates how many clients can wait for an
accept
at one time.
Thelisten (FH, $length);
accept
function completes a connection after a client requests
and assigns a new filehandle specific to that connection. The new filehandle
is given as the first argument to
accept
, and the generic socket filehandle
is given as the second:
Now the server can read and write to the filehandleaccept (NEW, FH) || die $!;
NEW
for its
communication with the client.
13.1.4 Socket Module FunctionsThe following functions are imported from the Socket module for use in socket applications: The following constants are defined in the Socket module:
|
|