
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com

Cisco Systems, Inc.
Corporate Headquarters

Tel:
800 553-NETS (6387)
408 526-4000

Fax: 408 526-4100

Cisco Gatekeeper External Interface
Reference

January 28, 2000

Using the Gatekeeper Transaction Message Protocol and
Application Programming Interface

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT
NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE
PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR
APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION
PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO
LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A
digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the
equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used
in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is
likely to cause harmful interference, in which case users will be required to correct the interference at their own expense.

The following information is for FCC compliance of Class B devices: The equipment described in this manual generates and may radiate radio-frequency
energy. If it is not installed in accordance with Cisco’s installation instructions, it may cause interference with radio and television reception. This equipment
has been tested and found to comply with the limits for a Class B digital device in accordance with the specifications in part 15 of the FCC rules. These
specifications are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that
interference will not occur in a particular installation.

Modifying the equipment without Cisco’s written authorization may result in the equipment no longer complying with FCC requirements for Class A or
Class B digital devices. In that event, your right to use the equipment may be limited by FCC regulations, and you may be required to correct any interference
to radio or television communications at your own expense.

You can determine whether your equipment is causing interference by turning it off. If the interference stops, it was probably caused by the Cisco equipment
or one of its peripheral devices. If the equipment causes interference to radio or television reception, try to correct the interference by using one or more of
the following measures:

• Turn the television or radio antenna until the interference stops.

• Move the equipment to one side or the other of the television or radio.

• Move the equipment farther away from the television or radio.

• Plug the equipment into an outlet that is on a different circuit from the television or radio. (That is, make certain the equipment and the television or radio
are on circuits controlled by different circuit breakers or fuses.)

Modifications to this product not authorized by Cisco Systems, Inc. could void the FCC approval and negate your authority to operate the product.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of
UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE
PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED
OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL
DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR
INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Access Registrar, AccessPath, Any to Any, AtmDirector, CCDA, CCDE, CCDP, CCIE, CCNA, CCNP, CCSI, CD-PAC, the Cisco logo, Cisco Certified
Internetwork Expert logo, CiscoLink, the Cisco Management Connection logo, the Cisco NetWorks logo, the Cisco Powered Network logo, Cisco Systems
Capital, the Cisco Systems Capital logo, Cisco Systems Networking Academy, the Cisco Technologies logo, ConnectWay, ControlStream, Fast Step,
FireRunner, GigaStack, IGX, JumpStart, Kernel Proxy, MGX, Natural Network Viewer, NetSonar, Network Registrar, Packet, PIX, Point and Click
Internetworking, Policy Builder, Precept, RouteStream, Secure Script, ServiceWay, SlideCast, SMARTnet, StreamView, The Cell, TrafficDirector,
TransPath, ViewRunner, VirtualStream, VisionWay, VlanDirector, Workgroup Director, and Workgroup Stack are trademarks; Changing the Way We
Work, Live, Play, and Learn, Empowering the Internet Generation, The Internet Economy, and The New Internet Economy are service marks; and Asist,
BPX, Catalyst, Cisco, Cisco IOS, the Cisco IOS logo, Cisco Systems, the Cisco Systems logo, the Cisco Systems Cisco Press logo, Enterprise/Solver,
EtherChannel, EtherSwitch, FastHub, FastLink, FastPAD, FastSwitch, IOS, IP/TV, IPX, LightStream, LightSwitch, MICA, NetRanger, Registrar,
StrataView Plus, Stratm, TeleRouter, and VCO are registered trademarks of Cisco Systems, Inc. in the U.S. and certain other countries. All other trademarks
mentioned in this document are the property of their respective owners. (9905R)

Cisco Gatekeeper External Interface Reference
Copyright © 2000, Cisco Systems, Inc.
All rights reserved.

Contents v

C O N T E N T S

About This Guide ix

Document Objectives ix

Audience ix

Document Organization x

Conventions x

Cisco Connection Online xii

Chapter 1 Overview of H.323 1-1

H.323 Terminals 1-1

Gatekeepers 1-2
Gatekeeper Zones 1-2

MCUs 1-2

Gateways 1-3

How Terminals, Gatekeepers, and Gateways Work Together 1-3

Chapter 2 Overview of the Cisco IOS Gatekeeper 2-1

Zone and Subnet Configuration 2-1

Terminal Name Registration 2-1

Inter-Zone Communication 2-2

Accounting via RADIUS/TACACS+ 2-2

Inter-Zone Routing 2-2

Chapter 3 Implementing an External Interface to the Cisco IOS Gatekeeper 3-1

How the External Interface Works 3-1

How Gatekeeper Triggers Work 3-2
Statically Configured Triggers 3-3
Dynamically Configured Triggers 3-4
Specifying Wildcards in Triggers 3-6
Notification-Only Triggers 3-6

How RAS Messages are Processed 3-6
Processing of xRQ Requests 3-8
Processing of LCF Requests 3-8
Processing of LRJ Requests 3-9

How Security Works 3-9

Examples of Using the GKTMP Messages 3-10
Populating an External Application’s Registration Database 3-10
800 Number Lookup 3-11
Internet Call-Waiting 3-11

How the API Works 3-13
Linking with the Gatekeeper API 3-14
Guidelines for Using the Gatekeeper API 3-14

vi Cisco Gatekeeper External Interface Reference

Example of Using the Gatekeeper API 3-15

Chapter 4 GKTMP Messages 4-1

GKTMP RAS Messages 4-1
Registration Messages 4-4
Unregistration Message 4-6
Admission Messages 4-6
Location Messages 4-10
Other Messages 4-13

Trigger Registration Messages 4-13

Chapter 5 Gatekeeper API Functions and Structures 5-1

Gatekeeper API Functions 5-1
GkapiSetupClient 5-1
 GkapiSetupServer 5-2
GkapiClientConnected 5-3
 GkapiAcceptConnection 5-3
CloseGateKeeperConnection 5-4
GetReadMsgBuffer 5-4
ReadMsgBuffer 5-5
FreeReadMsgBuffer 5-6
WriteResponseMsg 5-6
WriteRegisterMessage 5-8
WriteUnregisterMessage 5-9
GkapiSetupReport 5-9
GkapiQueryReport 5-10

API Structures 5-10
GKAPI_SOCK_INFO 5-11
GKAPI_TCP_ADDR_INFO 5-12
GK_REGISTER_MSG 5-12
GK_UNREGISTER_MSG 5-12
REG_UNREG_RESP_MSG 5-13
REGISTER_REQUEST_HEADER 5-13
REGISTER_RESPONSE_HEADER 5-13
ARQ_REGISTER_MSG 5-14
RRQ_REGISTER_MSG 5-14
URQ_REGISTER_MSG 5-14
LRQ_REGISTER_MSG 5-14
LCF_REGISTER_MSG 5-15
LRJ_REGISTER_MSG 5-15
GK_READ_MSG 5-15
HEADER_INFO 5-16
ARQ_REQUEST_MSG 5-16
RRQ_REQUEST_MSG 5-17
URQ_REQUEST_MSG 5-17
LRQ_REQUEST_MSG 5-17
LCF_REQUEST_MSG 5-18
LRJ_REQUEST_MSG 5-18
GK_WRITE_MSG 5-19

Contents vii

ARQ_RESPONSE_MSG 5-19
ACF_RESPONSE_MSG 5-20
ARJ_RESPONSE_MSG 5-20
RRQ_RESPONSE_MSG 5-20
RCF_RESPONSE_MSG 5-20
RRJ_RESPONSE_MSG 5-21
LRQ_RESPONSE_MSG 5-21
LCF_RESPONSE_MSG 5-21
LRJ_RESPONSE_MSG 5-21
CRYPTO_H323_TOKEN 5-22
CRYPTO_EP_PWD_HASH 5-22
CRYPTO_EP_PWD_ENCR 5-22
CRYPTO_EP_CERT 5-22
CLEAR_TOKEN 5-22
ALTERNATE_GK 5-23
ALTERNATE_ENDPOINT 5-23
RIP_RESPONSE_MSG 5-23
UNSUPPORTED_MSG 5-24
Enumerations 5-24
Limits 5-28

Chapter 6 New Gatekeeper Commands 6-1

server trigger 6-2
Submode Commands 6-2

server registration-port 6-7

show gatekeeper servers 6-8

debug gatekeeper servers 6-9

viii Cisco Gatekeeper External Interface Reference

 ix

About This Guide

This section describes the objectives, audience, organization, and conventions of the Cisco
Gatekeeper External Interface Reference.

Cisco documentation and additional literature are available in a CD-ROM package, which ships with
your product. The Documentation CD-ROM, a member of the Cisco Connection Family, is updated
monthly. Therefore, it might be more up to date than printed documentation. To order additional
copies of the Documentation CD-ROM, contact your local sales representative or call customer
service. The CD-ROM package is available as a single package or as an annual subscription. You
can also access Cisco documentation on the World Wide Web at http://www.cisco.com,
http://www-china.cisco.com, or http://www-europe.cisco.com.

Document Objectives
This guide is designed to help you understand and implement an external interface to the Cisco IOS
Gatekeeper using the Cisco Gatekeeper Transaction Message Protocol (GKTMP) and application
programming interface (API).

Audience
The audience of the document is application programmers who want to develop an application that
interfaces with the Cisco IOS Gatekeeper.

Document Organization

x Cisco Gatekeeper External Interface Reference

Document Organization
This document is divided into the following chapters:

Conventions
This publication uses the following conventions to convey instructions and information:

Chapter Description

Chapter 1, “Overview of H.323” Provides a high-level overview of H.323.

Chapter 2, “Overview of the Cisco
IOS Gatekeeper”

Provides an overview of the features and functions of the Cisco IOS
Gatekeeper.

Chapter 3, “Implementing an
External Interface to the Cisco IOS
Gatekeeper”

Provides information about and examples of implementing an external
interface to the Cisco IOS Gatekeeper using the GKTMP and the
Gatekeeper API.

Chapter 4, “GKTMP Messages” Describes the messages used with the GKTMP.

Chapter 5, “Gatekeeper API
Functions and Structures”

Describes the functions provided with the Gatekeeper API.

Chapter 6, “New Gatekeeper
Commands”

Describes the Cisco IOS software commands used to configure
triggers for a Cisco IOS Gatekeeper.

Table 1 Installation Guide Conventions

Convention Description

boldface font Commands and keywords.

italic font Variables for which you supply values.

[] Keywords or arguments that appear within square brackets are optional.

{x | y | z} A choice of required keywords appears in braces separated by vertical bars. You must
select one.

screen font Examples of information displayed on the screen.

boldface screen font Examples of information you must enter.

< > Nonprinting characters, for example passwords, appear in angle brackets.

[] Default responses to system prompts appear in square brackets.

Note Means reader take note. Notes contain helpful suggestions or references to additional
information and material.

Timesaver This symbol means the described action saves time. You can save time by
performing the action described in the paragraph.

Caution This symbol means reader be careful. In this situation, you might do
something that could result in equipment damage or loss of data.

Warning This warning symbol means danger. You are in a situation that could cause
bodily injury. Before you work on any equipment, be aware of the hazards involved with
electrical circuitry and be familiar with standard practices for preventing accidents. To
see translations of the warnings that appear in this publication, refer to the Regulatory
Compliance and Safety Information document that accompanied this device.

Waarschuwing Dit waarschuwingssymbool betekent gevaar. U verkeert in een
situatie die lichamelijk letsel kan veroorzaken. Voordat u aan enige apparatuur gaat
werken, dient u zich bewust te zijn van de bij elektrische schakelingen betrokken risico's
en dient u op de hoogte te zijn van standaard maatregelen om ongelukken te voorkomen.
Voor vertalingen van de waarschuwingen die in deze publicatie verschijnen, kunt u het
document Regulatory Compliance and Safety Information (Informatie over naleving van
veiligheids- en andere voorschriften) raadplegen dat bij dit toestel is ingesloten.

12

6

9 3

 xi

Varoitus Tämä varoitusmerkki merkitsee vaaraa. Olet tilanteessa, joka voi johtaa
ruumiinvammaan. Ennen kuin työskentelet minkään laitteiston parissa, ota selvää
sähkökytkentöihin liittyvistä vaaroista ja tavanomaisista onnettomuuksien
ehkäisykeinoista. Tässä julkaisussa esiintyvien varoitusten käännökset löydät laitteen
mukana olevasta Regulatory Compliance and Safety Information -kirjasesta (määräysten
noudattaminen ja tietoa turvallisuudesta).

Attention Ce symbole d'avertissement indique un danger. Vous vous trouvez dans une
situation pouvant causer des blessures ou des dommages corporels. Avant de travailler
sur un équipement, soyez conscient des dangers posés par les circuits électriques et
familiarisez-vous avec les procédures couramment utilisées pour éviter les accidents.
Pour prendre connaissance des traductions d’avertissements figurant dans cette
publication, consultez le document Regulatory Compliance and Safety Information
(Conformité aux règlements et consignes de sécurité) qui accompagne cet appareil.

Warnung Dieses Warnsymbol bedeutet Gefahr. Sie befinden sich in einer Situation, die
zu einer Körperverletzung führen könnte. Bevor Sie mit der Arbeit an irgendeinem Gerät
beginnen, seien Sie sich der mit elektrischen Stromkreisen verbundenen Gefahren und
der Standardpraktiken zur Vermeidung von Unfällen bewußt. Übersetzungen der in
dieser Veröffentlichung enthaltenen Warnhinweise finden Sie im Dokument Regulatory
Compliance and Safety Information (Informationen zu behördlichen Vorschriften und
Sicherheit), das zusammen mit diesem Gerät geliefert wurde.

Avvertenza Questo simbolo di avvertenza indica un pericolo. La situazione potrebbe
causare infortuni alle persone. Prima di lavorare su qualsiasi apparecchiatura, occorre
conoscere i pericoli relativi ai circuiti elettrici ed essere al corrente delle pratiche
standard per la prevenzione di incidenti. La traduzione delle avvertenze riportate in
questa pubblicazione si trova nel documento Regulatory Compliance and Safety
Information (Conformità alle norme e informazioni sulla sicurezza) che accompagna
questo dispositivo.

Advarsel Dette varselsymbolet betyr fare. Du befinner deg i en situasjon som kan føre
til personskade. Før du utfører arbeid på utstyr, må du vare oppmerksom på de
faremomentene som elektriske kretser innebærer, samt gjøre deg kjent med vanlig
praksis når det gjelder å unngå ulykker. Hvis du vil se oversettelser av de advarslene som
finnes i denne publikasjonen, kan du se i dokumentet Regulatory Compliance and Safety
Information (Overholdelse av forskrifter og sikkerhetsinformasjon) som ble levert med
denne enheten.

Aviso Este símbolo de aviso indica perigo. Encontra-se numa situação que lhe poderá
causar danos físicos. Antes de começar a trabalhar com qualquer equipamento,
familiarize-se com os perigos relacionados com circuitos eléctricos, e com quaisquer
práticas comuns que possam prevenir possíveis acidentes. Para ver as traduções dos
avisos que constam desta publicação, consulte o documento Regulatory Compliance and
Safety Information (Informação de Segurança e Disposições Reguladoras) que
acompanha este dispositivo.

¡Advertencia! Este símbolo de aviso significa peligro. Existe riesgo para su
integridad física. Antes de manipular cualquier equipo, considerar los riesgos que
entraña la corriente eléctrica y familiarizarse con los procedimientos estándar de
prevención de accidentes. Para ver una traducción de las advertencias que aparecen en
esta publicación, consultar el documento titulado Regulatory Compliance and Safety
Information (Información sobre seguridad y conformidad con las disposiciones
reglamentarias) que se acompaña con este dispositivo.

Table 1 Installation Guide Conventions (Continued)

Convention Description

Cisco Connection Online

xii Cisco Gatekeeper External Interface Reference

Cisco Connection Online
Cisco Connection Online (CCO) is Cisco Systems’ primary, real-time support channel. Maintenance
customers and partners can self-register on CCO to obtain additional information and services.

Available 24 hours a day, 7 days a week, CCO provides a wealth of standard and value-added
services to Cisco’s customers and business partners. CCO services include product information,
product documentation, software updates, release notes, technical tips, the Bug Navigator,
configuration notes, brochures, descriptions of service offerings, and download access to public and
authorized files.

CCO serves a wide variety of users through two interfaces that are updated and enhanced
simultaneously: a character-based version and a multimedia version that resides on the World Wide
Web (WWW). The character-based CCO supports Zmodem, Kermit, Xmodem, FTP, and Internet
e-mail, and it is excellent for quick access to information over lower bandwidths. The WWW version
of CCO provides richly formatted documents with photographs, figures, graphics, and video, as well
as hyperlinks to related information.

You can access CCO in the following ways:

• WWW: http://www.cisco.com

• WWW: http://www-europe.cisco.com

• WWW: http://www-china.cisco.com

• Telnet: cco.cisco.com

• Modem: From North America, 408 526-8070; from Europe, 33 1 64 46 40 82. Use the
following terminal settings: VT100 emulation; databits: 8; parity: none; stop bits: 1; and
connection rates up to 28.8 kbps.

For a copy of CCO’s Frequently Asked Questions (FAQ), contact cco-help@cisco.com. For
additional information, contact cco-team@cisco.com.

Note If you are a network administrator and need personal technical assistance with a Cisco
product that is under warranty or covered by a maintenance contract, contact Cisco’s Technical
Assistance Center (TAC) at 800 553-2447, 408 526-7209, or tac@cisco.com. To obtain general
information about Cisco Systems, Cisco products, or upgrades, contact 800 553-6387,
408 526-7208, or cs-rep@cisco.com.

Varning! Denna varningssymbol signalerar fara. Du befinner dig i en situation som kan
leda till personskada. Innan du utför arbete på någon utrustning måste du vara medveten
om farorna med elkretsar och känna till vanligt förfarande för att förebygga skador. Se
förklaringar av de varningar som förkommer i denna publikation i dokumentet
Regulatory Compliance and Safety Information (Efterrättelse av föreskrifter och
säkerhetsinformation), vilket medföljer denna anordning.

Table 1 Installation Guide Conventions (Continued)

Convention Description

C H A P T E R

 Overview of H.323 1-1

1

Overview of H.323

H.323 is an ITU standard for transmitting audio, video, and data conferencing data on an IP-based
internetwork. The H.323 standard provides for the following types of endpoints in the network:

• H.323 Terminals

• Gatekeepers

• MCUs

• Gateways

Figure 1-1 shows a typical H.323 network:

Figure 1-1 H.323 Network

H.323 Terminals
An H.323 terminal is an endpoint in the LAN that participates in real-time, two-way
communications with another H.323 terminal, gateway, or multipoint control unit (MCU). A
terminal must support audio communication and can also support audio with video, audio with data,
or a combination of all three.

Internet

H.323 terminal

Corporate LAN

H.323 terminal H.323 terminal

Cisco gatekeeper
MCU

Cisco
proxy Gateway

S
69

10
Router

H.320 terminal
(over ISDN)

H.324 terminal
(over POTs)

Speech only
(Telephone)

Real-time
network

Telephone
network

Gatekeepers

Cisco Gatekeeper External Interface Reference1-2

H.323 terminals must support the following standards and protocols:

• H.245—An ITU standard used by the terminal to negotiate its use usage of the channel. The
H.245 control channel provides in-band reliable transport for capabilities exchange, mode
preference from the receiving end, logical channel signaling, and control and indication. Part of
the capabilities exchange includes specifying which coder-decoders (CODECs) are available.
Recommended audio CODECs include G.711, G.722, G.723, G.723.1, G.728, and G.729.
Recommended video CODECs include H.261 and H.263.

• H.225.0—An ITU standard that uses a variant of Q.931 to set up the connection between two
H.323 endpoints.

• RAS—(Registration Admission Status) A protocol used to communicate with the H.323
gatekeeper.

• RTP and RTCP—(Real-Time Transport Protocol and RTP Control Protocol) Protocols used to
sequence the audio and video packets. The RTP header contains a time stamp and sequence
number, allowing the receiving device to buffer as much as necessary to remove jitter and latency
by synchronizing the packets to play back a continuous stream of sound. RTCP is used to control
RTP. It gathers reliability information and periodically passes this information onto session
participants.

Gatekeepers
Gatekeepers are optional nodes that manage other nodes in an H.323 network. Other nodes
communicate with the gatekeeper using the RAS protocol. A gatekeeper is not required in an H.323
network, but it must be used if one is present.

The H.323 nodes attempt to register with a gatekeeper upon startup. When an H.323 node wants to
communicate with another endpoint, it requests admission to the call, using a symbolic alias for the
endpoint name such as an E.164 (ITU-T recommendation for international telecommunication
numbering) address or an e-mail ID. If the gatekeeper decides the call can proceed, it returns a
destination IP address to the originating H.323 node. This IP address can be the actual address of the
target endpoint or it can be an intermediate address. Finally, a gatekeeper and its registered endpoints
exchange status information.

Gatekeeper Zones
H.323 endpoints are grouped together in zones. Each zone has one gatekeeper that manages all of
the endpoints in the zone. A zone is an administrative convenience similar to a DNS domain.
Gatekeeper zones are normally set up to correspond to geographic zones.

MCUs
An MCU is an endpoint on the LAN that provides the capability for three or more terminals and
gateways to participate in a multipoint conference. It controls and mixes video, audio, and data from
terminals to create a robust video conference. An MCU can also connect two terminals in a
point-to-point conference that may later develop into a multipoint conference.

Note Some terminals have limited multipoint-control built into them. These terminals might not
require an MCU with all the functionality mentioned above.

 Overview of H.323 1-3

Gateways

Gateways
An H.323 gateway can provide an interface between H.323 and the public switched telephone
network (PSTN), H.320 terminals, V.70 terminals, H.324 terminals, and other speech terminals. It
provides standard interfaces to the PSTN, processes the voice and fax signals using CODECs to
convert between circuit-switched and packet formats, and works with the gatekeeper through the
RAS protocol to route calls through the network. Gateways provide translation between transmission
formats, such as between H.245 and H.242. Figure 1-2 shows a gateway between an H.323 terminal
and a speech-only telephone.

Figure 1-2 Gateway between an H.323 Terminal and a Speech-only Telephone

How Terminals, Gatekeepers, and Gateways Work Together
Gateways provide protocol conversion between terminals running different types of protocols.
Gateways communicate with gatekeepers using the RAS protocol. The gatekeeper maintains
resource computing information, which it uses to select the appropriate gateway during the
admission of a call. In Figure 1-3 and Figure 1-4:

• TA1 is an H.323 terminal registered to GK1.

• GW1 is an H.323-to-H.320 gateway registered to GK1.

• TA2 is a telephone.

Figure 1-3 illustrates the processing of a call that originates with a device in the zone (TA1) and is
intended for a device outside the zone (TA2).

Figure 1-3 Processing of Calls Going Out of the Zone

A call from TA1 to TA2 is set up as follows:

1 TA1 asks GK1 for permission to connect to TA2’s E.164 address.

2 The gatekeeper looks through its local registrations and does not find any H.323 terminals
registered with that E.164 address, so the gatekeeper assumes that it is a telephone outside the
scope of H.323. The gatekeeper instructs TA1 to connect to the GW1 IP address.

H.323
endpoint

H.323 gateway

Telephone Telephone

Non-H.323
endpoint

Protocol
translation
and media
transcoding

27
84

7

Zone 1

27
84

5

H.323

Telephone

GK1

GW1

TA1
1

2

4
3

TA2

How Terminals, Gatekeepers, and Gateways Work Together

Cisco Gatekeeper External Interface Reference1-4

3 TA1 connects to GW1.

4 GW1 completes the call to TA2.

Figure 1-4 illustrates the processing of a call that originates with a device outside the zone (TA2) and
is intended for a device in the zone (TA1).

Figure 1-4 Processing of Calls Coming Into the Zone

A call from TA2 to TA1 is set up as follows:

1 TA2 calls GW1 and provides the TA1 E.164 address as the final destination.

2 GW1 sends a message to GK1 asking to connect to that address.

3 GK1 gives GW1 the address of TA1.

4 GW1 completes the call with TA1.

27
84

6

H.323 2
4 1

3

Telephone

GK1

GW1TA1 TA2

C H A P T E R

 Overview of the Cisco IOS Gatekeeper 2-1

2

Overview of the Cisco IOS
Gatekeeper

Cisco offers a Voice over IP gatekeeper called the Multimedia Conference Manager, which is an
H.323-compliant program implemented as part of the Cisco IOS software. The Multimedia
Conference Manager software can run on Cisco 2500, 2600, 3600, and 3810 routers.

The following sections describe the main functions of a gatekeeper, which are supported by Cisco’s
Multimedia Conference Manager:

• Zone and Subnet Configuration

• Terminal Name Registration

• Inter-Zone Communication

• Accounting via RADIUS/TACACS+

• Inter-Zone Routing

Zone and Subnet Configuration
A zone is defined as the set of H.323 nodes controlled by a single gatekeeper. Gatekeepers
co-existing on a network can be configured so that they register endpoints from different subnets.

Endpoints attempt to discover a gatekeeper, and consequently what zone they are members of, using
the RAS message protocol. The protocol supports a discovery message that may be sent multicast or
unicast.

If the message is sent multicast, the endpoint registers non-deterministically with the first gatekeeper
to respond. Any endpoint on a subnet that is not enabled for the gatekeeper will not be accepted as
a member of that gatekeeper’s zone. If the gatekeeper receives a discovery message from such an
endpoint, it will send an explicit reject message.

Terminal Name Registration
Gatekeepers recognize one of three types of terminal aliases, or terminal names:

• H.323 identifiers (IDs), which are arbitrary, case-sensitive text strings.

• E.164 addresses, which are telephone numbers.

• Email IDs.

If an H.323 network deploys inter-zone communication, each terminal should at least have a
fully-qualified e-mail name as its H.323 ID. For example, bob@cisco.com. The domain name of the
e-mail ID should be the same as the configured domain name for the gatekeeper of which it is to be
a member. As in the previous example, the domain name would be cisco.com.

Inter-Zone Communication

Cisco Gatekeeper External Interface Reference2-2

Inter-Zone Communication
To allow endpoints to communicate between zones, gatekeepers must be able to determine which
zone an endpoint is in and locate the gatekeeper responsible for that zone. If DNS is available, you
can associate a DNS domain name to each gatekeeper.

Accounting via RADIUS/TACACS+
If you enable AAA on the gatekeeper, the gatekeeper will emit an accounting record each time an
endpoint registers or unregisters, or each time a call is admitted or disconnected.

Inter-Zone Routing
There are three types of address destinations used in H.323 calls. The destination can be specified
using either an H.323-ID address (a character string), an E.164 address (a string containing
telephone keypad characters), or an e-mail ID (a character string). The way inter-zone calls are
routed by the Cisco IOS Gatekeeper depends on the type of address being used.

• When using H.323-ID addresses, inter-zone routing is handled through the use of domain names.
For example, to resolve the domain name bob@cisco.com, the source endpoint’s gatekeeper finds
the gatekeeper for cisco.com and sends the location request for target address bob@cisco.com to
that gatekeeper. The destination gatekeeper looks in its registration database, sees bob registered,
and returns the appropriate IP address to get to bob.

Note Although H.225 does not require the use of a domain name with H.323 IDs, the Cisco IOS
Gatekeeper does.

• When using E.164 addresses, call routing is handled through means of zone prefixes and gateway
type prefixes, also referred to as technology prefixes. The zone prefixes, which are typically area
codes, serve the same purpose as domain names in H.323-ID address routing. Unlike domain
names, however, more than one zone prefix can be assigned to one gatekeeper, but the same
prefix cannot be shared by more than one gatekeeper. With Cisco IOS Release 12.0(3)T and later,
you can configure inter-zone routing using E.164 addresses.

• When using e-mail IDs, inter-zone routing is handled through the use of domain names—just as
it is with H.323 IDs. Again, the source endpoint’s gatekeeper finds the gatekeeper for the
specified domain and sends the location request for the target address to that gatekeeper.

C H A P T E R

 Implementing an External Interface to the Cisco IOS Gatekeeper 3-1

3

Implementing an External Interface to
the Cisco IOS Gatekeeper

Although the Cisco IOS Gatekeeper provides many functions, there may be the occasion when
additional function is desired or needed. For example, an organization may require additional
authentication functions, need to implement specific policy controls, or want to use Internet call
waiting.

The Gatekeeper Transaction Message Protocol (GKTMP) and the Gatekeeper application
programming interface (API) were developed to allow communication between the Cisco IOS
Gatekeeper and an external application.

• GKTMP is based on RAS and provides a set of ASCII request/response messages that can be
used to exchange information between the Cisco IOS Gatekeeper and the external application
over a TCP connection and through the use of the Gatekeeper API.

• The Gatekeeper API is object code that contains the API functions, which are designed to work
with GKTMP. An external application links with the object code and calls the functions as
necessary.

Using the GKTMP and the Gatekeeper API, organizations can supplement the functions of the Cisco
IOS Gatekeeper with their own external application.

How the External Interface Works
As part of its normal function, a gatekeeper receives certain RAS registration, admission, and
location messages from H.323 endpoints. Typically, the gatekeeper processes these messages and
responds to the request. However, with the Cisco IOS Gatekeeper, the GKTMP, and the Gatekeeper
API, you can supplement or offload the processing of the request to an external application.

In general, the process works as follows:

1 You establish triggers for each external application on the Cisco IOS Gatekeeper. These triggers
are based on RAS tags and values.

2 When the Cisco IOS Gatekeeper receives a RAS message from an H.323 endpoint, it compares
the message to the triggers.

3 If there is a match, the Cisco IOS Gatekeeper repackages the contents of the RAS message and
sends it to the appropriate external application.

4 The Gatekeeper API extracts the data and stores it in memory for use by the external application.

5 The external application processes the data and sends the results back to the Gatekeeper API.

How Gatekeeper Triggers Work

Cisco Gatekeeper External Interface Reference3-2

6 The Gatekeeper API then constructs the appropriate response message and sends the data to the
Cisco IOS Gatekeeper.

7 The Cisco IOS Gatekeeper performs any additional processing, if necessary, and forwards the
results to the requesting H.323 endpoint.

The interaction between the Cisco IOS Gatekeeper and the external application is completely
transparent to the H.323 endpoint.

Communication between the Cisco IOS Gatekeeper and the external application is over a TCP
connection through the Gatekeeper API. The same TCP connection can be used by all logical Cisco
IOS Gatekeepers on the same IOS router. The individual Cisco IOS Gatekeepers are identified by
their gatekeeper IDs. This ID is included in all messages that the Cisco IOS Gatekeeper sends to the
external application and in all responses that the external application sends back to the Cisco IOS
Gatekeeper. If there are different external applications running on the same host, messages to the
different external applications can also be multiplexed on the same TCP connection. The external
applications are identified by their server IDs.

How Gatekeeper Triggers Work
By default, the Cisco IOS Gatekeeper does not forward any RAS messages to any external
applications. If an application is interested in receiving certain RAS messages, it must register this
interest with the Cisco IOS Gatekeeper. To determine which RAS messages the Cisco IOS
Gatekeeper forwards to the external application, you can specify trigger parameters. If the Cisco IOS
Gatekeeper receives a message that satisfies the specified trigger conditions, the message is
forwarded to the external application.

If multiple trigger conditions are specified in a single registration message, the Cisco IOS
Gatekeeper treats the trigger conditions as “or” conditions. In other words, if a RAS message
received by the GateKeeper meets any of the trigger conditions the message is sent to the external
application.

Trigger conditions are optional. If the Cisco IOS Gatekeeper receives a registration that contains no
trigger conditions, then it will forward all messages of the specified RAS message type to the
external application.

If the Cisco IOS Gatekeeper has a registration for a RAS message type and receives another
registration for the same RAS message from the same external application with the same priority,
the Cisco IOS Gatekeeper will use the new registration and discard the previous one. If the Cisco
IOS Gatekeeper has a registration for a RAS message type and receives another registration with the
same priority from a different external application, the Cisco IOS Gatekeeper will discard the new
registration.

To indicate that the external application is no longer interested in a message, it must unregister its
interest. The contents of the unregistration message must match that of the corresponding
registration message before the trigger can be removed.

A Cisco IOS Gatekeeper can be statically (through a command line interface) or dynamically
(through the Gatekeeper API) configured with trigger parameters.

Note Triggers that are statically configured can be removed only through the CLI. Likewise, those
that are dynamically configured can be removed or modified only through the Gatekeeper API.

 Implementing an External Interface to the Cisco IOS Gatekeeper 3-3

Statically Configured Triggers

Statically Configured Triggers
Statically configured triggers are established on the router using IOS commands. To configure
triggers using the IOS command line, do the following:

Step 1 Access the Cisco IOS Gatekeeper configuration mode. Enter the following command:

gatekeeper

Step 2 Enter the trigger configuration mode and specify the RAS message type for the trigger.
Enter the following command:

server trigger {arq | lcf | lrj | lrq | rrq | urq} gkid priority server-id
server-ip_address server-port

Step 3 If the trigger is to send qualifying messages on a notification-only basis, enter the
following command:

info-only

Step 4 If you want to limit the qualifying messages based on the destination information, enter
the following command:

destination-info {e164 | email-id | h323-id} value

You can repeat this command to enter multiple destinations.

Step 5 If you want to limit the qualifying messages based on the redirect reason, enter the
following command:

redirect-reason value

You can repeat this command to enter multiple redirect reasons.

Step 6 If you want to limit the qualifying messages based on the remote extension address, enter
the following command:

remote-ext-address value

You can repeat this command to enter multiple remote extension addresses.

Step 7 If you want to limit the qualifying messages based on the endpoint type, enter the
following command:

endpoint-type value

You can repeat this command to enter multiple endpoint types.

Step 8 If you want to limit the qualifying messages based on the supported prefix, enter the
following command:

supported-prefix value

You can repeat this command to enter multiple supported prefixes.

Step 9 When you have specified all the parameters for this trigger, exit trigger submode by
entering the following command:

exit

Step 10 Repeat steps 2 through 9 for each trigger that you want to define.

To remove a trigger, use the no server trigger command. To temporarily suspend a trigger, enter the
trigger configuration mode, as described in step 2 and enter the shutdown subcommand.

How Gatekeeper Triggers Work

Cisco Gatekeeper External Interface Reference3-4

For more information about the IOS commands for configuring triggers, see Chapter 6, “New
Gatekeeper Commands”.

Note With statically configured triggers, the gatekeeper initiates the connection to the external
application and keeps the connection open for as long as it is running. If the connection is terminated
by the external application, the Cisco IOS Gatekeeper will periodically attempt to re-establish the
connection.

Dynamically Configured Triggers
Dynamically configured triggers are established using the Gatekeeper API and the GKTMP trigger
registration messages.

1 The external application creates a trigger and sends it to the Cisco IOS Gatekeeper using the
WriteRegisterMessage API function. The triggers are sent in the format for trigger registration
messages as prescribed by the GKTMP.

2 In response, the Cisco IOS Gatekeeper sends a message back that indicates whether the
registration request has been accepted.

You must send a separate registration message for each message type that you want to be sent to the
external application. If you send a registration message that does not contain any trigger definitions,
all messages of the specified type will be sent to the external application.

Dynamically configured triggers are removed using the WriteUnregisterMessage API function and
GKTMP trigger unregistration messages. Again, the response from the Cisco IOS Gatekeeper
indicates whether the unregistration request has been accepted.

API Functions
There are two API functions that can be used in the dynamic configuration of triggers:

• WriteRegisterMessage—Sends a registration message to the Cisco IOS Gatekeeper. This
function reads the information in the GK_REGISTER_MSG_TYPE structure and sends the
contents to the Cisco IOS Gatekeeper using the gkHandle read from the
GKAPI_SOCK_INFO_T structure. The header structure,
REGISTER_REQUEST_HEADER_TYPE, within each message structure must contain
information for the From, To, and Priority fields. Optionally, if the external application is
interested in receiving only notification of a message (not in processing any data for the
message), the notificationOnly field should be set to True. Otherwise, it is set to False.

If no filter conditions are to be sent, the parameters within the registration structure should be set
to their initialization values or to NULL for pointers. WriteRegisterMessage will process the
filters for sending until it reaches the first initialization value for the parameter or the first null
pointer for pointer types.

• WriteUnregisterMessage—Sends an unregistration message to the Cisco IOS Gatekeeper. This
function reads the information in the GK_REGISTER_MSG_TYPE structure and sends the
contents to the Cisco IOS Gatekeeper using the gkHandle read from the
GKAPI_SOCK_INFO_T structure. The header structure,
REGISTER_REQUEST_HEADER_TYPE, within each message structure must contain
information for the From, To, and Priority fields.

 Implementing an External Interface to the Cisco IOS Gatekeeper 3-5

Dynamically Configured Triggers

GKTMP Messages
The format of the GKTMP registration/unregistration request and response messages is as follows:

Message line
Message header line 1
Message header line 2
Message header line x

Message body line 1
Message body line 2
Message body line x

• Message line—A single line indicating whether this message is a REGISTRATION or
UNREGISTRATION request from the external application. This line is echoed in the response
from the Cisco IOS Gatekeeper. The format is REGISTER xxx or UNREGISTER xxx.

• Message header—A series of lines indicating the server ID of the external application, the
gatekeeper ID of the Cisco IOS Gatekeeper, and the priority of the trigger. The priority indicates
the order in which this trigger should be processed with respect to other triggers. The message
header also includes a version ID, which indicates the version of the GKTMP. The version ID
must be the first header in every GKTMP message.

For trigger registration requests, if the message contains a body, the header can also contain a line
indicating the content length of the body. The message header may also contain a line that
indicates whether the external application only wants to be notified of the specified RAS
messages that the Cisco IOS Gatekeeper receives. For more information on notification only, see
the Notification-Only Triggers section.

For trigger registration and unregistration responses, the header also contains a line that indicates
the status of the registration or unregistration request.

The format of each line is field:value.

• An empty line.

• Message body (optional)—The body of trigger registration messages contains the RAS tags and
values that define the desired triggering parameters. Each triggering parameter occupies a single
line. The format of each line is tag=value.

The message body can be included only in trigger registration requests. Trigger registration
responses and trigger unregistration requests and responses cannot contain a message body.

For more information about the format of trigger registration and unregistration messages, see
Chapter 4, “GKTMP Messages”.

With dynamically configured triggers, the external application establishes a TCP connection to the
gatekeeper and registers its interest in any of the RAS message types. The external application
should then leave the connection open for receiving such messages and for sending its responses. If
the external application closes the connection, its registrations are considered cancelled. The Cisco
IOS Gatekeeper will not attempt to re-establish the connection.

Example of a Dynamic Trigger Registration Message
In the following example the trigger registration request indicates that the Cisco IOS Gatekeeper
should forward to the external application any RRQ messages from a voice gateway or a gateway
with a supported prefix of 1# or 2#:

REGISTER RRQ
Version-id: 1
From: server-12
To: gk-dallas1

How RAS Messages are Processed

Cisco Gatekeeper External Interface Reference3-6

Priority: 20
Notification-Only:
Content-Length: 29

t=voice-gateway
p=1#
p=2#

Specifying Wildcards in Triggers
Within a trigger, certain wildcard characters are allowed for an alias-address field that contains an
E.164 address. Trigger criteria for E.164 alias-addresses can include trailing wildcard characters as
follows:

• One or more periods can be used, each denoting a single character

• An asterisk can be used to denote zero or more characters.

Examples of legal E164 address patterns are:

Examples of illegal E164 address patterns are:

Notification-Only Triggers
If the application needs to be aware of messages but will not be preforming any processing of the
message, you can indicate that the messages should be forwarded on a notification-only basis. If
“notification-only” present in a GKTMP registration message (which means that notification-only is
set to true at the API), the Cisco IOS Gatekeeper will forward messages that meet the trigger criteria
but will not expect a response. If notification-only is not present (which means that notification-only
is set to false at the API), the Cisco IOS Gatekeeper will forward messages that meet the trigger
criteria and await a corresponding RESPONSE message from the external application.

This header line is typically used for REQUEST RRQ and REQUEST URQ messages, so that the
Cisco IOS Gatekeeper can populate an external application's registration database.

How RAS Messages are Processed
When the Cisco IOS Gatekeeper receives an RAS message that meets the specified trigger
conditions, it packages the contents of the fields of the RAS message into the message body of a
GKTMP REQUEST message. When the external application receives a request, it must package the
response into the message body of a GKTMP RESPONSE message.

The GKTMP specifies formats for exchanging the following types of RAS messages:

• RRQ—Registration request

• RCF—Registration confirm

1800....... The digits 1800 followed by seven characters.

011* The digits 011 followed by any number of characters.

...4567 Wildcard characters must be used as trailing characters.
They cannot be used at the beginning of a field.

4802*2 Wildcard characters cannot be used within a field. In this
case, the asterisk is interpreted as a literal character.

 Implementing an External Interface to the Cisco IOS Gatekeeper 3-7

How RAS Messages are Processed

• RRJ—Registration reject

• URQ—Unregistration request

• ARQ—Admission request

• ACF—Admission confirm

• ARJ—Admission reject

• LRQ—Location request

• LCF—Location confirm

• LRJ—Location reject

The URQ message is issued as request from the Cisco IOS Gatekeeper, but does not have a
corresponding response. Other messages (RCF, RRJ, ACF, and ARJ) are sent only as responses from
the external application.

Note The Cisco IOS Gatekeeper will not generate GKTMP Request RRQ messages for lightweight
RRQ messages, which are used by H.323 endpoints as a keep-alive mechanism to refresh existing
registrations.

The general format of the GKTMP RAS messages is:

Message line
Message header line 1
Message header line 2
Message header line x

Message body line 1
Message body line 2
Message body line x

• Message line—A single line indicating whether this message is a REQUEST or RESPONSE.
The format is REQUEST xxx or RESPONSE xxx.

• Message header—A series of lines indicating the server ID of the external application and the
gatekeeper ID of the Cisco IOS Gatekeeper. The message header also includes a version ID,
which indicates the version of the GKTMP. The version ID must be the first header in every
GKTMP message.

If the message contains a body, the header can also contain a line indicating the content length of
the body. The header can also contain a transaction ID, which uniquely identifies the
request/response message. The message header might also contain a line that indicates whether
the message is being sent on a notification-only basis. For more information on notification only,
see the Notification-Only Triggers section.

The format of each line is field:value.

• An empty line.

• Message body (optional)—The body of trigger registration messages contains the RAS tags and
values for the corresponding RAS message. The tags included in the body vary depending on the
type of RAS message. Responses from the external application should contain only changed or
new body information. The format of each line is tag=value.

For more information about the format of GKTMP RAS messages, see Chapter 4, “GKTMP
Messages”.

How RAS Messages are Processed

Cisco Gatekeeper External Interface Reference3-8

How the external application processes requests from the Cisco IOS Gatekeeper depends on the type
of RAS message and how the external application has been configured to respond.

Note The Cisco IOS Gatekeeper maintains a timeout value for the processing of requests. If a
response is not received within the timeout value, the Cisco IOS Gatekeeper assumes the external
application is unavailable. Therefore, when the external application receives a message that will take
additional time to process, it should send a message back to the Cisco IOS Gatekeeper to request an
extension to the timeout. This message is a RESPONSE RIP.

Processing of xRQ Requests
When the external application receives a REQUEST xRQ message from the Cisco IOS Gatekeeper
it must take one of the following actions:

• Instruct the Cisco IOS Gatekeeper to reject the request. In this case, the external application sends
a RESPONSE xRJ message to the Cisco IOS Gatekeeper.

• Modify one or more of the fields and return the request to the Cisco IOS Gatekeeper for further
processing. In this case, the external application sends a RESPONSE xRQ message with the
altered information in the body. Only fields that the external application changes can be included
in the body. Unchanged fields must not be present in the response message body.

• Indicate no interest in the message and instruct the gatekeeper to continue normal processing. In
this case, the external application sends a RESPONSE xRQ message with a null message body.

• Complete the processing of the request and send the results to the Cisco IOS Gatekeeper. In this
case, the external application sends a RESPONSE xCF message. The body of this message must
contain all the fields that the Cisco IOS Gatekeeper needs to respond with an xCF to the client.
This message indicates to the gatekeeper that no further processing is required. If multiple
triggers have been configured such that the REQUEST is sent to more than one external
application, the RESPONSE xCF preempts any other external applications from receiving this
message.

• Send no response. This action must be taken only if the request message contains the line
Notification-Only: in the header.

Processing of LCF Requests
An LCF message is sent by a peer gatekeeper to confirm the location of a destination endpoint in its
zone. You can configure the Cisco IOS Gatekeeper to forward to the external application any LCF
messages that it receives. This gives the application an opportunity to alter any of the fields in the
confirmation.

When the external application receives a REQUEST LCF message from the Cisco IOS Gatekeeper
it must take one of the following actions:

• Confirm the information contained in the request. In this case, the external application sends a
RESPONSE LCF with an null message body.

• Alter the information contained in the request. In this case, the external application sends a
RESPONSE LCF message with the altered information in the message body. Only fields that the
external application changes can be included in the body. Unchanged fields must not be present
in the response message body.

• Reject the information contained in the LCF. In this case, the external application sends a
RESPONSE LRJ.

 Implementing an External Interface to the Cisco IOS Gatekeeper 3-9

Processing of LRJ Requests

Processing of LRJ Requests
An LRJ message is sent by a peer gatekeeper to reject the location of a destination endpoint, meaning
the endpoint does not exist in the peer gatekeeper’s zone. You can configure the Cisco IOS
Gatekeeper to forward to the external application any LRJ messages that it receives. This gives the
external application an opportunity to recommend an alternate destination.

When the external application receives a REQUEST LRJ message from the Cisco IOS Gatekeeper
it must take one of the following actions:

• Accept the LRJ. In this case, the external application sends a RESPONSE LRJ with a null
message body.

• Suggest an alternate destination. In this case, the external application sends a RESPONSE LCF
message with the altered information in the message body. Only fields that the external
application changes can be included in the body. Unchanged fields must not be present in the
response message body.

How Security Works
The GKTMP supports the use of CryptoH323Tokens for authentication. The CryptoH323Token is
defined in H.225 Version 2 and is used in a “password with hashing” security scheme as described
in section 10.3.3 of the H.235 specification.

A cryptoToken can be included in any RAS message and is used to authenticate the sender of the
message. The use of cryptoTokens allows you to use a separate database for user ID and password
verification.

CryptoTokens and Cisco Gateways
Cisco gateways support three levels of authentication:

• Registration—Tokens are generated for RRQ and URQ messages.

• Per-Call—Tokens are generated for ARQ messages.

• All—Tokens are generated for RRQ, URQ, and ARQ messages.

You can configure the level of authentication for the gateway using the Cisco IOS software command
line interface.

CryptoTokens for RRQ, URQ, and the terminating side of ARQ messages contain information about
the gateway that generated the token, including the gateway ID (which is the H.323 ID configured
on the gateway) and the gateway password. CryptoTokens for the originating side ARQ messages
contain information about the user that is placing the call, including the user ID and personal
identification number (PIN).

Therefore, if you want to use cryptoTokens for authentication, each client in your network must
include a cryptoToken in every message that it sends to the Cisco IOS Gatekeeper.

Requirements for using CryptoTokens
To participate in this authentication scheme, a GKTMP-based application must have the following:

• Access to a database of user IDs, gateway IDs and their associated passwords.

• Access to an ASN.1 encoder.

Examples of Using the GKTMP Messages

Cisco Gatekeeper External Interface Reference3-10

The application should be set up to authenticate the messages that you deem necessary. If you want
to authenticate gateways when they register, your application should validate RRQ messages. If you
want per-call authentication, your application should validate ARQ messages. Or, you can have you
application validate all messages.

Validating a CryptoToken
To validate a cryptoToken received in a RAS message, the application should:

1 Use the alias in the cryptoToken to look up the associated password.

2 Use the password, the timestamp, and the alias, to ASN.1 encode a ClearToken. The ClearToken
is a PwdCertToken. The application should maintain the password and alias as NULL-terminated
strings and include the NULL when performing the ASN.1 encoding.

3 Perform an MD5 Hash on the ASN.1 encoded buffer. This will result in a 16-byte Hash.

4 Compare the calculated Hash with the one found in the token field of the cryptoEPPwdHash.

If the hash values match, the application should issue a confirmation message (xCF) to the
gatekeeper, which is transmitted to the gateway. Otherwise, the application should send a rejection
message (xRJ) with a reject reason of securityDenial.

CryptoTokens in RAS Messages
The cryptoToken message body line contains a type identifier followed by a colon and a sequence
of space separated tag=value parameters that are associated with the particular type of cryptoToken.

For example, a message body line containing a cryptoToken could look like the following:

$=E:a=H:gw1-rtp T=940647784 h=FFABCD0067AE12436780167364847343

For more information about the parameters included in cryptoTokens, see Chapter 4, “GKTMP
Messages”.

Examples of Using the GKTMP Messages
The following examples show the GKTMP messages that would be generated in some possible uses
of the external interface.

Populating an External Application’s Registration Database
An external application might need to maintain a database of active gateways so that it can select
gateways for ARQ or LRQ resolution. In this case, triggers can be configured on the Cisco IOS
Gatekeepers such that any RRQ or URQ messages will be forwarded to the external application on
a Notification-only: basis. Example 3-1 shows an RRQ notification for a gateway. Example 3-2
shows a URQ notification for a gateway.

Example 3-1 An RRQ Notification

REQUEST RRQ
Version-id: 1
From: gk1-sj
Notification-only:
Content-Length:90

c=I:171.69.136.205:1720

 Implementing an External Interface to the Cisco IOS Gatekeeper 3-11

800 Number Lookup

r=I:171.69.136.205:16523
a=H:gw3-sj
t=voice-gateway
p=2# 99#

Example 3-2 A URQ Notification

REQUEST URQ
Version-id: 1
From: gk1-sj
Notification-only:
Content-Length:23

c=I:171.69.136.205:1720

800 Number Lookup
You might want the Cisco IOS Gatekeeper to forward ARQs to an external application to determine
the mapping for an 800 number. Example 3-3 shows an ARQ request from the Cisco IOS
Gatekeeper. Example 3-4 shows the corresponding response from the external application.

Example 3-3 The Gatekeeper’s Request

REQUEST ARQ
Version-id: 1
From: gk1-sj
Transaction-Id: 5de04245
Content-Length: 127

s=E:4085552132
d=E:8005721234
b=560
A=f
m=t
c=f81d4fae-7dec-11d0-a765-00a0c91e6bf6
C=f81d4fae-7dec-11d0-a765-00a0c91e6bf6

Example 3-4 The External Application’s Response

RESPONSE ARQ
Version-id: 1
To: gk1-sj
Transaction-Id: 5de04245
Content-Length:14

d=E:4155551212

Internet Call-Waiting
If you have an internet call-waiting (ICW) server in your network, you might want configure the
Cisco IOS Gatekeeper to forward all LRQ requests to the ICW server. Example 3-5 shows the LRQ
request from the Cisco IOS Gatekeeper.

Example 3-5 Gatekeeper’s LRQ Request

REQUEST LRQ
Version-id: 1
From: gk1-sj
Transaction-Id: 5de04246

Examples of Using the GKTMP Messages

Cisco Gatekeeper External Interface Reference3-12

Content-Length:64

s=H:gk3-la
d=E:4085551111
p=0
c=4085552222

If the ICW server determines that the destination (4085551111) is not a subscriber, it sends back a
RESPONSE LRQ with a null message body. The Cisco IOS Gatekeeper then proceeds with normal
processing. Example 3-6 shows the response.

Example 3-6 A Null Response

RESPONSE LRQ
Version-id: 1
To: gk1-sj
Transaction-Id: 5de04246

If the ICW server determines that the destination (4085551111) is a subscriber and is currently
logged on, it pings the subscriber to determine how the call should be handled. Because this can take
several seconds, the ICW server first sends a RESPONSE RIP to the Cisco IOS Gatekeeper asking
for a 60-second extension to the timeout. Example 3-7 shows the response.

Example 3-7 A RIP Response

RESPONSE RIP
Version-id: 1
To: gk1-sj
Transaction-Id: 5de04246
Content-Length:7

d=60000

If the subscriber refuses the call, the ICW server sends a rejection to the Cisco IOS Gatekeeper.
Example 3-8 shows the response.

Example 3-8 A Rejection

RESPONSE LRJ
Version-id: 1
To: gk1-sj
Transaction-Id: 5de04246
Content-Length:15

R=requestDenied

If the subscriber hangs up to accept the call, the ICW server sends a RESPONSE LRQ with a null
message body, which instructs the Cisco IOS Gatekeeper to proceed with the call. Example 3-9
shows the response.

Example 3-9 A Null Response

RESPONSE LRQ
Version-id: 1
To: gk1-sj
Transaction-Id: 5de04246

 Implementing an External Interface to the Cisco IOS Gatekeeper 3-13

How the API Works

If the subscriber chooses to route the call to voicemail (4085553333) and the ICW server knows the
IP address of the voicemail gateway (172.45.63.49), the server instructs the Cisco IOS Gatekeeper
to route the call to the voicemail system. Example 3-10 shows the response.

Example 3-10 A Response to Reroute

RESPONSE LCF
Version-id: 1
To: gk1-sj
Transaction-Id: 5de04246
Content-Length:94

d=E:4085553333
D=I:172.45.63.49:1720
r=I:172.45.63.49:13982
t=voice-gateway
X=4085551111

How the API Works
The Gatekeeper API is offered as a library that contains the API functions, which are designed to
work with GKTMP. An external application must link with the GKAPI object code and call the API
functions to communicate with the Cisco IOS Gatekeeper.

The GKAPI includes the following files:

• gk_api.o—The Gatekeeper API object code.

• gk_api.h—The Gatekeeper API interface header file, which must be included by the application.

The Gatekeeper API provides functions and structures that allow an external application to obtain
data from and return information to the Cisco IOS Gatekeeper. Using the API functions and
structures, as well as some standard functions, the external client application:

1 Establishes a connection with the Cisco IOS Gatekeeper using the GkapiSetupClient function.

2 Monitors the appropriate socket using a standard function.

3 When a connect complete is detected, the application notifies the Gatekeeper API using the
GkapiClientConnected function.

4 When a read message is detected, it allocates memory for the storage of the message using the
GetReadMsgBuffer function.

5 Stores the contents of the message in the appropriate structure using the ReadMsgBuffer
function.

Note If the message received from the Cisco IOS Gatekeeper is a RAS message that is not
supported by the API function, the msgType will be set to MSG_NOT_SUPPORTED. If a response
is required, an appropriate response will be constructed by the API function and sent to the Cisco
IOS Gatekeeper. The header information in the UNSUPPORTED_MSG_TYPE structure will be
filled in by the API function. This situation could occur if the Cisco IOS Gatekeeper has been
upgraded to support new messages but the API function has not been correspondingly upgraded.

If the message received from the Cisco IOS Gatekeeper, is not recognized by the API function, the
msgType will be set to UNKNOWN_MSG and the STATUS_TYPE will be set to
MSG_READ_ERROR. In this case, the external application should close the connection to the Cisco
IOS Gatekeeper by calling the CloseGateKeeperConnection function.

How the API Works

Cisco Gatekeeper External Interface Reference3-14

If the application has specified the use of non-blocking I/0, the GkapiSetupClient and
ReadMsgBuffer functions can return with a CONNECT_IN_PROGRESS or
INCOMPLETE_MSG_READ error. These errors indicate that either the connection setup is still in
progress or a complete GKTMP message has not been received. If either of these errors is returned,
additional socket events will indicate the further processing and completion of these requests. The
application should not call CloseGateKeeperConnection in these conditions. Instead, the application
must monitor the socket using the appropriate handles to detect the additional socket events.

6 Obtains the data from the structure and performs the processing as designed.

7 Frees the memory allocated for the read message using the FreeReadMsgBuffer function.

8 Writes the resulting data to the appropriate structure using the WriteResponseMsg function.

The external application can repeat these steps as often as necessary. If a read error is encountered
or if the external application wants to terminate the connection to the Cisco IOS Gatekeeper, the
application should use the CloseGateKeeperConnection function.

The API functions and structures are described in Chapter 5, “Gatekeeper API Functions and
Structures”.

Linking with the Gatekeeper API
As stated earlier, an external application must be linked with the GKAPI object code and call the API
functions in order to communicate with the Cisco IOS Gatekeeper. If you have an external
application that you want to make use of the Gatekeeper API and GKTMP, be sure you link you it
with the Gatekeeper API library.

The following is an example makefile for building an application using the GNU “C” compiler and
linking with the Gatekeeper API library.

gcc -g gk_api gk_application.c -lsocket -lposix4 -ogk_application

Guidelines for Using the Gatekeeper API
When you are writing an application that uses the Gatekeeper API, keep the following in mind:

• For response messages, the application must send only changed or new parameters. Any
unchanged fields must not be included in the response message body. If unchanged fields are sent
to the Cisco IOS Gatekeeper in a response message, the performance of the Cisco IOS
Gatekeeper could be severely impacted.

• For messages received from the Cisco IOS Gatekeeper, the API function removes the tag fields.
The type prefix (H:, E:, M: for alias-addresses and I: for transport-addresses) is preserved and is
stored in the appropriate structure. The application must interpret the type of address based on
the type prefix.

• For responses from the application, the application must insert the type prefix (H:, E:, M: for
alias-addresses and I: for transport-addresses). The API function will insert the appropriate tag
before constructing the response message.

• For “sequence of” parameters in messages received from the Cisco IOS Gatekeeper, the API
function removes the tag field and stores the parameter in the appropriate structure in the same
format as it was read—with the spaces included in the string.

 Implementing an External Interface to the Cisco IOS Gatekeeper 3-15

Example of Using the Gatekeeper API

• For “sequence of” parameters in responses from the application, the application must separate
the parameters with spaces. The API function will insert the appropriate tag before constructing
the response message.

• For register functions, “sequence of” parameters are not supported. However, the application can
have multiple trigger conditions. This is limited by the maximum size of the array in the
registration structures.

• The application is responsible for receiving all signals from the operating system. In order for the
API function to detect a closed connection with the Gatekeeper during a write operation (so that
the STATUS_TYPE can be set to TCP_CONNECTION_CLOSED), the application must install
a signal handler for SIGPIPE.

Example of Using the Gatekeeper API
The following examples show how the Gatekeeper API functions can be used in an external
application. These examples are meant to illustrate how the API functions can be called. They are
not examples of actual implementations of the API. Two examples are included in this section; one
in which the application is the client and one in which the application is the server.

Example 3-11 Client Example

#include "gk_api.h" /* API header file */
#include </usr/include/sys/fcntl.h>
#include </usr/include/sys/socket.h>
#include </usr/include/sys/select.h>
#include <signal.h>

#define APP_VER 1

void sig_int(int sigNo);
STATUS_TYPE BuildRRQRegisterMsg(GKAPI_SOCK_INFO_T *clientConnect);
STATUS_TYPE BuildRRQResponse(GK_READ_MSG_TYPE *ptr,
 GKAPI_SOCK_INFO_T *connectPtr);

main()
{
 GKAPI_SOCK_INFO_T clientConnect;
 STATUS_TYPE status;
 GK_READ_MSG_TYPE *readMsgPtr;
 struct timeval tval;
 int conn_handle;
 int n;
 fd_set wset, rset;
 BOOLEAN read_pending = FALSE;

 readMsgPtr=NULL;

 /* Install signal handler for SIGPIPE */
 if (signal(SIGPIPE, sig_int) == SIG_ERR) {
 printf("error registering signal \n");
 }

 /* Open Connection to GateKeeper */
 /* Fill in TCP port and IP address of GateKeeper */
 clientConnect.IPAddress = inet_addr("111.222.111.222");
 clientConnect.TCPPort=2000;

 /* Setup the connection for nonblocking I/O */
 conn_handle= GkapiSetupClient(&clientConnect, &status, TRUE) ;

Example of Using the Gatekeeper API

Cisco Gatekeeper External Interface Reference3-16

 /* Check status for errors */
 /* If status == PROCESSING_SUCCESSFUL, no errors were encountered */
 /* status == TCP_CONNECT_ERROR, error in connecting to GateKeeper */
 /* status == TCP_HANDLE_ERROR, error in handle creation */
 /* For error conditions, retry connecting to the GateKeeper */

 /* Check for following errors:
 * status = MEM_ALLOC_FAIL
 * INVALID_MSG_SPECIFIED
 * INVALID_ENDPOINT_SPECIFIED
 * INVALID_REDIRECT_REASON_SPECIFIED
 * HEADER_INFO_INCOMPLETE
 * NULL_POINTER_PASSED
 */

 /* If status is PROCESSING_SUCCESSFUL or CONNECT_IN_PROGRESS,
 wait for connect and read event */
 if (status == CONNECT_IN_PROGRESS) {
 FD_ZERO(&rset);
 FD_SET(conn_handle, &rset);
 wset = rset;
 tval.tv_sec = 1;
 tval.tv_usec = 0;
 if ((n = select(conn_handle + 1, &rset, &wset, NULL,
 &tval)) == 0) {
 printf("\nApplication connect timed out");
 CloseGateKeeperConnection(&clientConnect);
 exit(1);
 }

 if (FD_ISSET(conn_handle, &rset) ||
 FD_ISSET(conn_handle, &wset)) {
 status = PROCESSING_SUCCESSFUL;
 } else {
 printf("\nSelect error");
 CloseGateKeeperConnection(&clientConnect);
 exit(1);
 }
 }

 /* If a connect event has occurred tell GKAPI so */
 conn_handle = GkapiClientConnected(&clientConnect, &status, conn_handle) ;

 /* If conn_handle is valid and */
 /* If status is PROCESSING_SUCCESSFUL, register triggers if required */
 /* Build an RRQ Register message */
 status = BuildRRQRegisterMsg(&clientConnect);
 /* Check status for errors */
 /* If status == PROCESSING_SUCCESSFUL, no errors were encountered */
 if ((status == TCP_WRITE_ERROR) || /* TCP error encountered */
 (status == TCP_CONNECTION_CLOSED)) { /* TCP connection closed */
 /* Close connection to GateKeeper and free system resources */
 CloseGateKeeperConnection(&clientConnect) ;
 }

 for(;;) {
 FD_ZERO(&rset);
 FD_SET(conn_handle, &rset);
 select(conn_handle + 1, &rset, NULL, NULL, NULL);
 printf("Select event occurred \n");
 if (FD_ISSET(conn_handle, &rset)) {

 /* If a read event has occurred:

 Implementing an External Interface to the Cisco IOS Gatekeeper 3-17

Example of Using the Gatekeeper API

 * Allocate a read buffer
 * Call ReadMsgBuffer
 * Process Message
 * Build Response if required
 */
 if (!read_pending)
 readMsgPtr= GetReadMsgBuffer() ;

 /* Check if readMsgPtr is NULL, if NULL, memory allocation failed. */
 /* if readMsgPtr != NULL, continue */
 read_pending = FALSE;
 status= ReadMsgBuffer(&clientConnect, readMsgPtr) ;

 /* Check status for errors */
 /* If status == PROCESSING_SUCCESSFUL, no errors were encountered */
 if ((status == TCP_READ_ERROR) || /* TCP error encountered */
 (status == TCP_CONNECTION_CLOSED) || /* TCP connection closed */
 (status == MSG_READ_ERROR)) { /* Message not understood */
 /* Free the read buffer
 Close connection to GateKeeper and free system resources
 */
 FreeReadMsgBuffer(readMsgPtr) ;
 CloseGateKeeperConnection(&clientConnect) ;
 /* Reopen connection to GateKeeper */
 }

 /* Check for other error conditions:
 * status==MEM_ALLOC_FAIL
 * status==NULL_POINTER_PASSED
 */
 FreeReadMsgBuffer(readMsgPtr) ;

 /* status==INCOMPLETE_MSG_READ */
 /* Call ReadMsgBuffer on the next read event */
 if (status == INCOMPLETE_MSG_READ)
 read_pending = TRUE;

 /* status == PROCESSING_SUCCESSFUL */
 /* Extract message received */
 switch(readMsgPtr->msgType) {
 case RRQ_REQUEST_MSG:
 status=BuildRRQResponse(readMsgPtr, &clientConnect);
 /* Check status for errors.
 * If TCP_WRITE_ERROR or TCP_CONNECTION_CLOSED
 * call CloseGateKeeperConnection(&clientConnect)
 * Reopen connection to GateKeeper.
 * Check for other errors.
 */
 FreeReadMsgBuffer(readMsgPtr) ;
 break;

 case ARQ_REQUEST_MSG:
 /* Do processing */
 FreeReadMsgBuffer(readMsgPtr) ;
 break;

 case MSG_NOT_SUPPORTED:
 FreeReadMsgBuffer(readMsgPtr) ;
 break;

 default:
 FreeReadMsgBuffer(readMsgPtr) ;
 break;

Example of Using the Gatekeeper API

Cisco Gatekeeper External Interface Reference3-18

 }
 }
 }
}

STATUS_TYPE BuildRRQResponse(GK_READ_MSG_TYPE *ptr,
 GKAPI_SOCK_INFO_T *connectPtr)
{
 GK_WRITE_MSG_TYPE *writePtr;
 HEADER_INFO_TYPE *headerPtr;
 char buffer1[100];
 char buffer2[100];
 STATUS_TYPE status;

 headerPtr=&ptr->MESSAGE_TYPE.rrqReqMsg.headerInfo;
 /* allocate memory for writePtr, writePtr=malloc(...) */
 /* Fill in msgType and header information */
 writePtr->msgType=RRQ_RESPONSE_MSG;

 writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.headerInfo.versionId = APP_VER;
 strcpy(writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.headerInfo.from,
 headerPtr->to);
 strcpy(writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.headerInfo.to,
 headerPtr->from);
 strcpy(writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.headerInfo.
 transactionID, headerPtr->transactionID);

 /* Fill in paramters */
 strcpy(buffer1, "M:joe_smith");
 strcpy(buffer2, "1800");
 writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.terminalAlias=buffer1;
 writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.supportedPrefix=buffer2;

 /* Send message to GateKeeper */
 status= WriteResponseMsg(connectPtr, writePtr) ;
 /* If memory was allocated for writePtr, free(writePtr) */
 return(status);
}

STATUS_TYPE BuildRRQRegisterMsg(GKAPI_SOCK_INFO_T *clientConnect)
{
 GK_REGISTER_MSG_TYPE *regPtr;
 STATUS_TYPE status;
 int i=0;
 char buffer1[20];

 /* Allocate memory for regPtr, regPtr=malloc(...) */
 /* After allocating memory:
 * Fill in header info and
 * message parameters if needed
 */

 /* Fill in message type */
 regPtr->msgType = RRQ_REGISTER_MSG;

 /* Fill in header info */
 regPtr->
 REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.versionId =
 APP_VER;
 strcpy(regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.from,
 "APPL 1");
 strcpy(regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.to,
 "GK 1");

 Implementing an External Interface to the Cisco IOS Gatekeeper 3-19

Example of Using the Gatekeeper API

 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.notificationOnly
 =FALSE;
 /* Set priority */
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.priority=1;

 /* Specify filters for RRQ message */
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.terminalType[0] =
 VOICEGATEWAY;
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.terminalType[1] = MCU;

 for (i=2; i<MAX_NUM_ENDPOINT_TYPES; i++) {
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.terminalType[i] =
 ENDPOINT_INFO_NOT_RCVD;
 }

 strcpy(buffer1, "1#");
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.supportedPrefix[0]=buffer1;
 for (i=1; i< MAX_NUM_SUPPORTED_PREFIX; i++) {
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.supportedPrefix[i] = NULL;
 }
 /* Now gatekeeper will only send an RRQ message to the application
 * if filter conditions are satisfied.
 */
 status= WriteRegisterMessage(clientConnect, regPtr) ;
 /* If memory was allocated for regPtr, free(regPtr) */
 return(status);
}

STATUS_TYPE BuildRRQUnRegisterMsg(GKAPI_SOCK_INFO_T *clientConnect)
{
 GK_UNREGISTER_MSG_TYPE unRegMsg;
 STATUS_TYPE status;

 unRegMsg.versionId = APP_VER;
 strcpy(unRegMsg.from, "APPL 1");
 strcpy(unRegMsg.to, "GK 1");
 unRegMsg.unregisterMsg = RRQ_REGISTER_MSG;
 /* Set priority */
 unRegMsg.priority=1;

 status= WriteUnregisterMessage(clientConnect, &unRegMsg) ;
 return(status);
}

void sig_int(int sigNo)
{
 switch (sigNo) {
 case SIGPIPE:
 printf("SIGPIPE received\n");
 break;

 /* case ... */
 default:
 }
}

Example 3-12 Server Example

#include "gk_api.h" /* API header file */
#include </usr/include/sys/socket.h>
#include </usr/include/sys/select.h>
#include </usr/include/netinet/in.h>
#include </usr/include/sys/errno.h>
#include <signal.h>

Example of Using the Gatekeeper API

Cisco Gatekeeper External Interface Reference3-20

typedef struct client_db_t_ {
 int handle;
 GK_READ_MSG_TYPE *buf;
 GKAPI_SOCK_INFO_T *conn_info;
} client_db_t;

#define MAX_CLIENTS 1024
#define APP_VER 1

void sig_int(int sigNo);
STATUS_TYPE BuildRRQRegisterMsg(GKAPI_SOCK_INFO_T *clientConnect);
STATUS_TYPE BuildRRQResponse(GK_READ_MSG_TYPE *ptr,
 GKAPI_SOCK_INFO_T *connectPtr);

main()
{
 GKAPI_SOCK_INFO_T ServerInfo;
 GKAPI_TCP_ADDR_INFO_T client_addr;
 STATUS_TYPE status;
 GK_READ_MSG_TYPE *readMsgPtr;
 GKAPI_SOCK_INFO_T *connInfo;
 client_db_t client[MAX_CLIENTS+1];
 int conn_handle, serverHandle, max_fd;
 int i, n;
 fd_set rset;
 BOOLEAN read_pending = FALSE;

 readMsgPtr=NULL;

 for (i=0; i<=MAX_CLIENTS; i++) {
 client[i].handle=0;
 client[i].buf=0;
 client[i].conn_info=0;
 }

 /* Install signal handler for SIGPIPE */
 if (signal(SIGPIPE, sig_int) == SIG_ERR) {
 printf("error registering signal \n");
 }

 /* Open Connection to GateKeeper */
 /* Fill in TCP port and IP address of Application */
 ServerInfo.IPAddress = inet_addr("111.222.111.222");
 ServerInfo.TCPPort=2000;

 /* Setup the connection for nonblocking I/O */
 serverHandle= GkapiSetupServer(&ServerInfo, &status, TRUE) ;

 /* Check status for errors */
 /* If the serverHandle < 0, there was an error. Check status for
 /* for the error code.
 /* If status == TCP_CONNECT_ERROR, error in connecting to GateKeeper */
 /* status == TCP_BIND_ERROR, error in connecting to Gatekeeper */
 /* status == TCP_LISTEN_ERROR, error in connecting to Gatekeeper */
 /* status == TCP_NONBLOCK_ERROR, error setting up for */
 /* nonblocking connection */
 /* status == TCP_HANDLE_ERROR, error in handle creation */
 /* For error conditions, quit */
 if (serverHandle < 0)
 exit(1);

 /* Set up select mask with the server’s handle to listen for
 * incoming connections.
 */

 Implementing an External Interface to the Cisco IOS Gatekeeper 3-21

Example of Using the Gatekeeper API

 max_fd = serverHandle;

 FD_ZERO(&rset);
 FD_SET(serverHandle, &rset);

 for (; ;) {
 /* If status is PROCESSING_SUCCESSFUL wait for incoming connections
 * and read events */
 n = select(max_fd + 1, &rset, NULL, NULL, NULL);

 /* If the select event has occurred on the server handle,
 * it is a new incoming connection.
 */
 if (FD_ISSET(serverHandle, &rset)) {
 connInfo = (GKAPI_SOCK_INFO_T *)malloc(sizeof(GKAPI_SOCK_INFO_T));
 connInfo->TCPPort = ServerInfo.TCPPort;
 connInfo->IPAddress = ServerInfo.IPAddress;
 conn_handle = GkapiAcceptConnection(connInfo, &status,
 serverHandle, &client_addr);
 /* If conn_handle < 0, there is an error. Ignore and continue to
 * to process other select events.
 * If conn_handle is valid, add new connection
 * to select read list
 */
 FD_SET(conn_handle, &rset);

 /* Setup the max file descriptor we need to select on */
 if (conn_handle > max_fd)
 max_fd = conn_handle;

 /* Add this new connection to list of active connections */
 for (i=0; i<MAX_CLIENTS; i++) {
 if (client[i].handle == 0) {
 client[i].handle = conn_handle;
 client[i].buf = 0;
 client[i].conn_info = connInfo;
 }
 }

 /* The application set GK triggers for this connection at
 * this point.
 */
 }

 /*
 * Check to see if the select event is a read occurring
 * on one of the existing connections. If so, have GKAPI process the
 * received buffer.
 */
 for (i=0; n>0,i<=MAX_CLIENTS; i++,n--) {
 if (client[i].handle <= 0)
 continue;

 if (FD_ISSET(client[i].handle, &rset)) {
 if (client[i].buf == 0) {
 readMsgPtr=GetReadMsgBuffer();
 } else {
 readMsgPtr=client[i].buf;
 }

 /* If a read event has occurred:
 * Allocate a read buffer if it isn’t a pending read.
 * Call ReadMsgBuffer
 * Process Message

Example of Using the Gatekeeper API

Cisco Gatekeeper External Interface Reference3-22

 * Build Response if required
 */
 if(readMsgPtr != NULL) {
 status= ReadMsgBuffer(client[i].conn_info, readMsgPtr);

 /* Check if readMsgPtr is NULL, if NULL,
 * memory allocation failed.
 */
 /* if readMsgPtr != NULL, continue */
 if(status == PROCESSING_SUCCESSFUL) {
 client[i].buf = 0;
 /* Process the Message */
 /* Extract message received */
 switch(readMsgPtr->msgType) {
 case RRQ_REQUEST_MSG:
 status=BuildRRQResponse(readMsgPtr, &ServerInfo);
 /* Check status for errors.
 * If TCP_WRITE_ERROR or TCP_CONNECTION_CLOSED
 * call CloseGateKeeperConnection(&ServerInfo)
 * Reopen connection to GateKeeper.
 * Check for other errors.
 */
 FreeReadMsgBuffer(readMsgPtr);
 break;

 case ARQ_REQUEST_MSG:
 /* Do processing */
 FreeReadMsgBuffer(readMsgPtr);
 break;

 case MSG_NOT_SUPPORTED:
 FreeReadMsgBuffer(readMsgPtr);
 break;

 default:
 FreeReadMsgBuffer(readMsgPtr);
 break;
 }

 } /* End of status == PROCESSING_SUCCESSFUL */

 /* Check status for errors */

 if ((status == TCP_READ_ERROR) || /* TCP error encountered */
 (status == TCP_CONNECTION_CLOSED) || /*connection closed*/
 (status == MSG_READ_ERROR)) { /* Message not understood */
 /* Free the read buffer
 * Close connection to GateKeeper and
 * free system resources
 */
 FreeReadMsgBuffer(readMsgPtr);
 CloseGateKeeperConnection(client[i].conn_info);
 /* Reopen connection to GateKeeper */
 }

 /* Check for other error conditions:
 * status==MEM_ALLOC_FAIL
 * status==NULL_POINTER_PASSED
 */
 FreeReadMsgBuffer(readMsgPtr);

 /* status==INCOMPLETE_MSG_READ */
 /* Call ReadMsgBuffer on the next read event */
 if (status == INCOMPLETE_MSG_READ)
 client[i].buf = readMsgPtr;

 Implementing an External Interface to the Cisco IOS Gatekeeper 3-23

Example of Using the Gatekeeper API

 }
 }
 }
 }
}

STATUS_TYPE BuildRRQResponse(GK_READ_MSG_TYPE *ptr,
 GKAPI_SOCK_INFO_T *connectPtr)
{
 GK_WRITE_MSG_TYPE *writePtr;
 HEADER_INFO_TYPE *headerPtr;
 char buffer1[100];
 char buffer2[100];
 STATUS_TYPE status;

 headerPtr=&ptr->MESSAGE_TYPE.rrqReqMsg.headerInfo;
 /* allocate memory for writePtr, writePtr=malloc(...) */
 /* Fill in msgType and header information */
 writePtr->msgType=RRQ_RESPONSE_MSG;

 writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.headerInfo.versionId = APP_VER;
 strcpy(writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.headerInfo.from,
 headerPtr->to);
 strcpy(writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.headerInfo.to,
 headerPtr->from);
 strcpy(writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.headerInfo.
 transactionID, headerPtr->transactionID);

 /* Fill in parameters */
 strcpy(buffer1, "M:joe_smith");
 strcpy(buffer2, "1800");
 writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.terminalAlias=buffer1;
 writePtr->WRITE_MESSAGE_TYPE.rrqRespMsg.supportedPrefix=buffer2;

 /* Send message to GateKeeper */
 status= WriteResponseMsg(connectPtr, writePtr);
 /* If memory was allocated for writePtr, free(writePtr) */
 return(status);
}

STATUS_TYPE BuildRRQRegisterMsg(GKAPI_SOCK_INFO_T *ServerInfo)
{
 GK_REGISTER_MSG_TYPE *regPtr;
 STATUS_TYPE status;
 int i=0;
 char buffer1[20];

 /* Allocate memory for regPtr, regPtr=malloc(...) */
 /* After allocating memory:
 * Fill in header info and
 * message parameters if needed
 */

 /* Fill in message type */
 regPtr->msgType = RRQ_REGISTER_MSG;

 /* Fill in header info */
 regPtr->
 REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.versionId =
 APP_VER;
 strcpy(regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.from,
 "APPL 1");

Example of Using the Gatekeeper API

Cisco Gatekeeper External Interface Reference3-24

 strcpy(regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.to,
 "GK 1");
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.notificationOnly
 =FALSE;
 /* Set priority */
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.headerInfo.priority=1;

 /* Specify filters for RRQ message */
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.terminalType[0] =
 VOICEGATEWAY;
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.terminalType[1] = MCU;

 for (i=2; i<MAX_NUM_ENDPOINT_TYPES; i++) {
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.terminalType[i] =
 ENDPOINT_INFO_NOT_RCVD;
 }

 strcpy(buffer1, "1#");
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.supportedPrefix[0]=buffer1;
 for (i=1; i< MAX_NUM_SUPPORTED_PREFIX; i++) {
 regPtr->REGISTRATION_MESSAGE_TYPE.rrqRegMsg.supportedPrefix[i] = NULL;
 }
 /* Now gatekeeper will only send an RRQ message to the application
 * if filter conditions are satisfied.
 */
 status= WriteRegisterMessage(ServerInfo, regPtr);
 /* If memory was allocated for regPtr, free(regPtr) */
 return(status);
}

STATUS_TYPE BuildRRQUnRegisterMsg(GKAPI_SOCK_INFO_T *ServerInfo)
{
 GK_UNREGISTER_MSG_TYPE unRegMsg;
 STATUS_TYPE status;

 unRegMsg.versionId = APP_VER;
 strcpy(unRegMsg.from, "APPL 1");
 strcpy(unRegMsg.to, "GK 1");
 unRegMsg.unregisterMsg = RRQ_REGISTER_MSG;
 /* Set priority */
 unRegMsg.priority=1;

 status= WriteUnregisterMessage(ServerInfo, &unRegMsg);
 return(status);
}

void sig_int(int sigNo)
{
 switch (sigNo) {
 case SIGPIPE:
 printf("SIGPIPE received\n");
 break;

 /* case ... */
 default:
 }
}

C H A P T E R

 GKTMP Messages 4-1

4

GKTMP Messages

The GKTMP messages are used for communication between the Cisco IOS Gatekeeper and the
external application. There are two types of GKTMP messages:

• GKTMP RAS Messages—Used to exchange the contents RAS messages between the Cisco IOS
Gatekeeper and the external application.

• Trigger Registration Messages—Used to by the external application to indicate to the Cisco IOS
Gatekeeper which RAS message should be forwarded.

GKTMP RAS Messages
The general format of all GKTMP RAS messages is as follows:

• A single message line.

• One or more message header lines.

• A blank line, which separates the message header from the message body.

• Zero or more message body lines.

Message Line
Each GKTMP RAS message is either a request or a response. Requests are generated by the Cisco
IOS Gatekeeper and responses are generated by the external application.

The first line of each GKTMP RAS message sent by the Cisco IOS Gatekeeper uses the format:

REQUEST RAS_message_type

The first line of each GKTMP RAS message sent by the external application uses the format:

RESPONSE RAS_message_type

Possible RAS message types are as follows:

• RRQ—Registration request

• RCF—Registration confirm

• RRJ—Registration reject

• URQ—Unregistration request

• ARQ—Admission request

• ACF—Admission confirm

GKTMP RAS Messages

Cisco Gatekeeper External Interface Reference4-2

• ARJ—Admission reject

• LRQ—Location request

• LCF—Location confirm

• LRJ—Location reject

• RIP—Request in progress

Note The Cisco IOS Gatekeeper will not generate GKTMP Request RRQ messages for lightweight
RRQ messages, which are used by H.323 endpoints as a keep-alive mechanism to refresh existing
registrations.

Message Header
The message line is immediately followed by the message header. Each message header contains a
field name and a value, separated by a colon (field:value). Possible fields are:

The message header is followed immediately by a blank line.

Message Body
The message body follows the blank line. Each line in the message body contains a tag and a value,
separated by an equal sign (tag=value). The tags are case-sensitive and denote an RAS message field.
The possible tags depend on the GKTMP RAS message.

In some cases, depending on the field type, the value is preceded a value-type identifier followed by
a colon (tag=type:value).

Field Names Field Values

Version-ID Version of the GKTMP. For the first release of the GKTMP, the value is 1.

From String that identifies the originator of the message. For requests from the Cisco IOS
Gatekeeper, this field contains the gatekeeper ID. For responses from the external application,
this field contains the server ID.

To String that identifies the receiver of the message. For requests from the Cisco IOS Gatekeeper,
this field contains the server ID. For responses from the external application, this field contains
the ID of the gatekeeper that initiated the request.

Content-length Number of octets contained in the message body. If the message body is null, this field can be
omitted.

Transaction-ID String that identifies the transaction. If this field is present in the request from the Cisco IOS
Gatekeeper, it must be echoed in the response from the external application.

Notification Only None. No value is included after the colon. If this field name is present, it indicates to the
external application no response should be sent. Request URQ must contain this field. Also,
Response RRQ contains this field when that message is used to populate the external
application’s registration database.

 GKTMP Messages 4-3

GKTMP RAS Messages

Possible field types are as follows:

• Alias-Address—This type of field can contain a series of addresses separated by spaces. Each is
preceded by a value-type identifier that indicates the type of address. H indicates that the address
is an H.323 ID; E indicates that the address is an E.164 address; M indicates that the address is
an email ID.

• Transport-Address—This type of field contains an address. Currently, only one value-type
identifier is possible for this field type. That is I, which indicates that the address is an IP version
4 address. The address is specified in dotted-decimal notation and can be followed by a colon and
a port number.

• Endpoint-Type—This type of field indicates the type of endpoint. Possible values are:
gatekeeper, terminal, mcu, proxy, voice-gateway, h320-gateway, and other-gateway.

• Supported-Prefix—This type of field indicates a supported technology prefix. Possible values are
the digits 0 through 9 and the pound sign (#).

• Globally-Unique-Identifier—This type of field contains the 16-octet conference ID or call ID
that uniquely identifies the call or conference. The IDs are specified in hexadecimal format.

• Bandwidth—This type of field contains an unsigned integer from 0 through 4294967295 that
indicates the bandwidth in 100 bits per second.

• Boolean—This type of field contains a single character. T or t for true; F or f for false.

• IA5String—This type of field contains characters from the International Alphabet 5 (IA5), which
is a character set defined by the ITU X.400 Message Handling System specification.

• cryptoToken—This type of field contains one of the cryptoToken types defined for the
CryptoH323Token field specified in H.225. Currently, the only type of cryptoToken supported is
the cryptoEPPwdHash.

• HASHED-EncodedPwdCertToken—This type of field contains a 16 octet IA5String. It
represents the RAS Message Digest 5 (MD5) hashed encoded PwdCertToken.

• TimeStamp—This type of field field contains a 32-bit integer that represents Coordinated
Universal Time (UTC) time.

• OBJECT-IDENTIFIER—This type of field contains a sequence of non-negative integer values
separated by dots, which is used to uniquely identify an object.

• AlternateGK—This type of field contains a set of fields enclosed in braces “{ }”. Each field is
identified by a tag and separated from the other fields by SP (ASCII space, 0x20) characters.
This field can contain more than one set of fields, each enclosed by braces.

• AlternateEndpoint—This type of field contains a set of fields enclosed in braces. Each field is
identified by a tag and separated from the other fields by SP (ASCII space, 0x20) characters. A
message body line containing an AlternateEndpoint field must pertain to a single endpoint.
Multiple call signal addresses and tokens that pertain to the same endpoint may be provided in a
single message body line. If there are multiple AlternateEndpoints, each pertaining to a different
H.323 endpoint, the information about the alternate endpoints must be provided in separate
message body lines.

• clearToken—This type of field contains a set of fields enclosed in braces. Each field is identified
by a tag and separated from the other fields by SP (ASCII space, 0x20) characters. The fields
within the braces pertain to a single instance of a RAS ClearToken structure. However, the
message line of a clearToken field may contain multiple instances, each enclosed in braces and
separated by a space character. The clearToken field can be imbedded within an
AlternateEndpoint field.

GKTMP RAS Messages

Cisco Gatekeeper External Interface Reference4-4

This section describes the possible fields for each message. When the external application sends a
response, it includes only the fields that it has altered. Unaltered fields must not be included.

Registration Messages
Registration messages are used to control which H.323 endpoints are in the gatekeeper’s zone.

There are four types of registration messages.

• Request RRQ

• Response RRQ

• Response RCF

• Response RRJ

Request RRQ
This message is sent from the Cisco IOS Gatekeeper to the external application when an H.323
endpoint wants to join the zone. This message can be used to populate the external application’s
registration database. In this case, the request is sent as a notification only and no response is
expected from the external application.

For Request RRQ, the possible tags are:

If the message contains a cryptoToken field with a value of cryptoEPPwdHash, the following
additional fields are included:

If the message contains a clearToken field, the following additional fields are included:

Tag Field Type
Required or
Optional Corresponding RAS Message Field

c Transport-Address Required RRQ:callSignalAddress

r Transport-Address Required RRQ:rasAddress

a Alias-Address Optional RRQ:terminalAlias

t Endpoint-Type Required RRQ:terminalType

P Supported-Prefix Optional RRQ:terminalType:gateway:protocol:*:supportedPrefixes

$ cryptoToken Optional RRQ:cyptoTokens

T clearToken Optional RRQ:tokens

Tag Field Type
Required or
Optional Corresponding RAS Message Field

a Alias-Address Required CryptoH323Token:cryptoEPPwdHash:alias

t TimeStamp Required CryptoH323Token:cryptoEPPwdHash:timestamp

h HashedToken Required CryptoH323Token:cryptoEPPwdHash:token

Tag Field Type
Required or
Optional Corresponding RAS Message Field

O OBJECT-IDENTIFIER Required tokens:objectIdentifier

p IA5string Optional tokens:password

 GKTMP Messages 4-5

Registration Messages

Response RRQ
This message is sent from the external application to the Cisco IOS Gatekeeper in response to a
Request RRQ message. If the external application has no interest in the Request RRQ message, it
returns a Response RRQ with a null body. Otherwise, it modifies the fields as appropriate and sends
the response with the updated information to the Cisco IOS Gatekeeper for further processing.

For Response RRQ, the possible tags are:

Response RCF
This message is sent to the Cisco IOS Gatekeeper from the external application in response to a
Request RRQ. It indicates that the external application has completed the processing of the request.

For Response RCF, the possible tags are:

If the message contains an AlternateGK field, the following additional fields are included:

t integer Optional tokens:timestamp

s IA5string Optional tokens:challengeString

r integer Optional tokens:random

G IA5string Optional tokens:generalID

o OBJECT-IDENTIFIER Optional tokens:nonStandard:objectIdentifier

d IA5string Optional tokens:nonStandard:data

Tag Field Type
Required or
Optional Corresponding RAS Message Field

a Alias-Address Optional RRQ:terminalAlias

p Supported-Prefix Optional RRQ:terminalType:gateway:protocol:*:supportedPrefixes

Tag Field Type
Required or
Optional Corresponding RAS Message Field

a Alias-Address Optional RRQ:terminalAlias

p Supported-Prefix Optional RRQ:terminalType:gateway:protocol:*:supportedPrefixes

g AlternateGK Optional RCF:alternateGatekeeper

Tag Field Type
Required or
Optional Corresponding RAS Message Field

r Transport-Address Required AlternateGK:rasAddress

g Alias-Address Optional AlternateGK:gatekeeperIdentifier

n Boolean Required AlternateGK:needToRegister

p integer Required AlternateGK:priority

Tag Field Type
Required or
Optional Corresponding RAS Message Field

GKTMP RAS Messages

Cisco Gatekeeper External Interface Reference4-6

Response RRJ
This message is sent to the Cisco IOS Gatekeeper from the external application in response to a
Request RRQ. It indicates that the Cisco IOS Gatekeeper should reject the request for the specified
reason.

For Response RRJ, the possible tags are:

Possible values for the rejectReason are:

• undefinedReason

• securityDenial

• resourceUnavailable

Unregistration Message
Unregistration messages are used to remove an H.323 endpoint from a gatekeeper’s zone.

There is one type of unregistration message; Request URQ.

Request URQ
This message is sent from the Cisco IOS Gatekeeper to the external application when the H.323
endpoint wants to leave the zone or when its registration expires. This request is sent as a notification
only. No response is generated by the external application.

For Request URQ, the possible tags are:

Admission Messages
Admission messages are used to control which H.323 endpoints can participate in calls.

There are four types of admission messages.

• Request ARQ

• Response ARQ

• Response ACF

• Response ARJ

Tag Field Type
Required or
Optional Corresponding RAS Message Field

R RRJ-Reason Required RRJ:rejectReason

Tag Field Type
Required or
Optional Corresponding RAS Message Field

c Transport-Address Required URQ:callSignalAddress

 GKTMP Messages 4-7

Admission Messages

Request ARQ
This message is sent from the Cisco IOS Gatekeeper to the external application when an H.323
endpoint wants to initiate a call.

For Request ARQ, the possible tags are:

1 Possible values for the redirectReason are:

— 0—Unknown

— 1—Call forwarding busy or called DTE busy

— 2—Call forwarded, no reply

— 4—Call deflection

— 9—Called DTE out of order

— 10—Call forwarding by the called DTE

— 15—Call forwarding unconditional or systematic call redirection

2 CallingPartyNumOctet3a is from the Q.931 Setup octet 3a of calling party number.

3 When an H.323 endpoint sends an ARQ to the Cisco IOS Gatekeeper, it includes its
endpointIdentifier. Because this value is local and has meaning to the Cisco IOS Gatekeeper only
and not to the external application, the Cisco IOS Gatekeeper substitutes a more meaningful
value of CallSignalAddress in its Request ARQ messages.

Tag Field Type
Required or
Optional Corresponding RAS Message Field

s Alias-Address Required ARQ:srcInfo

S Transport-Address Optional ARQ:srcCallSignalAddress

d Alias-Address Optional ARQ:destinationInfo

D Transport-Address Optional ARQ:destCallSignalAddress

x Alias-Address Optional ARQ:destExtraCallInfo

b Bandwidth Required ARQ:bandWidth

A Boolean Required ARQ:answerCall

c GUID Optional ARQ:callIdentifier

C GUID Required ARQ:conferenceID

m Boolean Optional ARQ:canMapAlias

e IA5String Optional ARQ:nonStandardData:redirectNumber

E integer Optional ARQ:nonStandardData:redirectReason1

p integer Optional ARQ:nonStandardData:callingPartyNumOctet3a2

w IA5string Optional ARQ:nonStandardData:displayIE

i TransportAddress Required arqing-endpoint identifier3

$ cryptoToken Optional ARQ:cyptoTokens

T clearToken Optional ARQ:tokens

GKTMP RAS Messages

Cisco Gatekeeper External Interface Reference4-8

If the message contains a cryptoToken field with a value of cryptoEPPwdHash, the following
additional fields are included:

If the message contains a clearToken field, the following additional fields are included:

Response ARQ
This message is sent from the external application to the Cisco IOS Gatekeeper in response to a
Request ARQ message. If the external application has no interest in the Request ARQ message, it
returns a Response ARQ with a null body. Otherwise, it modifies the fields as appropriate and sends
the response with the updated information to the Cisco IOS Gatekeeper for further processing.

 For Response ARQ, the possible tags are:

The external application has the option of reducing the bandwidth.

Response ACF
This message is sent to the Cisco IOS Gatekeeper from the external application in response to a
Request ARQ. It indicates that the external application has completed the processing of the request.

Tag Field Type
Required or
Optional Corresponding RAS Message Field

a Alias-Address Required CryptoH323Token:cryptoEPPwdHash:alias

t TimeStamp Required CryptoH323Token:cryptoEPPwdHash:timestamp

h HashedToken Required CryptoH323Token:cryptoEPPwdHash:token

Tag Field Type
Required or
Optional Corresponding RAS Message Field

O OBJECT-IDENTIFIER Required tokens:objectIdentifier

p IA5string Optional tokens:password

t integer Optional tokens:timestamp

s IA5string Optional tokens:challengeString

r integer Optional tokens:random

G IA5string Optional tokens:generalID

o OBJECT-IDENTIFIER Optional tokens:nonStandard:objectIdentifier

d IA5string Optional tokens:nonStandard:data

Tag Field Type
Required or
Optional Corresponding RAS Message Field

d Alias-Address Optional ARQ:destinationInfo

D Transport-Address Optional ARQ:destCallSignalAddress

x Alias-Address Optional ARQ:destExtraCallInfo

b Bandwidth Optional ARQ:bandWidth

e IA5String Optional ARQ:nonStandardData:redirectNumber

E integer Optional ARQ:nonStandardData:redirectReason

w IA5string Optional ARQ:nonStandardData:displayIE

 GKTMP Messages 4-9

Admission Messages

For Response ACF, the possible tags are:

If the message contains an AlternateEndpoint field, the following additional fields are included:

If the AlternateEndpoint field contains a clearToken field, the following additional fields are
included:

Response ARJ
This message is sent to the Cisco IOS Gatekeeper from the external application in response to a
Request ARQ. It indicates that the Cisco IOS Gatekeeper should reject the request for the specified
reason.

For Response ARJ, the possible tags are:

Notes
Possible values for rejectReason are:

Tag Field Type
Required or
Optional Corresponding RAS Message Field

d Alias-Address Optional ACF:destinationInfo

D Transport-Address Required ACF:destCallSignalAddress

x Alias-Address Optional ACF:destExtraCallInfo

X Alias-Address Optional ACF:remoteExtensionAddress

b Bandwidth Optional ARQ:bandWidth

t Endpoint-type Optional ACF:destinationType

A AlternateEndpoint Optional ACF:alternateEndpoints

Tag Field Type
Required or
Optional Corresponding RAS Message Field

c Transport-Address Required alternateEndpoints:callSignalAddress

T clearToken Optional alternateEndpoints:tokens

Tag Field Type
Required or
Optional Corresponding RAS Message Field

O OBJECT-IDENTIFIER Required tokens:objectIdentifier

p IA5string Optional tokens:password

t integer Optional tokens:timestamp

s IA5string Optional tokens:challengeString

r integer Optional tokens:random

G IA5string Optional tokens:generalID

o OBJECT-IDENTIFIER Optional tokens:nonStandard:objectIdentifier

d IA5string Optional tokens:nonStandard:data

Tag Field Type
Required or
Optional Corresponding RAS Message Field

R ARJ-Reason Required ARJ:rejectReason

GKTMP RAS Messages

Cisco Gatekeeper External Interface Reference4-10

• calledPartyNotRegistered

• invalidPermission

• requestDenied

• undefinedReason

• resourceUnavailable

• securityDenial

Location Messages
Location messages are used by gatekeepers to communicate with one another to process interzone
calls.

There are six types of location messages.

• Request LRQ

• Response LRQ

• Response LCF

• Request LCF

• Response LRJ

• Request LRJ

Request LRQ
This message is sent from the Cisco IOS Gatekeeper to the external application when the Cisco IOS
Gatekeeper has received an interzone location request.

For Request LRQ, the possible tags are:

1 Possible values for the redirectReason are:

— 0—Unknown

— 1—Call forwarding busy or called DTE busy

— 2—Call forwarded, no reply

— 4—Call deflection

— 9—Called DTE out of order

Tag Field Type
Required or
Optional Corresponding RAS Message Field

s Alias-Address Optional LRQ:srcInfo

d Alias-Address Required LRQ:destinationInfo

e IA5String Optional LRQ:nonStandardData:redirectNumber

E integer Optional LRQ:nonStandardData:redirectReason1

p integer Optional LRQ:nonStandardData:callingPartyNumOctet3a2

w IA5String Optional LRQ:nonStandardData:displayIE

c IA5String Optional LRQ:nonStandardData:callingPartyNum

 GKTMP Messages 4-11

Location Messages

— 10—Call forwarding by the called DTE

— 15—Call forwarding unconditional or systematic call redirection

2 CallingPartyNumOctet3a is from the Q.931 Setup octet 3a of calling party number.

Response LRQ
This message is sent from the external application to the Cisco IOS Gatekeeper in response to a
Request LRQ message. If the external application has no interest in the Request LRQ message, it
returns a Response LRQ with a null body. Otherwise, it modifies the fields as appropriate and sends
the response with the updated information to the Cisco IOS Gatekeeper for further processing.

For Response LRQ, the possible tags are:

Request LCF
This message is sent from the Cisco IOS Gatekeeper to the external application when the Cisco IOS
Gatekeeper has received an LCF from remote Cisco IOS Gatekeeper. This gives the external
application an opportunity to accept (Response LCF), modify (Response LCF), or reject (Response
LRJ) the information contained in the LCF.

For Request LCF, the possible tags are:

The destinationInfo from the LCF is used if one is available. Otherwise, the destinationInfo from the
LRQ is used.

Response LCF
This message is sent from the external application to the Cisco IOS Gatekeeper in response to a
Request LRQ. It indicates that the external application has completed the processing of the request.

Tag Field Type
Required or
Optional Corresponding RAS Message Field

d Alias-Address Optional LRQ:destinationInfo

Tag Field Type
Required or
Optional Corresponding RAS Message Field

s Alias-Address Optional LRQ:srcInfo

e IA5String Optional LRQ:nonStandardData:redirectNumber

E integer Optional LRQ:nonStandardData:redirectReason

p integer Optional LRQ:nonStandardData:callingPartyNumOctet3a

w IA5String Optional LRQ:nonStandardData:displayIE

c IA5String Optional LRQ:nonStandardData:callingPartyNum

d Alias-Address Required LRQ/LCF:destinationInfo

D Transport-Address Required LCF:callSignalAddress

r Transport-Address Required LCF:rasAddress

x Alias-Address Optional LCF:destExtraCallInfo

X Alias-Address Optional LCF:remoteExtensionAddress

t Endpoint-Type Optional LCF:destinationType

GKTMP RAS Messages

Cisco Gatekeeper External Interface Reference4-12

This message can also be sent to the Cisco IOS Gatekeeper from the external application in response
to a Request LCF or a Request LRJ. In the case of a Request LCF, the response can contain:

• A null message body, which indicates that the external application accepts the information in the
Request LCF.

• Modified fields, which indicates that the external application wants to use different values than
those included in the Request LCF.

In the case of a Request LRJ, the response contains an alternate destination.

For Response LCF, the possible tags are:

Note The D and r are not required if the Response LCF is being sent in reply to a Request LCF.

Request LRJ
This message is sent from the Cisco IOS Gatekeeper to the external application when the Cisco IOS
Gatekeeper has received an LRJ from a remote Cisco IOS Gatekeeper. This gives the Cisco IOS
Gatekeeper the opportunity to accept the rejection (Response LRJ) or propose an alternative
destination (Response LCF).

For Request LRJ, the possible tags are:

Tag Field Type
Required or
Optional Corresponding RAS Message Field

d Alias-Address Optional LCF:destinationInfo

D Transport-Address Required LCF:destCallSignalAddress

r Transport-Address Required LCF:rasAddress

x Alias-Address Optional LCF:destExtraCallInfo

X Alias-Address Optional LCF:remoteExtensionAddress

t Endpoint-Type Optional LCF:destinationType

A AlternateEndpoint Optional ACF:alternateEndpoints

Tag Field Type
Required or
Optional Corresponding RAS Message Field

s Alias-Address Optional LRQ:srcInfo

d Alias-Address Required LRQ:destinationInfo

e IA5String Optional LRQ:nonStandardData:redirectNumber

E integer Optional LRQ:nonStandardData:redirectReason

p integer Optional LRQ:nonStandardData:callingPartyNumOctet3a

w IA5String Optional LRQ:nonStandardData:displayIE

c IA5String Optional LRQ:nonStandardData:callingPartyNum

R LRJ-reason Required LRJ:rejectReason

 GKTMP Messages 4-13

Other Messages

Response LRJ
This message is sent to the Cisco IOS Gatekeeper from the external application in response to a
Request LRQ. It indicates that the Cisco IOS Gatekeeper should reject the request for the specified
reason.

This message can also be sent to the Cisco IOS Gatekeeper from the external application in response
to a Request LCF or a Request LRJ. In the case of a Request LCF, this response rejects the
information provided in the LCF for the specified reason. In the case of a Request LRJ, this response
acknowledges the rejection. The reason is optional when the Response LRJ is sent due to a Request
LRJ.

For Response LRJ, the possible tags are:

Possible values for rejectReason are:

• notRegistered

• invalidPermission

• requestDenied

• undefinedReason

• securityDenial

Other Messages
There is one other type of message, the Response RIP.

Response RIP
This message is sent from the external application to the Cisco IOS Gatekeeper when the external
application cannot immediately process the request. This message indicates that the request is in
progress (RIP) and that additional time is needed. When the Cisco IOS Gatekeeper receives this
message, it forwards a request to the H.323 endpoint indicating that an extension of the timeout is
required. The external application can send more that one Response RIP as is needed to process the
request.

For Response RIP, the possible tags are:

Possible values of the delay are 1 through 65535 milliseconds.

Tag Field Type
Required or
Optional Corresponding RAS Message Field

R LRJ-Reason Required (LRQ, LCF)

Optional (LRJ)

LRJ:rejectReason

Tag Field Type
Required or
Optional Corresponding RAS Message Field

d Integer Required RIP:delay

Trigger Registration Messages

Cisco Gatekeeper External Interface Reference4-14

Trigger Registration Messages
Trigger registration messages are used by external applications to inform the Cisco IOS Gatekeeper
which RAS messages are interesting to the external application. Interesting RAS messages trip a
trigger in the Cisco IOS Gatekeeper and causes the Cisco IOS Gatekeeper to send a GKTMP RAS
message to the external application.

As with the GKTMP RAS messages, trigger registration messages have the following format:

• A single message line.

• One or more message header lines.

• A blank line, which separates the message header from the message body.

• Zero or more message body lines.

Message Line
There are two types of trigger registration messages: register and unregister.

The first line of each trigger registration request/response message uses the format:

REGISTER RAS_message_type

The first line of each trigger unregistration request/response message uses the format:

UNREGISTER RAS_message_type

Possible RAS message types are as follows:

• RRQ—Registration request

• URQ—Unregistration request

• ARQ—Admission request

• LRQ—Location request

• LCF—Location confirm

• LRJ—Location reject

Message Header
The message line is immediately followed by the message header. Each message header contains a
field name and a value, separated by a colon (field:value). Possible fields are:

Field Names Field Values

Version-ID Version of the GKTMP. For the first release of the GKTMP, the value is 1.

From String that identifies the originator of the message. For trigger registration requests from the
external application, this field contains the server ID. For trigger registration responses from the
Cisco IOS Gatekeeper, this field contains the gatekeeper ID. This field is required for trigger
registration and unregistration requests and responses.

To String that identifies the receiver of the message. For trigger registration requests from the
external application, this field contains the gatekeeper ID. For trigger registration responses
from the Cisco IOS Gatekeeper, this field contains the ID of the external application that
initiated the request. This field is required for trigger registration and unregistration requests
and responses.

 GKTMP Messages 4-15

Trigger Registration Messages

The message header is followed immediately by a blank line.

Message Body
The message body follows the blank line. Only trigger registration requests contain a message body.
Trigger registration responses, unregistration requests, and unregistration responses end after the
blank line.

The message body in a trigger registration request can be used to narrow the circumstances under
which the Cisco IOS Gatekeeper sends a REQUEST xxx to the external application. In this case, the
external application includes tags and values in the message body that if matched will trigger the
Cisco IOS Gatekeeper to generate a REQUEST xxx.

The tags that can be included vary depending on the RAS message type and are a subset of the types
that can be included in GKTMP RAS messages.

For the field type of Alias-Address, trailing wildcards can be used with E.164 addresses. An asterisk
can be used to indicate a string of characters (for example, 1800*). A period can be used to indicate
a single character (for example, 1800.......).

Priority A number indicating the priority of this trigger in relation to other triggers for the same RAS
message type. Possible values are 1 through 20. 1 is the highest priority.

If the Cisco IOS Gatekeeper has a registration for a RAS message type and receives another
registration for the same RAS message from the same external application with the same
priority, the Cisco IOS Gatekeeper will use the new registration and discard the previous one. If
the Cisco IOS Gatekeeper has a registration for a RAS message type and receives another
registration with the same priority from a different external application, the Cisco IOS
Gatekeeper will discard the new registration. This field is required for trigger registration and
unregistration requests and is echoed in trigger registration and unregistration responses.

Content-length The number of octets contained in the message body. If the message body is null, this field is
omitted. This field is used only in trigger registration requests.

Notification-only None. No value is included after the colon. If this field name is present, it indicates to the Cisco
IOS Gatekeeper that it should forward requests for the specified RAS messages as a notification
only. This field is used only in trigger registration requests.

Status String that indicates the response code from the Cisco IOS Gatekeeper. This field is used only
in trigger registration and unregistration responses.

Possible response codes for unregistration requests are:

• success—The registration has been accepted.

• invalidPriority—The registration has been rejected because the Gatekeeper already has a
registration for this RAS message type with the same priority from another application.

• invalidFilters—Parsing of the message body failed.

• invalidGKID—The gatekeeper ID specified in the “To” field of the request does not match
the ID of any gatekeepers on this Cisco router.

Possible response codes for unregistration responses are:

• success—The unregistration has been accepted.

• invalidPriority—The unregistration has been rejected because the Gatekeeper does not have
a registration for this RAS message type with the same priority from this application.

• invalidGKID—The gatekeeper ID specified in the “To” field of the request does not match
the ID of any gatekeepers on this Cisco router.

Field Names Field Values

Trigger Registration Messages

Cisco Gatekeeper External Interface Reference4-16

Note Wildcards cannot be used at the beginning or in the midst of a value, only at the end. If you
include a wildcard at the beginning or in the midst of a value, it will be interpreted as a literal
character.

Register RRQ
For Register RRQ, the following tags can be used to filter messages:

Register URQ
For Register URQ, the following tags can be used to filter messages:

Register ARQ
For Register ARQ, the following tags can be used to filter messages:

Register LRQ
For Register LRQ, the following tags can be used to filter messages:

Note A Gatekeeper might not be the final destination of the LRQ messages that it receives. If the
queried address in an LRQ is in another Gatekeeper's zone, the LRQ is forwarded to that Gatekeeper
and is not resolved locally. This means that there may be no local zone that can be associated with
the LRQ. To address this situation, the Gatekeeper arbitrarily uses the server registrations for the first
configured local zone. Because the order in which configured zones appear can change with
deletions and additions, servers should send identical LRQ registrations to all the zones (all the
logical gatekeepers) on the same router.

Tag Field Type
Required or
Optional Corresponding RAS Message Field

t Endpoint-Type Optional RRQ:terminalType

p Supported-Prefix Optional RRQ:terminalType:gateway:protocol:*:supportedPrefixes

Tag Field Type
Required or
Optional Corresponding RAS Message Field

t Endpoint-Type Optional RRQ:terminalType

p Supported-Prefix Optional RRQ:terminalType:gateway:protocol:*:supportedPrefixes

Tag Field Type
Required or
Optional Corresponding RAS Message Field

d Alias-Address Optional ARQ:destinationInfo

E integer Optional ARQ:nonStandardData:redirectReason

Tag Field Type
Required or
Optional Corresponding RAS Message Field

d Alias-Address Optional LRQ:destinationInfo

E integer Optional LRQ:nonStandardData:redirectReason

 GKTMP Messages 4-17

Trigger Registration Messages

Register LCF
For Register LCF, the following tags can be used to filter messages:

Register LRJ
For Register LRJ, the following tags can be used to filter messages:

Tag Field Type
Required or
Optional Corresponding RAS Message Field

d Alias-Address Optional LRQ/LCF:destinationInfo

X Alias-Address Optional LCF:remoteExtensionAddress

Tag Field Type
Required or
Optional Corresponding RAS Message Field

d Alias-Address Optional LRQ:destinationInfo

Trigger Registration Messages

Cisco Gatekeeper External Interface Reference4-18

C H A P T E R

 Gatekeeper API Functions and Structures 5-1

5

Gatekeeper API Functions and
Structures

This chapter describes the API functions and structures that an external application must use to
exchange messages with the Cisco IOS Gatekeeper. The external application links with the object
code, which contains the API functions. The header file contains API prototypes and type
definitions.

Gatekeeper API Functions
This section describes the functions provided with the API. These functions should be used by the
external application to gather information from and provide information to the Cisco IOS
Gatekeeper. The functions described in this section are:

• GkapiSetupClient

• GkapiSetupServer

• GkapiClientConnected

• GkapiAcceptConnection

• CloseGateKeeperConnection

• GetReadMsgBuffer

• ReadMsgBuffer

• FreeReadMsgBuffer

• WriteResponseMsg

• WriteRegisterMessage

• WriteUnregisterMessage

• GkapiSetupReport

• GkapiQueryReport

GkapiSetupClient
This function sets up the socket for the application to communicate as a client with the Cisco IOS
Gatekeeper. In this situation, the application is the client and the Gatekeeper is the server, which
means the application must initiate the communication with the Cisco IOS Gatekeeper.

Gatekeeper API Functions

Cisco Gatekeeper External Interface Reference5-2

Input
The input to this function is:

• A pointer to the GKAPI_SOCK_INFO structure. The application must set up the TCPPort and
IPAddress fields and must preserve this structure for the duration of the connection.

• A pointer to the STATUS_TYPE enumeration. Possible values for STATUS_TYPE are:

— PROCESSING_SUCCESSFUL—Successful connection to the Cisco IOS Gatekeeper.

— CONNECT_IN_PROGRESS—Connection is pending.

— TCP_HANDLE_ERROR—Error was encountered in handle creation.

— TCP_CONNECT_ERROR—Error was encountered in connecting to the Cisco IOS
Gatekeeper.

— TCP_NONBLOCK_ERROR—Error was encountered when setting up the socket for
nonblocking I/O

• A boolean value that allows the application to specify if the socket I/O should be non-blocking
or blocking. If the application specifies blocking, the Gatekeeper API calls to setup the
connection and read a message will not return until the action is complete.

Return
The return for this function is an integer. If the client socket connection has been set up successfully
or is in progress, a connection handle is returned. This connection handle is the socket descriptor that
the application uses to wait on a connection completion or read socket event. If an error occurs while
setting up the client connection, the value -1 is returned. In this case, the error information is
provided in the STATUS_TYPE.

 GkapiSetupServer
 This function sets up the socket for the application to communicate as a server with the Cisco IOS
Gatekeeper. In this situation, the application is the server and the Gatekeeper is the client, which
means that the application will accept incoming connections from Cisco IOS Gatekeeper clients.

Input
• A pointer to the GKAPI_SOCK_INFO structure. The application must set up the TCPPort and

IPAddress fields and must preserve this structure for the duration of the connection.

• A pointer to the STATUS_TYPE enumeration. Possible values for STATUS_TYPE are:

— PROCESSING_SUCCESSFUL—Successful connection to the Cisco IOS Gatekeeper.

— TCP_HANDLE_ERROR—Error was encountered in handle creation.

— TCP_ADDRESS_ALREADY_IN_USE—Specified local IP address is already in use.

— TCP_ADDRESS_NOT_AVAIL—Specified local IP address is not available on the local
machine.

— TCP_BIND_ERROR—Error was encountered in setting up the server socket.

— TCP_LISTEN_ERROR—Error was encountered in setting up the server socket.

— TCP_NONBLOCK_ERROR—Error was encountered when setting up the socket for
nonblocking I/O.

 Gatekeeper API Functions and Structures 5-3

GkapiClientConnected

• A boolean value that allows the application to specify if the socket I/O should be non-blocking
or blocking. If the application specifies blocking, the Gatekeeper API calls to setup the
connection and read a message will not return until the action is complete.

Return
The return for this function is an integer. If the client socket connection has been set up successfully
or is in progress, a connection handle is returned. This connection handle is the socket descriptor that
the application uses to wait on a connection completion or read socket event. If an error occurs while
setting up the client connection, the value -1 is returned. In this case, the error information is
provided in the STATUS_TYPE.

GkapiClientConnected
This function must be called by the application to indicate that a select event for a connect complete
has occurred.

Input
The input to this function is

• A pointer to the GKAPI_SOCK_INFO structure.

• A pointer to the STATUS_TYPE enumeration. Possible values for STATUS_TYPE are:

— PROCESSING_SUCCESSFUL—Successful connection to the Gatekeeper.

— TCP_CONNECT_ERROR—Error was encountered in connecting to the Gatekeeper.

• An integer that indicates that a connect complete has occurred.

Return
The return for this function is an integer. If the socket connection has been set up successfully or is
in progress, a connection handle is returned. This connection handle is the socket descriptor that the
application uses to wait on a connection completion or read socket event. If an error occurs while
setting up the client connection, the value -1 is returned. In this case, the error information is
provided in the STATUS_TYPE.

 GkapiAcceptConnection
This function must be called by the application (when it is running in the server mode) to indicate
that a select event for an incoming connection has occurred.

Input
The input to this function is

• A pointer to the GKAPI_SOCK_INFO structure.

• A pointer to the STATUS_TYPE enumeration. Possible values for STATUS_TYPE are:

— PROCESSING_SUCCESSFUL—Successful connection to the Cisco IOS Gatekeeper.

— TCP_CONNECT_ERROR—Error was encountered in connecting to the Cisco IOS
Gatekeeper.

Gatekeeper API Functions

Cisco Gatekeeper External Interface Reference5-4

• An integer that indicates that an incoming connection has occurred.

• A pointer to the GKAPI_TCP_ADDR_INFO structure. The Gatekeeper API provides the
IP address and TCP port of the client with which this connection is associated.

Return
The return for this function is an integer. If the socket connection has been set up successfully or is
in progress, a connection handle is returned. This connection handle is the socket descriptor that the
application uses to wait on a connection completion or read socket event. If an error occurs while
setting up the client connection, the value -1 is returned. In this case, the error information is
provided in the STATUS_TYPE.

CloseGateKeeperConnection
This function closes the TCP connection between the external application and the Cisco IOS
Gatekeeper. It is called under error circumstances and when the external application no longer wants
to maintain a relationship with the Cisco IOS Gatekeeper.

Input
The input for this function is a pointer to the GKAPI_SOCK_INFO structure.

Return
There is no return for this function.

GetReadMsgBuffer
This function allocates memory for the size of GK_READ_MSG structure. This structure is used to
store messages received from the Cisco IOS Gatekeeper. It contains an enumeration of the messages
that can be received (REQUEST messages from the Cisco IOS Gatekeeper for RRQ, ARQ, LRQ,
LCF, LRJ, as well as registration and unregistration responses from the Cisco IOS Gatekeeper for
ARQ, RRQ, URQ, LRQ, LCF, LRJ messages) and a union of structures for the different messages.

Note When the external application no longer needs the message buffer, the application must call
FreeReadMsgBuffer to release the memory back to the system.

Input
There is no input to this function.

Return
The return for this function is a pointer to the GK_READ_MSG structure. If the memory allocation
fails, this pointer will be NULL.

 Gatekeeper API Functions and Structures 5-5

ReadMsgBuffer

ReadMsgBuffer
This function reads a message from the TCP socket and should be called when the external
application has detected a read event on the socket. This function stores the message type into the
structure. The parameters received in the message are stored in the structure that corresponds with
the message type.

Note GetReadMsgBuffer must be called to allocate an empty buffer before this function can be
used.

FreeReadMsgBuffer must be called after this function has completed, except when the
STATUS_TYPE returns INCOMPLETE_MSG_READ.

Upon reading a message, this function sets the message type and populates the appropriate structure.
For example, if an ARQ message has been received from the Cisco IOS Gatekeeper, the msgType
parameter is set to ARQ_REQUEST_MSG and the ARQ_REQUEST_MSG structure will be
populated.

Because some parameters are optional, these parameters might not be received for a particular
message. Structure members that are character pointers are initialized to NULL. Integers and
enumerations are set to their initialization values. Therefore, the API can assume that if a structure
member has a pointer set to NULL or to it's initialization value, that particular parameter has not
been received.

The following initialization values indicate that the parameter was not received from the Cisco IOS
Gatekeeper:

• canMapAlias—INITIALIZE_CAN_MAP_ALIAS_VALUE

• bandWidthPresent—TRUE (indicating that bandWidth has been received and filled in) or FALSE
(indicating that bandWidth has not been received)

• answerCall—INITIALIZE_ANSWER_CALL_VALUE

• REDIRECT_REASON_TYPE—REDIRECT_REASON_INFO_NOT_RCVD

• ENDPOINT_TYPE—ENDPOINT_INFO_NOT_RCVD

Input
The input for this function is:

• A pointer to the GKAPI_SOCK_INFO structure.

• A pointer to the GK_READ_MSG structure that was allocated by the GetReadMsgBuffer
function. The GK_READ_MSG structure contains an enumeration of the message types
expected from the Cisco IOS Gatekeeper as well as a union of structures for various messages
expected from the Cisco IOS Gatekeeper.

Return
The return for this function is the STATUS_TYPE. Possible values for STATUS_TYPE are:

• PROCESSING_SUCCESSFUL—No errors were encountered.

• TCP_READ_ERROR—A TCP read error was encountered. The application should call
CloseGateKeeperConnection to close the connection to the Cisco IOS Gatekeeper.

Gatekeeper API Functions

Cisco Gatekeeper External Interface Reference5-6

• MEM_ALLOC_FAIL—Memory allocation failed. This function, dynamically allocates memory
for fields within the GK_READ_MSG structure.

• MSG_READ_ERROR—The message read was not understood by the API function. The
application should call CloseGateKeeperConnection to close the connection to the Cisco IOS
Gatekeeper.

• INCOMPLETE_MSG_READ—The message was not completely read from the TCP connection
because of network conditions. The application should call the function again in order to continue
reading the data. In this situation, FreeMsgBuffer should not be called. Once all the data has been
read, the STATUS_TYPE will be set to one of the other possible values and after processing the
message type the FreeMsgBuffer can be called.

• TCP_CONNECTION_CLOSED—The connection to the Cisco IOS Gatekeeper has been
closed. The application must call CloseGateKeeperConnection to free resources such as
gkHandle in the GKAPI_SOCK_INFO structure.

• NULL_POINTER_PASSED—The pointer to the GK_READ_MSG is null.

FreeReadMsgBuffer
This function frees memory that was allocated by the call to GetReadMsgBuffer and
ReadMsgBuffer. This function must be called after processing the information returned by
ReadMsgBuffer.

Input
The input for this function is a pointer to the GK_READ_MSG structure.

Return
There is no return for this function.

WriteResponseMsg
This function writes a response message to the Cisco IOS Gatekeeper. This structure contains
RESPONSE_MSG_TYPE, which is an enumeration of the response messages that can be sent to the
Cisco IOS Gatekeeper.

The calling function must set the message type and populate the appropriate structure within the
union. For example, if a response RCF needs to be sent to the Cisco IOS Gatekeeper, the application
should set the msgType to RCF_RESPONSE_MSG and populate the RCF_RESPONSE_MSG
structure.

The following rules apply to responses sent by the external application to the Cisco IOS Gatekeeper:

• Transport-addresses must be preceded with “I:”, followed by the address.

• Alias-addresses must be preceded with either “H:”, “E:”, or “M:” followed by the alias address.

• Values in a “sequence of values” must be separated by a space.

• HEADER_INFO must include the “from”, “to” and “transactionID” fields. The notification field
is not used with the WriteResponseMsg function.

 Gatekeeper API Functions and Structures 5-7

WriteResponseMsg

Only changed or new fields should be populated and sent to the Cisco IOS Gatekeeper. Parameters
that are not to be sent to the Cisco IOS Gatekeeper must either be set to their initialization value or
to NULL (for pointers). The API will assume that if a structure member is set to it’s initialization
value or has a pointer set to NULL, that parameter should not be sent to the Cisco IOS Gatekeeper.

The following initialization values indicate that the parameter should not be sent to the Cisco IOS
Gatekeeper:

• bandWidthPresent—TRUE (indicating that the bandWidth should be sent) or FALSE (indicating
that the bandWidth should not be sent)

• REDIRECT_REASON_TYPE—REDIRECT_REASON_INFO_NOT_RCVD

• ENDPOINT_TYPE—ENDPOINT_INFO_NOT_RCVD

Note If the application requires additional time before responding to a message from the Cisco IOS
Gatekeeper, it can send a “delay” message by setting msgType to RIP_RESPONSE_MSG. The delay
value (1 through 65536) must be specified and the transactionID must be the same as the one
received from the Cisco IOS Gatekeeper.

Input
The input for this function is:

• A pointer to the GKAPI_SOCK_INFO structure.

• A pointer to the GK_WRITE_MSG structure, which contains an enumeration of message types
for which a response might be sent to the Cisco IOS Gatekeeper. It also contains a union of
structures for each message response.

Return
The return for this function is the STATUS_TYPE. Possible values for STATUS_TYPE are:

• PROCESSING_SUCCESSFUL—No errors were encountered.

• CONNECT_IN_PROGRESS—Connection is pending. The application should retry this API
call after some time has passed.

• TCP_WRITE_ERROR—A TCP write error was encountered. The application should call
CloseGateKeeperConnection to close the connection to the Cisco IOS Gatekeeper.

• MEM_ALLOC_FAIL—Memory allocation failed.

• TCP_CONNECTION_CLOSED—The connection to the Cisco IOS Gatekeeper has been
closed. The application must call CloseGateKeeperConnection to free resources such as
gkHandle in the GKAPI_SOCK_INFO structure.

• INVALID_MSG_SPECIFIED—The message type is not within the RESPONSE_MSG_TYPE
range.

• INVALID_ENDPOINT_SPECIFIED—The endpoint does not match one of the possible values
for ENDPOINT_TYPE.

• INVALID_REDIRECT_REASON_SPECIFIED—The redirect reason does not match one of the
possible values for REDIRECT_REASON_TYPE.

• INVALID_REJECT_REASON_SPECIFIED—The rejection reason does not match one of the
possible values for REJECT_REASON_TYPE.

Gatekeeper API Functions

Cisco Gatekeeper External Interface Reference5-8

• INVALID_DELAY_SPECIFIED—The delay is not within the valid range.

• HEADER_INFO_INCOMPLETE—One of the fields in the header (To, From, TransactionID) is
incomplete.

• NULL_POINTER_PASSED—The pointer to GK_WRITE_MSG is null.

WriteRegisterMessage
This function sends a registration message to the Cisco IOS Gatekeeper. In allows triggers to be
dynamically registered with the Cisco IOS Gatekeeper. This structure, REGISTER_MSG_TYPE,
contains an enumeration of messages that can be registered with the GateKeeper.

The REGISTER_REQUEST_HEADER structure must include the “from”, “to”, “priority”, and
“notification-only” fields.

Input
The input for this function is:

• A pointer to the GKAPI_SOCK_INFO structure.

• A pointer to the GK_REGISTER_MSG structure, which contains a union of the structures for
the various registration messages that can be sent to the Cisco IOS Gatekeeper. Each structure
contains a header, REGISTER_REQUEST_HEADER, that must be filled in by the application.
The msgType field must be filled in to indicate which registration message should be sent to the
Cisco IOS Gatekeeper.

Return
The return for this function is the STATUS_TYPE. Possible values for STATUS_TYPE are:

• PROCESSING_SUCCESSFUL—No errors were encountered.

• CONNECT_IN_PROGRESS—Connection is pending. The application should retry this API
call after some time has passed.

• TCP_WRITE_ERROR—A TCP write error was encountered. The application should call
CloseGateKeeperConnection to close the connection to the Cisco IOS Gatekeeper.

• MEM_ALLOC_FAIL—Memory allocation failed.

• TCP_CONNECTION_CLOSED—The connection to the Cisco IOS Gatekeeper has been
closed. The application must call CloseGateKeeperConnection to free resources such as
gkHandle in the GKAPI_SOCK_INFO structure.

• INVALID_MSG_SPECIFIED—The message type is not within the RESPONSE_MSG_TYPE
range.

• INVALID_ENDPOINT_SPECIFIED—The endpoint does not match one of the possible values
for ENDPOINT_TYPE.

• INVALID_REDIRECT_REASON_SPECIFIED—The redirect reason does not match one of the
possible values for REDIRECT_REASON_TYPE.

• HEADER_INFO_INCOMPLETE—One of the fields in the header (To, From, TransactionID) is
incomplete.

• NULL_POINTER_PASSED—The pointer to the GK_REGISTER_MSG is null.

 Gatekeeper API Functions and Structures 5-9

WriteUnregisterMessage

WriteUnregisterMessage
This function sends an unregister message to the Cisco IOS Gatekeeper when the application no
longer wants to receive a particular message. This structure contains REGISTER_MSG_TYPE,
which is an enumeration of messages that can be unregistered with the Cisco IOS Gatekeeper.

Input
The input for this function is:

• A pointer to the GKAPI_SOCK_INFO structure.

• A pointer to the GK_UNREGISTER_MSG structure, which contains the To, From, and Priority
fields that must be filled in by the application. The msgType must be filled in to indicate which
message needs to be unregistered.

Return
The return for this function is the STATUS_TYPE. Possible values for STATUS_TYPE are:

• PROCESSING_SUCCESSFUL—No errors were encountered.

• CONNECT_IN_PROGRESS—Connection is pending. The application should retry this API
call after some time has passed.

• TCP_WRITE_ERROR—A TCP write error was encountered. The application should call
CloseGateKeeperConnection to close the connection to the Cisco IOS Gatekeeper.

• MEM_ALLOC_FAIL—Memory allocation failed.

• TCP_CONNECTION_CLOSED—The connection to the Cisco IOS Gatekeeper has been
closed. The application must call CloseGateKeeperConnection to free resources such as
gkHandle in the GKAPI_SOCK_INFO structure.

• INVALID_MSG_SPECIFIED—The message type is not within the RESPONSE_MSG_TYPE
range.

• HEADER_INFO_INCOMPLETE—One of the fields in the header (To, From, TransactionID) is
incomplete.

• NULL_POINTER_PASSED—The pointer to the GK_UNREGISTER_MSG is null.

GkapiSetupReport
This function allows the application to control the type of debug messages that the Gatekeeper API
provides and the location of the debug output.

Input
The input for this function is:

• An integer that indicates the type of debugging. If the debugging is set to 0, the Gatekeeper API
will not output any debug messages.

• A pointer to the REPORT_DEST_T enumeration, which indicates the destination for the debug
messages.

API Structures

Cisco Gatekeeper External Interface Reference5-10

Return
There is no return for this function.

GkapiQueryReport
This function returns the current debug setting for the Gatekeeper API.

Input
There is no input for this function.

Return
The return for this function is an integer that indicates they type of debugging being performed by
the Gatekeeper API.

API Structures
The Gatekeeper API stores all data received from the Cisco IOS Gatekeeper in structures. The
structures point to character strings, integers, and often enumerations (which are lists of possible
values for a specific field). The structures used by the Gatekeeper API are:

• GKAPI_SOCK_INFO

• GKAPI_TCP_ADDR_INFO

• GK_REGISTER_MSG

• GK_UNREGISTER_MSG

• REG_UNREG_RESP_MSG

• REGISTER_REQUEST_HEADER

• REGISTER_RESPONSE_HEADER

• ARQ_REGISTER_MSG

• RRQ_REGISTER_MSG

• URQ_REGISTER_MSG

• LRQ_REGISTER_MSG

• LCF_REGISTER_MSG

• LRJ_REGISTER_MSG

• GK_READ_MSG

• HEADER_INFO

• ARQ_REQUEST_MSG

• RRQ_REQUEST_MSG

• URQ_REQUEST_MSG

• LRQ_REQUEST_MSG

• LCF_REQUEST_MSG

 Gatekeeper API Functions and Structures 5-11

GKAPI_SOCK_INFO

• LRJ_REQUEST_MSG

• GK_WRITE_MSG

• ARQ_RESPONSE_MSG

• ACF_RESPONSE_MSG

• ARJ_RESPONSE_MSG

• RRQ_RESPONSE_MSG

• RCF_RESPONSE_MSG

• RRJ_RESPONSE_MSG

• LRQ_RESPONSE_MSG

• LCF_RESPONSE_MSG

• LRJ_RESPONSE_MSG

• CRYPTO_H323_TOKEN

• CRYPTO_EP_PWD_HASH

• CRYPTO_EP_PWD_ENCR

• CRYPTO_EP_CERT

• CLEAR_TOKEN

• ALTERNATE_GK

• ALTERNATE_ENDPOINT

• RIP_RESPONSE_MSG

• UNSUPPORTED_MSG

GKAPI_SOCK_INFO
The GKAPI_SOCK_INFO structure is used by several API functions to identify the connection to
the Cisco IOS Gatekeeper. This structure contains the following:

TCPPort and IPAddress are provided by the calling function. The API writes the handle into
gkHandle and serverHandle when the connection is established. If an error is encountered in the
handle creation or in the connection, the gkHandle will be set to -1. The external application is
responsible for storing the handle and using it to read, write, and close the connection.

Field Field Type Description

TCPPort Integer This is the TCP port of the Cisco IOS Gatekeeper that is establishing
the incoming connection to the application.

IPAddress Character string This is the IP address of the Cisco IOS Gatekeeper that is establishing
the incoming connection to the application.

gkHandle Integer Handle to the Cisco IOS Gatekeeper function.

serverHandle Integer Handle to the server function.

API Structures

Cisco Gatekeeper External Interface Reference5-12

GKAPI_TCP_ADDR_INFO
The GKAPI_TCP_ADDR_INFO structure is used to store the TCP Port and IP address. This
structure contains the following:

GK_REGISTER_MSG
The GK_REGISTER_MSG structure is used to send registration messages to the Cisco IOS
Gatekeeper. This structure contains:

GK_UNREGISTER_MSG
The GK_UNREGISTER_MSG structure is used to send unregistration messages to the Cisco IOS
Gatekeeper. This structure contains:

Field Field Type Description

TCPPort Integer This is the TCP port that the Cisco IOS Gatekeeper uses for handling
GKTMP messages. For GkapiSetupServer, this is the TCP port that
the application uses for interacting with the Gatekeeper.

IPAddress Unsigned long For GkapiSetupClient, this is the IP address that the Cisco IOS
Gatekeeper uses for handling GKTMP messages. For
GkapiSetupServer, this is the IP address that the application uses for
interacting with the Gatekeeper.

Field Field Type Description

msgType Enumeration See REGISTER_MSG_TYPE.

rrqRegMsg Structure See RRQ_REGISTER_MSG.

urqRegMsg Structure See URQ_REGISTER_MSG.

arqRegMsg Structure See ARQ_REGISTER_MSG.

lrqRegMsg Structure See LRQ_REGISTER_MSG.

lcfRegMsg Structure See LCF_REGISTER_MSG.

lrjRegMsg Structure See LRJ_REGISTER_MSG.

Field Field Type Description

unregisterMsg Enumeration See REGISTER_MSG_TYPE.

versionId Integer Identifier of the version of GKTMP being used. For the initial release,
the only possible value is 1.

from Character string Originator of the message. For requests from the Cisco IOS
Gatekeeper, this field contains the gatekeeper ID. For responses from
the external application, this field contains the server ID. The limit of
this field is MAX_ENDPOINT_LENGTH + 1.

to Character string Receiver of the message. For requests from the Cisco IOS Gatekeeper,
this field contains the server ID. For responses from the external
application, this field contains the ID of the gatekeeper that initiated
the request. The limit of this field is MAX_ENDPOINT_LENGTH +
1.

priority Integer Priority of the filter. Possible values are 1 through 20. 1 is the highest
priority.

 Gatekeeper API Functions and Structures 5-13

REG_UNREG_RESP_MSG

REG_UNREG_RESP_MSG
The REG_UNREG_RESP_MSG structure is used to process registration and unregistration
responses from the Cisco IOS Gatekeeper. This structure contains:

REGISTER_REQUEST_HEADER
The REGISTER_REQUEST_HEADER structure is used when a registration request is to be sent to
Cisco IOS Gatekeeper. This structure contains the following:

REGISTER_RESPONSE_HEADER
The REGISTER_RESPONSE_HEADER structure is used when a registration or unregistration
response is received from the Cisco IOS Gatekeeper. The registration or unregistration response is
received after the application sends a registration or unregistration request to the Cisco IOS
Gatekeeper. This structure contains the following:

Field Field Type Description

regHeader Structure See REGISTER_RESPONSE_HEADER.

Field Field Type Description

versionId Integer Identifier of the version of GKTMP being used. For the initial release,
the only possible value is 1.

from Character string Originator of the message, which for registration requests is the server
ID. The limit of this field is MAX_ENDPOINT_LENGTH+1.

to Character string Receiver of the message, which for registration requests is the
gatekeeper ID The limit of this field is MAX_ENDPOINT_LENGTH+1.

priority Integer Priority of the filter. Possible values are 1 through 20. 1 is the highest
priority.

notificationOnly Boolean Whether the registration request is for notifications only. If this field is
set to True, messages that match the specified trigger parameters will be
sent on a notification-only basis.

Field Field Type Description

Version-id Integer Identifier of the version of GKTMP being used. For the initial release,
the only possible value is 1.

from Character string Originator of the message, which for registration responses is the
gatekeeper ID. The limit of this field is
MAX_ENDPOINT_LENGTH+1.

to Character string Receiver of the message, which for registration responses is the server
ID. The limit of this field is MAX_ENDPOINT_LENGTH+1.

priority Integer Priority of the filter. Possible values are 1 through 20. 1 is the highest
priority.

regStatus Enumeration See REG_STATUS_TYPE.

API Structures

Cisco Gatekeeper External Interface Reference5-14

ARQ_REGISTER_MSG
The ARQ_REGISTER_MSG structure is used to send registrations for ARQ requests to the Cisco
IOS Gatekeeper. This structure contains the following:

RRQ_REGISTER_MSG
The RRQ_REGISTER_MSG structure is used to send registrations for RRQ requests to the Cisco
IOS Gatekeeper. This structure contains the following:

URQ_REGISTER_MSG
The URQ_REGISTER_MSG structure is used to send registrations for URQ requests to the Cisco
IOS Gatekeeper. This structure contains the following:

LRQ_REGISTER_MSG
The LRQ_REGISTER_MSG structure is used to send registrations for LRQ requests to the Cisco
IOS Gatekeeper. This structure contains the following:

Field Field Type Description

headerInfo Structure See REGISTER_REQUEST_HEADER.

destinationInfo Character string Sequence of alias addresses for the destination endpoint. The limit of
this field is MAX_NUM_ARQ_DEST_INFO.

redirectReason Enumeration Taken from the Q.931 Setup Redirecting Number IE. See
REDIRECT_REASON_TYPE. The limit of this field is
MAX_NUM_ARQ_REDIRECT_REASON.

Field Field Type Description

headerInfo Structure See REGISTER_REQUEST_HEADER.

terminalType Enumeration Type of endpoint being registered. See ENDPOINT_TYPE. The limit
of this field is MAX_NUM_ENDPOINT_TYPES.

supportedPrefix Character string Prefix associated with the supported protocol. The limit of this field is
MAX_NUM_SUPPORTED_PREFIX.

Field Field Type Description

headerInfo Structure See REGISTER_REQUEST_HEADER.

terminalType Enumeration Type of endpoint being unregistered. See ENDPOINT_TYPE. The
limit of this field is MAX_NUM_ENDPOINT_TYPES.

supportedPrefix Character string Prefix associated with the supported protocol. The limit of this field is
MAX_NUM_SUPPORTED_PREFIX.

Field Field Type Description

headerInfo Structure See REGISTER_REQUEST_HEADER.

destinationInfo Character string Sequence of alias addresses for the destination endpoint. The limit of
this field is MAX_NUM_LRQ_DEST_INFO.

redirectReason Enumeration Taken from the Q.931 Setup Redirecting Number IE. See
REDIRECT_REASON_TYPE. The limit of this field is
MAX_NUM_LRQ_REDIRECT_REASON.

 Gatekeeper API Functions and Structures 5-15

LCF_REGISTER_MSG

LCF_REGISTER_MSG
The LCF_REGISTER_MSG structure is used to send registrations for LCF requests to the Cisco
IOS Gatekeeper. This structure contains the following:

LRJ_REGISTER_MSG
The LRJ_REGISTER_MSG structure is used to send registrations for LRJ requests to the Cisco IOS
Gatekeeper. This structure contains the following:

GK_READ_MSG
The GK_READ_MSG structure is used process REQUEST messages from the Cisco IOS
Gatekeeper for RRQ, ARQ, LRQ, LCF, LRJ, as well as registration and unregistration responses
from the Cisco IOS Gatekeeper for ARQ, RRQ, URQ, LRQ, LCF, LRJ messages. This structure
contains:

If the message received from the Cisco IOS Gatekeeper is a RAS message that is not supported by
the API function, the msgType will be set to MSG_NOT_SUPPORTED. If a response is required,
an appropriate response will be constructed by the API function and sent to the Cisco IOS
Gatekeeper. The header information in the UNSUPPORTED_MSG structure will be filled in by the
API function. This situation could occur if the Cisco IOS Gatekeeper has been upgraded to support
new messages but the API function has not been correspondingly upgraded.

Field Field Type Description

headerInfo Structure See REGISTER_REQUEST_HEADER.

destinationInfo Character string Sequence of alias addresses for the destination endpoint. The limit of
this field is MAX_NUM_LCF_DEST_INFO.

rmotExtensionAddr Character String Alias address of a called endpoint, present in cases where this
information is required to traverse multiple gateways. The limit of this
field is MAX_NUM_LCF_RMOT_EXTENSION_ADDR.

Field Field Type Description

headerInfo Structure See REGISTER_REQUEST_HEADER.

destinationInfo Character string Sequence of alias addresses for the destination endpoint. The limit of
this field is MAX_NUM_LRJ_DEST_INFO.

Field Field Type Description

msgType Enumeration See REQUEST_MSG_TYPE.

rrqReqMsg Structure See RRQ_REQUEST_MSG.

urqReqMsg Structure See URQ_REQUEST_MSG.

arqReqMsg Structure See ARQ_REQUEST_MSG.

lrqReqMsg Structure See LRQ_REQUEST_MSG.

lcfReqMsg Structure See LCF_REQUEST_MSG.

lrjReqMsg Structure See LRJ_REQUEST_MSG.

unsupportedMsg Structure See UNSUPPORTED_MSG.

regUnregRespMsg Structure See REG_UNREG_RESP_MSG.

API Structures

Cisco Gatekeeper External Interface Reference5-16

If the message received from the Cisco IOS Gatekeeper, is not recognized by the API function, the
msgType will be set to UNKNOWN_MSG and the STATUS_TYPE will be set to
MSG_READ_ERROR. In this case, the external application should close the connection to the Cisco
IOS Gatekeeper by calling the CloseGateKeeperConnection function.

HEADER_INFO
The HEADER_INFO structure is used to process header information sent from the Cisco IOS
Gatekeeper or information that is sent by the application to the Cisco IOS Gatekeeper. This structure
contains the following:

ARQ_REQUEST_MSG
The ARQ_REQUEST_MSG structure is used to process ARQ requests from the Cisco IOS
Gatekeeper. This structure contains the following:

Field Field Type Description

versionId Integer Identifier of the version of GKTMP being used. For the initial release,
the only possible value is 1.

from Character string Originator of the message. For requests from the Cisco IOS
Gatekeeper, this field contains the gatekeeper ID. For responses from
the external application, this field contains the server ID. The limit of
this field is MAX_ENDPOINT_LENGTH + 1.

to Character string Receiver of the message. For requests from the Cisco IOS Gatekeeper,
this field contains the server ID. For responses from the external
application, this field contains the ID of the gatekeeper that initiated
the request. The limit of this field is MAX_ENDPOINT_LENGTH+1.

transactionID Character string Identifier of the transaction. If this field is present in the request from
the Cisco IOS Gatekeeper, it must be echoed in the response from the
external application. The limit of this field is
MAX_TRANSACTION_ID_LENGTH + 1.

notification Boolean Whether the message is for notification purposes only. This field is
used only in REQUEST messages that are received from the Cisco
IOS Gatekeeper.

Field Field Type Description

headerInfo Structure See HEADER_INFO.

srcInfo Character string Sequence of alias addresses for the source endpoint.

srcCallSignalAddress Character string Transport address used at the source for call signaling.

destinationInfo Character string Sequence of alias addresses for the destination endpoint.

destCallSignalAddress Character string Transport address used at the destination for call signaling.

destExtraCallInfo Character string External addresses for multiple calls.

bandWidthPresent Boolean Whether a specified bandwidth is present in the request.

bandWidth Unsigned integer Bandwidth (in 100 kbps) requested for the bi-directional call.

answerCall Integer Indicates to the Cisco IOS Gatekeeper that the call is incoming.

callIdentifier Character string A unique call identifier (set by the originating endpoint), which can
be used to associate RAS signaling with the modified Q.931
signaling used in H.225.0.

conferenceID Character string A unique conference identifier.

 Gatekeeper API Functions and Structures 5-17

RRQ_REQUEST_MSG

RRQ_REQUEST_MSG
The RRQ_REQUEST_MSG structure is used to process RRQ requests from the Cisco IOS
Gatekeeper. This structure contains the following:

URQ_REQUEST_MSG
The URQ_REQUEST_MSG structure is used to process URQ requests from the Cisco IOS
Gatekeeper. This structure contains the following:

LRQ_REQUEST_MSG
The LRQ_REQUEST_MSG structure is used to process LRQ requests from the Cisco IOS
Gatekeeper. This structure contains the following:

canMapAlias Integer Whether the endpoint can copy information from the resulting ACF
into the destinationAddress, destExtraCallInfo and
remoteExtensionAddress fields of the SETUP message.

redirectNumber Character string Taken from the Number Digits field of Q.931 Setup
Redirecting Number IE.

redirectReason Enumeration Taken from the Q.931 Setup Redirecting Number IE. See
REDIRECT_REASON_TYPE.

callingOctet3a Character String Whether the calling number information can be displayed.

displayIE Character String Taken from the Q.931 Setup, display IE.

endPointCallSignalAddress Character String Call signaling transport address of the endpoint sending the ARQ.

cryptoToken Pointer See CRYPTO_H323_TOKEN.

clearToken Pointer See CLEAR_TOKEN.

Field Field Type Description

headerInfo Structure See HEADER_INFO.

callSignalAddress Character string Call signaling transport address for this endpoint.

rasAddress Character string Registration and status transport address for this endpoint.

terminalAlias Character string List of alias addresses by which other terminals can identify this
terminal.

terminalType Enumeration Type of endpoint being registered. See ENDPOINT_TYPE.

supportedPrefix Character string Prefix associated with the supported protocol.

cryptoToken Pointer See CRYPTO_H323_TOKEN.

clearToken Pointer See CLEAR_TOKEN.

Field Field Type Description

headerInfo Structure See HEADER_INFO.

callSignalAddress Character string Call signaling transport address for this endpoint.

Field Field Type Description

headerInfo Structure See HEADER_INFO.

Field Field Type Description

API Structures

Cisco Gatekeeper External Interface Reference5-18

LCF_REQUEST_MSG
The LCF_REQUEST_MSG structure is used to process LCF requests from the Cisco IOS
Gatekeeper. This structure contains the following:

LRJ_REQUEST_MSG
The LRJ_REQUEST_MSG structure is used to process LRJ requests from the Cisco IOS
Gatekeeper. This structure contains the following:

srcInfo Character string Sequence of alias addresses for the source endpoint.

destinationInfo Character string Sequence of alias addresses for the destination endpoint.

redirectNumber Character string Taken from the Number Digits field of Q.931 Setup
Redirecting Number IE.

redirectReason Enumeration Taken from the Q.931 Setup Redirecting Number IE. See
REDIRECT_REASON_TYPE.

callingOctet3a Character String Whether the calling number information can be displayed.

displayIE Character String Taken from the Q.931 Setup, display IE.

callingPartyNum Character String Taken from the Q.931.

Field Field Type Description

headerInfo Structure See HEADER_INFO.

srcInfo Character string Sequence of alias addresses for the source endpoint.

destinationInfo Character string Sequence of alias addresses for the destination endpoint.

callSignalAddress Character string Call signaling transport address for this endpoint.

destExtraCallInfo Character string External addresses for multiple calls.

redirectNumber Character string Taken from the Number Digits field of Q.931 Setup
Redirecting Number IE.

redirectReason Enumeration Taken from the Q.931 Setup Redirecting Number IE. See
REDIRECT_REASON_TYPE.

callingOctet3a Character String Whether the calling number information can be displayed.

callingPartyNum Character String Taken from the Q.931.

displayIE Character String Taken from the Q.931 Setup, display IE.

rasAddress Character String Registration and status transport address for this endpoint.

rmotExtensionAddr Character String Alias address of a called endpoint, present in cases where this
information is required to traverse multiple gateways.

destinationType Enumeration Type of destination endpoint. See ENDPOINT_TYPE.

Field Field Type Description

headerInfo Structure See HEADER_INFO.

srcInfo Character string Sequence of alias addresses for the source endpoint.

destinationInfo Character string Sequence of alias addresses for the destination endpoint.

redirectNumber Character string Taken from the Number Digits field of Q.931 Setup
Redirecting Number IE.

Field Field Type Description

 Gatekeeper API Functions and Structures 5-19

GK_WRITE_MSG

GK_WRITE_MSG
The GK_WRITE_MSG structure is used to process responses from the external application to the
Cisco IOS Gatekeeper. This structure contains the following:

ARQ_RESPONSE_MSG
The ARQ_RESPONSE_MSG structure is used to process ARQ responses from the external
application. This structure contains the following:

redirectReason Enumeration Taken from the Q.931 Setup Redirecting Number IE. See
REDIRECT_REASON_TYPE.

callingOctet3a Character String Whether the calling number information can be displayed.

displayIE Character String Taken from the Q.931 Setup, display IE.

callingPartyNum Character String Taken from the Q.931.

rejectReason Enumeration Reason for the rejection of the request. See
LRJ_REJECT_REASON_TYPE.

Field Field Type Description

msgType Enumeration See RESPONSE_MSG_TYPE.

arqRespMsg Structure See ARQ_RESPONSE_MSG.

acfRespMsg Structure See ACF_RESPONSE_MSG.

arjRespMsg Structure See ARJ_RESPONSE_MSG.

rrqRespMsg Structure See RRQ_RESPONSE_MSG.

rrjRespMsg Structure See RRJ_RESPONSE_MSG.

rcfRespMsg Structure See RCF_RESPONSE_MSG.

lrqRespMsg Structure See LRQ_RESPONSE_MSG.

lcfRespMsg Structure See LCF_RESPONSE_MSG.

lrjRespMsg Structure See LRJ_RESPONSE_MSG.

ripRespMsg Structure See RIP_RESPONSE_MSG.

Field Field Type Description

headerInfo Structure See HEADER_INFO.

destinationInfo Character string Sequence of alias addresses for the destination endpoint.

destCallSignalAddress Character string Transport address used at the destination for call signaling.

destExtraCallInfo Character string External addresses for multiple calls.

bandWidthPresent Boolean Whether a specified bandwidth is present in the request.

bandWidth Unsigned integer Bandwidth (in 100 kbps) requested for the bi-directional call.

redirectNumber Character string Taken from the Number Digits field of Q.931 Setup
Redirecting Number IE.

redirectReason Enumeration Taken from the Q.931 Setup Redirecting Number IE. See
REDIRECT_REASON_TYPE.

displayIE Character String Taken from the Q.931 Setup, display IE.

Field Field Type Description

API Structures

Cisco Gatekeeper External Interface Reference5-20

ACF_RESPONSE_MSG
The ACF_RESPONSE_MSG structure is used to process ACF responses from the external
application. This structure contains the following:

ARJ_RESPONSE_MSG
The ARJ_RESPONSE_MSG structure is used to process ARJ responses from the external
application. This structure contains the following:

RRQ_RESPONSE_MSG
The RRQ_RESPONSE_MSG structure is used to process RRQ responses from the external
application. This structure contains the following:

RCF_RESPONSE_MSG
The RCF_RESPONSE_MSG structure is used to process RCF responses from the external
application. This structure contains the following:

Field Field Type Description

headerInfo Structure See HEADER_INFO.

destinationInfo Character string Sequence of alias addresses for the destination endpoint.

destCallSignalAddress Character string Transport address used at the destination for call signaling.

destExtraCallInfo Character string External addresses for multiple calls.

rmotExtensionAddr Character string Alias address of a called endpoint, present in cases where this
information is required to traverse multiple gateways.

bandWidthPresent Boolean Whether a specified bandwidth is present in the request.

bandWidth Unsigned integer Bandwidth (in 100 kbps) requested for the bi-directional call.

destinationType Enumeration Type of destination endpoint. See ENDPOINT_TYPE.

altEndpt Structure See ALTERNATE_ENDPOINT.

clearToken Pointer See CLEAR_TOKEN.

Field Field Type Description

headerInfo Structure See HEADER_INFO.

rejectReason Enumeration Reason the request was rejected. See
ARJ_REJECT_REASON_TYPE.

Field Field Type Description

headerInfo Structure See HEADER_INFO.

terminalAlias Character string List of alias addresses by which other terminals can identify
this terminal.

supportedPrefix Character string Prefix associated with the supported protocol.

Field Field Type Description

headerInfo Structure See HEADER_INFO.

terminalAlias Character string List of alias addresses by which other terminals can identify
this terminal.

 Gatekeeper API Functions and Structures 5-21

RRJ_RESPONSE_MSG

RRJ_RESPONSE_MSG
The RRJ_RESPONSE_MSG structure is used to process RRJ responses from the external
application. This structure contains the following:

LRQ_RESPONSE_MSG
The LRQ_RESPONSE_MSG structure is used to process LRQ responses from the external
application. This structure contains the following:

LCF_RESPONSE_MSG
The LCF_RESPONSE_MSG structure is used to process LCF responses from the external
application. This structure contains the following:

LRJ_RESPONSE_MSG
The LRJ_RESPONSE_MSG structure is used to process LRJ responses from the external
application. This structure contains the following:

supportedPrefix Character string Prefix associated with the supported protocol.

alternateGK Structure See ALTERNATE_GK.

Field Field Type Description

headerInfo Structure See HEADER_INFO.

rejectReason Enumeration Reason the request was rejected. See
RRJ_REJECT_REASON_TYPE.

Field Field Type Description

headerInfo Structure See HEADER_INFO.

destinationInfo Character string Sequence of alias addresses for the destination endpoint.

Field Field Type Description

headerInfo Structure See HEADER_INFO.

destinationInfo Character string Sequence of alias addresses for the destination endpoint.

destExtraCallInfo Character string External addresses for multiple calls.

callSignalAddress Character string Call signaling transport address for this endpoint.

rasAddress Character String Registration and status transport address for this endpoint.

rmotExtensionAddr Character String Alias address of a called endpoint, present in cases where this
information is required to traverse multiple gateways.

destinationType Enumeration Type of destination endpoint. See ENDPOINT_TYPE.

Field Field Type Description

headerInfo Structure See HEADER_INFO.

rejectReason Enumeration Reason the request was rejected. See
LRJ_REJECT_REASON_TYPE.

Field Field Type Description

API Structures

Cisco Gatekeeper External Interface Reference5-22

CRYPTO_H323_TOKEN
The CRYPTO_H323_TOKEN structure is used to process cryptoTokens. This structure contains the
following:

CRYPTO_EP_PWD_HASH
The CRYPTO_EP_PWD_HASH structure is used to process cryptoTokens. This structure contains
the following:

CRYPTO_EP_PWD_ENCR
The CRYPTO_EP_PWD_ENCR structure is used to process the encrypted data of a cryptoToken.
This structure contains the following:

CRYPTO_EP_CERT
The CRYPTO_EP_CERT structure is used to process the authentication certificate of a cryptoToken.
This structure contains the following:

CLEAR_TOKEN
The CLEAR_TOKEN structure is used to process the clear tokens field. This structure contains the
following:

Field Field Type Description

token_type Enumeration See CRYPTO_H323_TOKEN_TYPE_S.

cryptoEPPwdHash Structure See CRYPTO_EP_PWD_HASH.

cryptoEPPwdEncr Structure See CRYPTO_EP_PWD_ENCR.

cryptoEPCert Structure See CRYPTO_EP_CERT.

Field Field Type Description

alias Character string Registration and status transport address for this endpoint.

timestamp Character string 32-bit integer that represents UTC time.

token Character string 16 octet IA5String that represents the MD5 hashed encoded
PwdCertToken.

Field Field Type Description

paramS Character string Any runtime parameters.

encryptedData Character string Encrypted data from the cryptoToken.

Field Field Type Description

toBeSigned Character string Whether the certificate requires a signature.

signature Character string Digital signature assigned to the authentication certificate.

Field Field Type Description

objectIdentifier Character string Object identifier.

 Gatekeeper API Functions and Structures 5-23

ALTERNATE_GK

ALTERNATE_GK
The ALTERNATE_GK structure is used to process information about an alternate gatekeeper. This
structure contains the following:

ALTERNATE_ENDPOINT
The ALTERNATE_ENDPOINT structure is used to process information about an alternate H.323
endpoint. This structure contains the following:

RIP_RESPONSE_MSG
The RIP_RESPONSE_MSG structure is used to process requests from the external application for
additional time. This structure contains the following:

password Character string Secret character string that is used to authenticate a user or
H.323 endpoint.

timestamp Character string 32-bit integer that represents UTC time.

challengeString Character string Challenge string used for authentication.

random Character string Integer value, for example a monotonically increasing
sequence number.

generalID Character string Character string that uniquely identifies either the sender or
receiver.

nonstd_objectID Character string Object identifier that is used to indicate the type and format of
the nonstandard data being sent in the clear token.

nonstd_data Character string Nonstandard data in the clear tokens field.

Field Field Type Description

rasAddress Character string Registration and status transport address for this endpoint.

gkIdentifier Character string Identifier of the gatekeeper.

needToRegister Boolean Whether there is a need to register with this gatekeeper.

priority Integer Priority of this gatekeeper. Possible values are 1 through 127.

Field Field Type Description

callSignalAddress Character string Registration and status transport address for this endpoint.

tokenP Structure See CLEAR_TOKEN.

Field Field Type Description

headerInfo Structure See HEADER_INFO.

delay Integer Amount of time, in milliseconds (1 through 65536), that the
endpoint should wait before retrying the request.

Field Field Type Description

API Structures

Cisco Gatekeeper External Interface Reference5-24

UNSUPPORTED_MSG
The UNSUPPORTED_MSG structure is used to process requests from the Cisco IOS Gatekeeper
that contain a RAS message type that is not supported by the API. This structure contains the
following:

Enumerations
Some of the API structures contain enumerations. An enumeration is simply a list of possible values.
This section lists the enumerations used by the structures.

STATUS_TYPE
The STATUS_TYPE enumeration lists the possible return values from calls to read, write, register
and unregister functions. The possible values are:

• PROCESSING_SUCCESSFUL

• CONNECT_IN_PROGRESS

• NULL_POINTER_PASSED

• TCP_HANDLE_ERROR

• TCP_CONNECT_ERROR

• TCP_READ_ERROR

• TCP_BIND_ERROR

• TCP_LISTEN_ERROR

• TCP_ADDRESS_ALREADY_IN_USE

• TCP_ADDRESS_NOT_AVAIL

• TCP_NONBLOCK_ERROR

• MEM_ALLOC_FAIL

• MSG_READ_ERROR

• TCP_WRITE_ERROR

• TCP_CONNECTION_CLOSED

• INCOMPLETE_MSG_READ

• INVALID_MSG_SPECIFIED

• INVALID_ENDPOINT_SPECIFIED

• INVALID_REDIRECT_REASON_SPECIFIED

• INVALID_REJECT_REASON_SPECIFIED

• INVALID_DELAY_SPECIFIED

• HEADER_INFO_INCOMPLETE

Field Field Type Description

headerInfo Structure See HEADER_INFO.

 Gatekeeper API Functions and Structures 5-25

Enumerations

REG_STATUS_TYPE
The REG_STATUS_TYPE enumeration lists the possible status values for registration and
unregistration responses received from the Cisco IOS Gatekeeper. The possible values are:

• SUCCESSFUL

• INVALID_PRIORITY

• INVALID_FILTERS

• INVALID_GKID

ENDPOINT_TYPE
The ENDPOINT_TYPE enumeration lists the possible types of end points. The possible values are:

• GATEKEEPER

• TERMINAL

• MCU

• PROXY

• VOICEGATEWAY

• H320GATEWAY

• OTHERGATEWAY

• ENDPOINT_INFO_NOT_RCVD

REDIRECT_REASON_TYPE
The REDIRECT_REASON_TYPE enumeration lists the possible reasons that a call might be
redirected. The possible values are:

• REDIRECT_REASON_UNKNOWN = 0

• REDIRECT_REASON_CALL_FWD_BUSY = 1

• REDIRECT_REASON_CALL_FWD_NO_REPLY = 2

• REDIRECT_REASON_CALL_DEFLECTION = 4

• REDIRECT_REASON_CLED_DTE_OUT_OF_ORDER = 9

• REDIRECT_REASON_CALL_FWDING_BY_CLED_DTE = 10

• REDIRECT_REASON_CALL_FWDING_UNCONDL = 15

• REDIRECT_REASON_INFO_NOT_RCVD=99

LRJ_REJECT_REASON_TYPE
The LRJ_REJECT_REASON_TYPE enumeration lists the possible reasons that an LRQ request
might be rejected. The possible values are:

• LRJ_NOT_REGISTERED

• LRJ_INVALID_PERMISSION

• LRJ_REQUEST_DENIED

API Structures

Cisco Gatekeeper External Interface Reference5-26

• LRJ_UNDEFINED_REASON

• LRJ_SECURITY_DENIAL

REQUEST_MSG_TYPE
The REQUEST_MSG_TYPE enumeration lists the possible messages that can be received from the
Cisco IOS Gatekeeper. The possible values are:

• UNKNOWN_MSG

• MSG_NOT_SUPPORTED

• RRQ_REQUEST_MSG

• URQ_REQUEST_MSG

• ARQ_REQUEST_MSG

• LRQ_REQUEST_MSG

• LRJ_REQUEST_MSG

• LCF_REQUEST_MSG

• RRQ_REGISTER_RESPONSE_MSG

• URQ_REGISTER_RESPONSE_MSG

• ARQ_REGISTER_RESPONSE_MSG

• LRQ_REGISTER_RESPONSE_MSG

• LCF_REGISTER_RESPONSE_MSG

• LRJ_REGISTER_RESPONSE_MSG

• RRQ_UNREGISTER_RESPONSE_MSG

• URQ_UNREGISTER_RESPONSE_MSG

• ARQ_UNREGISTER_RESPONSE_MSG

• LRQ_UNREGISTER_RESPONSE_MSG

• LCF_UNREGISTER_RESPONSE_MSG

• LRJ_UNREGISTER_RESPONSE_MSG

RRJ_REJECT_REASON_TYPE
The RRJ_REJECT_REASON_TYPE enumeration lists the possible reasons that an RRQ request
might be rejected. The possible values are:

• RRJ_UNDEFINED_REASON

• RRJ_SECURITY_DENIAL

• RRJ_RESOURCE_UNAVAIL

 Gatekeeper API Functions and Structures 5-27

Enumerations

ARJ_REJECT_REASON_TYPE
The ARJ_REJECT_REASON_TYPE enumeration lists the possible reasons that an ARQ request
might be rejected. The possible values are:

• CALLED_PARTY_NOT_REGISTERED

• INVALID_PERMISSION

• REQUEST_DENIED

• UNDEFINED_REASON

• ARJ_RESOURCE_UNAVAIL

• ARJ_SECURITY_DENIAL

RESPONSE_MSG_TYPE
The RESPONSE_MSG_TYPE enumeration lists the possible messages that the external application
can send to the Cisco IOS Gatekeeper. The possible values are:

• RRQ_RESPONSE_MSG

• RCF_RESPONSE_MSG

• RRJ_RESPONSE_MSG

• ARQ_RESPONSE_MSG

• ACF_RESPONSE_MSG

• ARJ_RESPONSE_MSG

• LRQ_RESPONSE_MSG

• LCF_RESPONSE_MSG

• LRJ_RESPONSE_MSG

• RIP_RESPONSE_MSG

REGISTER_MSG_TYPE
The REGISTER_MSG_TYPE enumeration lists the possible registration messages that the external
application can send to the Cisco IOS Gatekeeper. The possible values are:

• RRQ_REGISTER_MSG

• URQ_REGISTER_MSG

• ARQ_REGISTER_MSG

• LRQ_REGISTER_MSG

• LCF_REGISTER_MSG

• LRJ_REGISTER_MSG

API Structures

Cisco Gatekeeper External Interface Reference5-28

REPORT_DEST_T
The REPORT_DEST_T enumeration lists the possible destinations for the Gatekeeper API debug
output. The possible values are:

• REPORT_CONSOLE

• REPORT_SYSLOG

CRYPTO_H323_TOKEN_TYPE_S
The CRYPTO_H323_TOKEN_TYPE_S enumeration lists the possible types of cryptoTokens. The
possible values are:

• NO_CRYPTO_TOKEN

• CRYPTO_EP_PWD_HASH

• CRYPTO_EP_PWD_ENCR

• CRYPTO_EP_CERT

Note In the first release of the GKTMP and API, the CRYPTO_EP_PWD_HASH is the only type
of cryptoToken supported.

Limits
Some of the fields are limited in size. The limits are set using variables in the header file. The limits
as set in the default header file are as follows:

Variable Initial Value

MAX_IP_ADDR_LENGTH 15

MAX_VERSION_ID_LENGTH 4

MAX_ENDPOINT_LENGTH 128

MAX_TRANSACTION_ID_LENGTH 24

MAX_NUM_ENDPOINT_TYPES 7

MAX_NUM_SUPPORTED_PREFIX 10

MAX_NUM_ARQ_DEST_INFO 20

MAX_NUM_ARQ_REDIRECT_REASON 7

MAX_NUM_LRQ_DEST_INFO 20

MAX_NUM_LRQ_REDIRECT_REASON 7

MAX_NUM_LCF_DEST_INFO 20

MAX_NUM_LCF_RMOT_EXTENSION_ADDR 20

MAX_NUM_LRJ_DEST_INFO 20

MAX_CRYPTO_TOKEN_FIELDS 5

C H A P T E R

 New Gatekeeper Commands 6-1

6

New Gatekeeper Commands

The following commands have been added to the Cisco IOS software to allow users to statically
configure triggers on the Cisco IOS Gatekeeper:

• server trigger, along with a series of trigger subcommands.

In addition, the following commands have been added in support of the new Gatekeeper functions:

• server trigger

• show gatekeeper servers

• debug gatekeeper servers

Note As with all IOS commands, you can abbreviate the Cisco IOS Gatekeeper trigger registration
commands. To abbreviate a command, simply enter the first few characters of the command and
press tab. To obtain online help for a command, enter the first few characters of the command
followed by a question mark.

server trigger

Cisco Gatekeeper External Interface Reference6-2

server trigger
To configure triggers for external applications, use the server trigger command.

server trigger {arq | lcf | lrj | lrq | rrq | urq} gkid priority server-id server-ip_address
server-port

no server trigger {arq | lcf | lrj | lrq | rrq | urq} gkid priority

no server trigger all

The no form of this command removes the trigger definition from the Cisco IOS Gatekeeper. The no
server trigger all command removes all statically configured triggers.

Syntax Description

Command Mode
Gatekeeper configuration

Submode Commands
The following subcommands can be used in any of the trigger submodes:

• info-only

• shutdown

The following subcommands can be used in specific trigger submodes to configure certain types of
trigger conditions:

• destination-info

• redirect-reason

• remote-ext-address

• endpoint-type

• supported-prefix

arq | lcf | lrj | lrq | rrq
| urq

The RAS messages for which you can create triggers on the Cisco IOS
Gatekeeper. You can specify only one message type per server trigger
command. There is a different trigger submode for each message type.
Each trigger submode has its own set of applicable commands.

gkid The identifier of the Cisco IOS Gatekeeper.

priority The priority for this particular trigger. Possible values are 1 through 20. 1 is
the highest.

server-id The identifier of the external application.

server-ip_address The IP address of the server on which the external application is running.

server-port The port on which the server listens for messages from the Cisco IOS
Gatekeeper.

 New Gatekeeper Commands 6-3

Submode Commands

info-only
To indicate to the Cisco IOS Gatekeeper that messages that meet the specified trigger parameters
should be sent as notifications only and that the Cisco IOS Gatekeeper should not wait for a response
from the external application, use the info-only subcommand.

info-only

Syntax Description

Command Mode
Any of the Cisco IOS Gatekeeper trigger submodes

shutdown
To temporarily disable a trigger, use the shutdown subcommand. Cisco IOS Gatekeepers will not
consult triggers in shutdown state when determining whether a message should be forwarded to an
external application.

shutdown

Syntax Description

Command Mode
Any of the Cisco IOS Gatekeeper trigger submodes

destination-info
To configure a trigger that is based on a particular destination, use the destination-info
subcommand.

destination-info {e164 | email-id | h323-id} value

info-only Informational only. No need to wait for acknowledgment.

shutdown Changes the administrative state of a trigger to shutdown.

server trigger

Cisco Gatekeeper External Interface Reference6-4

Syntax Description

Command Mode
Cisco IOS Gatekeeper ARQ, LRQ LCF and LRJ trigger submodes

redirect-reason
To configure a trigger that is based on a specific redirect reason, use the redirect-reason
subcommand.

redirect-reason value

Syntax Description

Command Mode
Cisco IOS Gatekeeper ARQ and LRQ trigger submodes

remote-ext-address
To configure a trigger that is based on a specific remote extension address, use the
remote-ext-address subcommand.

remote-ext-address value

e164 Indicates that the destination address is an E.164 address.

email-id Indicates that the destination address is an e-mail ID.

h323-id Indicates that the destination address is an H.323 ID.

value Specifies the value against which to compare the destination address in the
RAS messages. For E.164 addresses, the following wildcards can be used:

• A trailing series of periods, each of which represents a single character.

• A trailing asterisk, which represents one or more characters.

value Specifies the value against which to compare the redirect-reason in the
RAS messages. Possible values are 0-65535. Currently used redirect
reasons are:

• 0—Unknown reason

• 1—Call forwarding busy or called DTE busy

• 2—Call forwarded no reply

• 4—Call deflection

• 9—Called DTE out of order

• 10—Call forwarding by the call DTE

• 15—Call forwarding unconditionally

 New Gatekeeper Commands 6-5

Submode Commands

Syntax Description

Command Mode
Cisco IOS Gatekeeper LCF trigger submode

endpoint-type
To configure a trigger that is based on a specific endpoint, use the endpoint-type subcommand.

endpoint-type value

Syntax Description

Command Mode
Cisco IOS Gatekeeper RRQ and URQ trigger submodes

supported-prefix
To configure a trigger that is based on a specific supported prefix, use the supported-prefix
subcommand.

supported-prefix value

e164 Indicates that the remote extension address is an E.164 address.

value Specifies the value against which to compare the destination address in the
RAS messages. The following wildcards can be used:

• A trailing series of periods, each of which represents a single character.

• A trailing asterisk, which represents one or more characters.

value Specifies the value against which to compare the endpoint-type in the RAS
messages. The possible values are:

• gatekeeper—The endpoint is an H.323 gatekeeper.

• h320-gateway—The endpoint is an H.320 gateway.

• mcu—The endpoint is an MCU.

• other-gateway—The endpoint is a type of gateway not specified on this
list.

• proxy—The endpoint is an H.323 proxy.

• terminal—The endpoint is an H.323 terminal.

• voice-gateway—The endpoint is a voice type gateway.

server trigger

Cisco Gatekeeper External Interface Reference6-6

Syntax Description

Command Mode
Cisco IOS Gatekeeper RRQ and URQ trigger submodes

value Specifies the value against which to compare the supported prefix in the
RAS messages. The possible values are any E.164 pattern used as a
gateway technology prefix. The value string can contain any of the
following: 0123456789#*,

 New Gatekeeper Commands 6-7

server registration-port

server registration-port
To define a listener port to be used by the external applications to establish connections to the
gatekeeper on this router, use the server registration-port command.

[no] server registration-port port_number

The no form of this command forces the gatekeeper on this router to close the listener port so that it
cannot receive any additional registrations. However, existing connections between the gatekeeper
and external application are left open.

Syntax Description

Command Mode
Gatekeeper configuration

port_number The port on which the Cisco IOS Gatekeeper should listen for registration
messages from external applications.

show gatekeeper servers

Cisco Gatekeeper External Interface Reference6-8

show gatekeeper servers
To display a list of the triggers (whether dynamically registered from the external applications or
statically configured from the command-line interface), use the show gatekeeper servers command.

show gatekeeper servers [gkid]

Syntax Description

Command Mode
EXEC mode

Example 6-1 show gatekeeper servers Output

router# show gatekeeper servers gk102

 GATEKEEPER SERVERS STATUS
 =========================

 Gatekeeper Server listening port: 20000

 Gatekeeper-ID: gk102

 RRQ Priority: 1
 Server-ID: sj-server
 Server IP address: 1.14.93.28:42387
 Server type: dynamically registered
 Connection Status: active
 Trigger Information:
 Supported Prefix: 10#
 Supported Prefix: 3#
 RRQ Priority: 2
 Server-ID: sf-server
 Server IP address: 1.14.93.43:3820
 Server type: CLI-configured
 Connection Status: inactive
 Trigger Information:
 Endpoint-type: MCU
 Endpoint-type: VOIP-GW
 Supported Prefix: 99#
 ARQ Priority: 1
 Server-ID: sj-server
 Server IP address: 1.14.93.28:42387
 Server type: dynamically registered
 Connection Status: active
 Trigger Information:
 Destination Info: M:nilkant@zone14.com
 Destination Info: E:1800.......
 Redirect Reason: Call forwarded no reply
 Redirect Reason: Call deflection

gkid Specifies the ID of the gatekeeper. If you specify a gatekeeper ID, only
the information about the external applications that are registered
with the specified gatekeeper is displayed. If you do not specify a
gatekeeper ID, information about all the external applications that
are registered with any of the Cisco IOS Gatekeepers on this router
is displayed.

 New Gatekeeper Commands 6-9

debug gatekeeper servers

debug gatekeeper servers
To turn debugging on, use the debug gatekeeper servers command. This command traces all the
message exchanges between the Cisco IOS Gatekeeper and the external application. It also displays
any errors that occur in sending messages to the external application or in parsing messages from the
external application.

debug gatekeeper servers

[no] debug gatekeeper servers

The no format of this command turns debugging off.

Syntax Description

Command Mode
EXEC mode

Example 6-2 debug gatekeeper servers Output

router# debug gatekeeper servers
############ begin screen trace
00:08:47:GK:processing server msg:
REGISTER RRQ
From:server1
To:gk617
Priority:1

00:08:47:GK TMSG encoded to write buffer:
"REGISTER RRQ
From:gk617
To:server1
Priority:1
Status:success

"

00:11:16:GK TMSG encoded to write buffer:
"REQUEST RRQ
From:gk617
To:server1
Transaction-Id:6121529400000001
Content-Length:62

c=I:1.14.93.92:1720
r=I:1.14.93.92:24999
t=proxy
a=H:px14
"

00:11:16:GK:processing server msg:
RESPONSE RRQ
From:server1
To:gk617
Transaction-Id:6121529400000001

servers Enable the logging of messages between the Cisco IOS Gatekeeper and the
external application as well as logging of errors in the processing of
messages received from the external application.

debug gatekeeper servers

Cisco Gatekeeper External Interface Reference6-10

Content-Length:35

a=M:jsmith
p=1# 2 # 3# 1800...

00:11:45:GK TMSG encoded to write buffer:
"REQUEST RRQ
From:gk617
To:server1
Transaction-Id:6121529400000002
Content-Length:72

c=I:1.14.93.130:1720
r=I:1.14.93.130:4307
t=voice-gateway
a=H:gw130
"

00:11:45:GK:processing server msg:
RESPONSE RRJ
From:server1
To:gk617
Transaction-Id:6121529400000002
Content-Length:18

R=securityDenial
############ end screen trace

